COVID-19: A Brief Overview of the Discovery Clinical Trial
Abstract
:1. Introduction
2. Current Clinical Trials: An Overview
- Seven studies involving human plasma;
- 11 studies involving traditional Chinese medicine (TMC);
- 14 studies involving stem cells, mostly mesenchymal stem cells;
- 16 studies involving dietary complements, including vitamin C, and honey;
- 27 studies dedicated to vaccines;
- 52 studies involving proteins, including commercially available monoclonal antibodies;
- 70 studies involving antiviral drugs;
- More than 100 studies involving other small molecules.
3. The SOLIDARITY Response Fund and the Discovery Project
- Remdesivir;
- The combination lopinavir/ritonavir;
- The combination lopinavir/ritonavir with the addition of interferon β-1a;
- Hydroxychloroquine, eventually associated with an antibiotic (azithromycin) in add-on studies.
4. Some Comments on the Treatments Suggested in the Discovery Project
4.1. Remdesivir (1)
4.2. The Combination Lopinavir/Ritonavir (2/3)
4.3. The Combination Lopinavir/Ritonavir with the Addition of Interferon β-1a (2/3/INF β-1a)
4.4. Hydroxychloroquine (4) and Chloroquine (5)
5. Conclusions
Funding
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Eng. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; et al. The species Severe acute respiratory syndrome related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar] [CrossRef] [Green Version]
- Council on Foundations. A Call to Action: Philanthropy’s Commitment during COVID-19. Available online: https://www.cof.org/news/call-action-philanthropys-commitment-during-covid-19 (accessed on 7 April 2020).
- U.S. National Library of Medicine-Clinical Trials. Available online: https://clinicaltrials.gov/ct2/home (accessed on 8 April 2020).
- WHO, UN Foundation and Partners Launch First-of-its-kind COVID-19 Solidarity Response Fund. Available online: https://www.who.int/news-room/detail/13-03-2020-who-un-foundation-and-partners-launch-first-of-its-kind-covid-19-solidarity-response-fund (accessed on 30 March 2020).
- Launch of a European Clinical Trial against COVID-19. Available online: https://presse.inserm.fr/en/launch-of-a-european-clinical-trial-against-covid-19/38737/ (accessed on 30 March 2020).
- Mulangu, S.; Dodd, L.E.; Davey, R.T., Jr.; Tshiani Mbaya, O.; Proschan, M.; Mukadi, D.; Lusakibanza Manzo, M.; Nzolo, D.; Tshomba Oloma, A.; Ibanda, A.; et al. A randomized, controlled trial of Ebola virus disease therapeutics. N. Engl. J. Med. 2019, 381, 2293–2303. [Google Scholar] [CrossRef] [PubMed]
- Sheahan, T.P.; Sims, A.C.; Graham, R.L.; Menachery, V.D.; Gralinski, L.E.; Case, J.B.; Leist, S.R.; Pyrc, K.; Feng, J.Y.; Trantcheva, I.; et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med. 2017, 9, eaal3653. [Google Scholar] [CrossRef] [Green Version]
- Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schäfer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 2020, 11, 222. [Google Scholar] [CrossRef] [Green Version]
- de Wit, E.; Feldmann, F.; Cronin, J.; Jordan, R.; Okumura, A.; Thomas, T.; Scott, D.; Cihlar, T.; Feldmann, H. Prophylactic and therapeutic Remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc. Natl. Acad. Sci. USA 2020, 117, 6771–6776. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020, 30, 269–271. [Google Scholar] [CrossRef]
- Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A.; et al. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 2020, 382, 929–936. [Google Scholar] [CrossRef]
- Sciensano Epidemiologie des Maladies Infectieuses. Available online: https://epidemio.wiv-isp.be/ID/Documents/Covid19/COVID-19_InterimGuidelines_Treatment_ENG.pdf (accessed on 30 March 2020).
- MedChemExpress. Available online: https://www.medchemexpress.com/Remdesivir.html (accessed on 30 March 2020).
- BioVision Inc. Available online: https://www.biovision.com/remdesivir-24447.html (accessed on 30 March 2020).
