Antioxidant, Anti-inflammatory Activities and Polyphenol Profile of Rhamnus prinoides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Enrichment and Phytochemical Contents
2.2. Evaluation of Antioxidant Activities
2.3. Evaluation of Anti-inflammatory Activities
2.4. HPLC-UV/ESI-MS/MS Analysis
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Material and Sample Preparation
3.3. Determinations of Phenolic Constituents
3.3.1. Determination of Total Phenolic Content (TPC)
3.3.2. Determination of Total Flavonoid Content (TFC)
3.4. Determinations of Antioxidant Activity
3.4.1. DPPH Free Radical Scavenging Activity
3.4.2. ABTS Free Radical Scavenging Activity
3.5. Determination of Anti-inflammatory Activities
3.5.1. Measurement of LPS-stimulated NO in Macrophage RAW 264.7 Cells
3.5.2. COX-2 Inhibition Assay
3.6. HPLC-UV/ESI-MS/MS Analysis of R. prinoides
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nagari, A.; Abebaw, A. Determination of selected essential and non-essential metals in the stems and leaves of Rhamnus prinoides (Gesho). Sci. Technol. Arts Res. J. 2013, 2, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Jelagat, K.P. In-Vivo Anti-Helminthic Activity of Rhamnus prinoides (Misizitwe) Extracts on Ascaris Lumbricoides; Univ. of Nairobi: Nairobi, Kenya, 2014. [Google Scholar]
- Berhanu, A. Microbial profile of Tella and the role of gesho (Rhamnus prinoides) as bittering and antimicrobial agent in traditional Tella (beer) production. Int. Food Res. J. 2014, 21, 357–365. [Google Scholar]
- Takele, F.; Dagninet, A.; Biazen, E.; Tigsit, G. Rhamnus prinoides in north west Ethiopia: Production, contribution and constraints. Recent Adv. Petrochem. Sci. 2018, 4, 555647–555652. [Google Scholar]
- Gebre, A.; Chandravanshi, B.S. Levels of essential and non-essential metals in Rhamnus prinoides (gesho) cultivated in Ethiopia. Bull. Chem. Soc. Ethiop. 2012, 26, 329–342. [Google Scholar] [CrossRef] [Green Version]
- Kiringe, J.W. A survey of traditional health remedies used by the Maasai of southern Kaijiado district, Kenya. Ethnobot. Res. Appl. 2006, 4, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Prozesky, E.A.; Meryer, J.J.; Louw, A.I. In vitro antiplasmodial activity and cytotoxicity of ethnobotanically selected south African plants. J. Ethnopharmacol. 2001, 76, 239–245. [Google Scholar] [CrossRef]
- Njoroge, G.N.; Bussmann, R.W. Diversity and utilization of antimalarial ethnophytotherapeutic remedies among the Kikuyus (central Kenya). J. Ethnobiol. Ethnomed. 2006, 2, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Muregi, F.W.; Chhabra, S.C.; Njagi, E.N.M.; Lang’at-Thoruwa, C.C.; Njue, W.M.; Orago, A.S.S.; Omar, S.A.; Ndiege, I.O. In vitro antiplasmodial activity of some plants used in Kisii, Kenya against malaria and their chloroquine potentiation effects. J. Ethnopharmacol. 2003, 84, 235–239. [Google Scholar] [CrossRef]
- Muregi, F.W.; Ishih, A.; Suzuki, T.; Kino, H.; Amano, T.; Mkoji, G.M.; Miyase, T.; Terada, M. In vivo antimalarial activity of aqueous extracts from Kenyan medicinal plants and their chloroquine (CQ) potentiation effects against a blood-induced CQ-resistant rodent parasite in mice. Phytother. Res. 2007, 21, 337–343. [Google Scholar] [CrossRef]
- Crowch, C.M.; Okello, E.J. Kinetics of acetylcholinesterase inhibitory activities by aqueous extracts of Acacia nilotica (L.) and Rhamnus prinoides (L’hér.). Afr. J. Pharm. Pharmacol. 2009, 3, 469–475. [Google Scholar]
- Nindi, M.M.; Kgarebem, B.V.; Wolfender, J.L.; Abegaz, B.M. Electrospray liquid chromatography-mass spectrometry of the leaf extract of Rhamnus prinoides. Phytochem. Anal. 1999, 10, 69–75. [Google Scholar] [CrossRef]
- Abegaz, B.M.; Peter, M.G. Emodin and emodinanthrone rhamnoside acetates from fruits of Rhamnus prinoides. Phytochemistry 1995, 39, 1411–1414. [Google Scholar] [CrossRef]
- Abegaz, B.M.; Kebede, T. Geshoidin: A bitter principle of Rhamnus prinoides and other constituents of the leaves. Bull. Chem. Soc. Etiop. 1995, 9, 107–114. [Google Scholar]
- Abegaz, B.; Ermias, D. Anthracene derivatives of Rhamnus prinoides. Bull. Chem. Soc. Etiop. 1988, 2, 15–20. [Google Scholar]
- Alemu, H.; Abegaz, B.M.; Bezabih, M. Electrochemical behaviour and voltammetric determination of geshoidin and its spectrophotometric and antioxidant properties. Bull. Chem. Soc. Ethiop. 2007, 21, 189–204. [Google Scholar]