- de Wilde, A.H.; Jochmans, D.; Posthuma, C.C.; Zevenhoven-Dobbe, J.C.; van Nieuwkoop, S.; Bestebroer, T.M.; van den Hoogen, B.G.; Neyts, J.; Snijder, E.J. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob. Agents Chemother. 2014, 58, 4875–4884. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.F.-W.; Yao, Y.; Yeung, M.-L.; Deng, W.; Bao, L.; Jia, L.; Li, F.; Xiao, C.; Gao, H.; Yu, P.; et al. Treatment with Lopinavir/Ritonavir or Interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J. Infect. Dis. 2015, 212, 1904–1913. [Google Scholar] [CrossRef]
- Yao, T.-T.; Qian, J.-D.; Zhu, W.Y.; Wang, Y.; Wang, G.Q. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus—A possible reference for coronavirus disease-19 treatment option. J. Med. Virol. 2020, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stockman, L.J.; Bellamy, R.; Garner, P. SARS: Systematic review of treatment effects. PLoS Med. 2006, 3, e343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baden, L.R.; Rubin, E.J. COVID-19—The search for effective therapy. N. Engl. J. Med. 2020, 382. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; et al. A trial of Lopinavir–Ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med. 2020, 382. [Google Scholar] [CrossRef]
- Chakraborty, S.; Das, G. Why re-purposing HIV drugs Lopinavir/ritonavir to inhibit the SARS-Cov2 protease probably won’t work-but re-purposing Ribavirin might since it has a very similar binding site within the RNA-polymerase. OSF Prepr. 2020. [Google Scholar] [CrossRef]
- Pharmacy Checker Helping People Safely Find More Affordable Medicine. Available online: https://www.pharmacychecker.com/ (accessed on 1 April 2020).
- Spiegel, M.; Pichlmair, A.; Mühlberger, E.; Haller, O.; Weber, F. The antiviral effect of interferon-beta against SARS-Coronavirus is not mediated by MxA protein. J. Clin. Virol. 2004, 30, 211–213. [Google Scholar] [CrossRef]
- Hensley, L.E.; Fritz, E.A.; Jahrling, P.B.; Karp, C.L.; Huggins, J.W.; Geisbert, T.W. Interferon-β 1a and SARS coronavirus replication. Emerg. Infect. Dis. 2004, 10, 317–319. [Google Scholar] [CrossRef]
- Hart, B.; Dyall, J.; Postnikova, E.; Zhou, H.; Kindrachuk, J.; Johnson, R.F.; Olinger, G.; Frieman, M.B.; Holbrook, M.R.; Jahrling, P.B.; et al. Interferon-β and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays. J. Gen. Virol. 2014, 95, 571–577. [Google Scholar] [CrossRef]
- Drugbank. Available online: https://www.drugbank.ca/ (accessed on 1 April 2020).
- Live Science. Husband and Wife Poison Themselves Trying to Self-medicate with Chloroquine. Available online: https://www.livescience.com/coronavirus-chloroquine-self-medication-kills-man.html (accessed on 7 April 2020).
- Finbloom, D.S.; Silver, K.; Newsome, D.A.; Gunkel, R. Comparison of hydroxychloroquine and chloroquine use and the development of retinal toxicity. J. Rheumatol. 1985, 12, 692–694. [Google Scholar]
- Lim, H.-S.; Im, J.-S.; Cho, J.-Y.; Bae, K.-S.; Klein, T.A.; Yeom, J.-S.; Kim, T.-S.; Choi, J.-S.; Jang, I.J.; Park, J.-W. Pharmacokinetics of Hydroxychloroquine and its clinical implications in chemoprophylaxis against calaria caused by Plasmodium vivax. Antimicr. Agents Chemother. 2009, 53, 1468–1475. [Google Scholar] [CrossRef] [Green Version]
- Savarino, A.; Shytaj, I.L. Chloroquine and beyond: Exploring anti-rheumatic drugs to reduce immune hyperactivation in HIV/AIDS. Retrovirology 2015, 12, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biot, C.; Daher, W.; Chavain, N.; Fandeur, T.; Khalife, J.; Dive, D.; De Clercq, E. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J. Med. Chem. 2006, 49, 2845–2849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyall, J.; Coleman, C.M.; Hart, B.J.; Venkataraman, T.; Holbrook, M.R.; Kindrachuk, J.; Johnson, R.F.; Olinger, G.G., Jr.; Jahrling, P.B.; Laidlaw, M.; et al. Repurposing of clinically developed drugs for Tteatment of Middle East respiratory syndrome coronavirus infection. Antimicr. Agents Chemother. 2014, 58, 4885–4893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; et al. In Vitro Antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 2020, ciaa237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. BIOSCI Trends 2020, 14, 72–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FDA. Request for Emergency Use Authorization. Available online: https://www.fda.gov/media/136534/download (accessed on 7 April 2020).
- Gautret, P.; Lagiera, J.-C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Esteves Vieira, V.E.; et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 2020, in press. [Google Scholar] [CrossRef]
- Molina, J.M.; Delaugerre, C.; Le Goff, J.; Mela-Lima, B.; Ponscarme, D.; Goldwirt, L.; de Castro, N. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med. Mal. Infect. 2020, in press. [Google Scholar] [CrossRef]
- The Bill and Melinda Gates Foundation. Three Weeks, Two Drug Trials: An Update on the Therapeutics Accelerator with Trevor Mundel. Available online: https://www.gatesfoundation.org/TheOptimist/Articles/coronavirus-interview-trevor-mundel-drug-trials (accessed on 7 April 2020).
Monoclonal antibodies | ||||
Name | Number of trials as of April 8 (as of March 28) | FDA-Approved | Brand name | Manufacturer(s) |
Tocilizumab | 15 (6) | 01/08/2010 | Actemra | Roche |
Sarilumab | 5 (4) | 05/22/2017 | Kevzara | Sanofi and Regeneron |
Bevacizumab | 2 (2) | 02/26/2004 | Avastin | Roche |
Antiviral drugs | ||||
Name | Number of trials | FDA-Approved | Brand name | Manufacturer(s) |
Lopinavir + Ritonavir | 22 (14) | 09/15/2000 | Kaletra, Aluvia | AbbVie |
Umifenovir | 10 (9) | investigational | Arbidol, Abidol | Available in China and Russia |
Remdesivir | 9 (9) | investigational | Gilead Sciences | |
Oseltamivir | 6 (4) | 10/27/1999 | Tamiflu | Gilead Sciences, Roche |
ASC09 or TMC-310911 | 5 (3) | investigational | Janssen | |
Favipiravir | 4 (2) | Approved in Japan (2014) | Avigan | Toyama Chem |
Other small molecules | ||||
Name | Number of trials | FDA-Approved | Brand name | Manufacturer(s) |
Hydroxychloroquine | 58 (19) | 04/18/1955 | Plaquenil | Sanofi |
Chloroquine | 23 (12) | 04/18/1955 | Aralen | Sanofi |
Methylprednisolone | 6 (5) | 10/24/1957 | Depo-Medrol, Solu-Medrol | several |
Losartan | 5 (2) | 04/14/1995 | Act Losartan Cozaar | Actavis Pharma several |
Colchicine | 4 (2) | 07/27/1961 | Colchicine | several |
Thalidomide | 2 (2) | 07/16/1998* | Thalidomid * | Celgene |
Baricitinib | 2 (2) | 05/31/2018 | Olumiant | Eli Lilly & Co |
Characteristics | Remdesivir | Lopinavir (2) Ritonavir (3) | 2 + 3 + IFNβ-1a | Hydroxy-Chloroquine | Chloroquine |
---|---|---|---|---|---|
EC 50 (μM) SARS-CoV | 0.07 [8] | 17.1 [16] | - | 34 [32] 7.97 [33] | 6.5 [32] 6.54 [33] |
EC50 (μM) MERS-CoV | 0.07 [8] | 8.0 [16] | - | 8.28 [33] | 6.28 [33] |
EC50 (μM) SARS-CoV-2 | 1.76 [11] | - | - | 0.72 [34] | 5.47 [34] 6.9 [11] |
Total number of CT a [4] b | 12 | 410 | 297 | 229 | |
Number of CT a for COVID-19 [4] b | 9 | 22 | 3 | 58 | 23 |
Dosage for COVID-19 treatment following NCT04315948 [4] and [13] | 200 mg IV then 100 mg OD for 2–10 days | 400 mg (2) and 100 mg (3) every 12 h for 14 days | Same treatment as 2/3 + 3 doses of 44 µg IFNβ in 6 days | 400 mg then 400 mg 12 h later, then 200 mg BID for up to 4 days | 600 mg then 300 mg 12 h later, then 300 mg BID for up to 4 days c |
Estimated retail price for the treatment (USD) | > 5,000 | 61 (generic) 215 (brand) | > 2,000 | 4.1 | 6.6 d |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanden Eynde, J.J. COVID-19: A Brief Overview of the Discovery Clinical Trial. Pharmaceuticals 2020, 13, 65. https://doi.org/10.3390/ph13040065
Vanden Eynde JJ. COVID-19: A Brief Overview of the Discovery Clinical Trial. Pharmaceuticals. 2020; 13(4):65. https://doi.org/10.3390/ph13040065
Chicago/Turabian StyleVanden Eynde, Jean Jacques. 2020. "COVID-19: A Brief Overview of the Discovery Clinical Trial" Pharmaceuticals 13, no. 4: 65. https://doi.org/10.3390/ph13040065
APA StyleVanden Eynde, J. J. (2020). COVID-19: A Brief Overview of the Discovery Clinical Trial. Pharmaceuticals, 13(4), 65. https://doi.org/10.3390/ph13040065