- Ammar, R.B.; Bhouri, W.; Sghaier, M.B.; Boubaker, J.; Skandrani, I.; Neffati, A.; Bouhlel, I.; Kilani, S.; Mariotte, A.M.; Chekir-Ghedira, L.; et al. Antioxidant and free radical- scavenging properties of three flavonoids isolated from the leaves of Rhamnus alaternus L. (Rhamnaceae): A structure-activity relationship study. Food Chem. 2009, 116, 258–264. [Google Scholar] [CrossRef]
- Bhouri, W.; Sghaier, M.B.; Kilani, S.; Bouhlel, I.; Dijoux-Franca, M.G.; Ghedira, K.; Ghedira, L.C. Evaluation of antioxidant and antigenotoxic activity of two flavonoids from Rhamnus alaternus L. (Rhamnaceae): Kaempferol 3-O-β-isorhamninoside and rhamnocitrin 3-O-β-isorhamninoside. Food Chem. Toxicol. 2011, 49, 1167–1173. [Google Scholar] [CrossRef]
- Molla, Y.; Nedi, T.; Tadesse, G.; Alemayehu, H.; Shibeshi, W. Evaluation of the in vitro antibacterial activity of the solvent fractions of the leaves of Rhamnus prinoides L’ herit (Rhamnaceae) against pathogenic bacteria. BMC Complement. Altern. Med. 2016, 16, 287. [Google Scholar] [CrossRef] [Green Version]
- Tacherfiout, M.; Petrov, P.D.; Mattonai, M.; Ribechini, E.; Ribot, J.; Bonet, M.L.; Khettal, B. Antihyperlipidemic effect of a Rhamnus alaternus leaf extract in triton-induced hyperlipidemic rats and human Hep G2 cells. Biomed. Pharmacother. 2018, 101, 501–509. [Google Scholar] [CrossRef]
- Lee, J.S.; Shukla, S.; Kim, J.A.; Kim, M. Anti-angiogenic effect of Nelumbo nucifera leaf extracts in human umbilical vein endothelial cells with antioxidant potential. PLoS ONE 2015, 10, e0118552. [Google Scholar] [CrossRef]
- Zhu, M.Z.; Chen, G.L.; Wu, J.L.; Li, N.; Liu, Z.H.; Guo, M.Q. Recent development in mass spectrometry and its hyphenated techniques for the analysis of medicinal plants. Phytochem. Anal. 2018, 29, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.L.; Li, X.; Saleri, F.D.; Guo, M.Q. Analysis of flavonoids in Rhamnus davurica and its antiproliferative activities. Molecules 2016, 21, 1275–1288. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Y.; Zhuang, L.W.; Song, D.D.; Lu, C.L.; Xu, X. Isolation, purification, and identification of the main phenolic compounds from leaves of celery (Apium graveolens L. var. dulce Mill./Pers.). J. Sep. Sci. 2017, 40, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Boussahel, S.; Speciale, A.; Dahamna, S.; Amar, Y.; Bonaccorsi, I.; Cacciola, F.; Cimino, F.; Donato, P.; Ferlazzo, G.; Harzallah, D.; et al. Flavonoid profile, antioxidant and cytotoxic activity of different extracts from Algerian Rhamnus alaternus L. bark. Pharmacogn. Mag. 2015, 11, 102–109. [Google Scholar]
- Benamar, H.; Rarivoson, E.; Tomassini, L.; Frezza, C.; Marouf, A.; Bennaceur, M.; Nicoletti, M. Phytochemical profiles, antioxidant and anti-acetylcholinesterasic activities of the leaf extracts of Rhamnus lycioides subsp. oleoides (L.) Jahand. & Maire in different solvents. Nat. Prod. Res. 2019, 33, 1456–1462. [Google Scholar]
- Kosalec, I.; Kremer, D.; Locatelli, M.; Epifano, F.; Genovese, S.; Carlucci, G.; Randic, M.; Zovko Koncic, M. Anthraquinone profile, antioxidant and antimicrobial activity of bark extracts of Rhamnus alaternus, R. Fallax, R. intermedia and R. pumila. Food Chem. 2013, 136, 335–341. [Google Scholar] [CrossRef]
- Locatelli, M.; Epifano, F.; Genovese, S.; Carlucci, G.; Zovko Končić, M.; Kosalec, I.; Kremer, D. Anthraquinone profile, antioxidant and antimicrobial properties of bark extracts of Rhamnus catharticus and R. orbiculatus. Nat. Prod. Commun. 2011, 6, 1275–1280. [Google Scholar] [CrossRef] [Green Version]
- Garzon, G.A.; Narvaez-Cuenca, C.E.; Vincken, J.P.; Gruppen, H. Polyphenolic composition and antioxidant activity of acai (Euterpe oleracea mart.) from Colombia. Food Chem. 2017, 217, 364–372. [Google Scholar] [CrossRef]
- Cho, H.; Yun, C.W.; Park, W.K.; Kong, J.Y.; Kim, K.S.; Park, Y.; Lee, S.; Kim, B.K. Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacol. Res. 2004, 49, 37–43. [Google Scholar] [CrossRef]
- Cao, H.; Yu, R.; Tao, Y.; Nikolic, D.; van Breemen, R.B. Measurement of cyclooxygenase inhibition using liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2011, 54, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Kim, A.R.; Kim, H.S.; Kim, H.W.; Park, Y.H.; You, J.S.; Park, Y.M.; Her, E.; Kim, H.S.; Kim, Y.M.; et al. Rhamnus davurica leaf extract inhibits fyn activation by antigen in mast cells for anti-allergic activity. BMC Complement. Altern. Med. 2015, 15, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, B.L.; Lu, C.M.; Tsao, L.T.; Wang, J.P.; Lin, C.N. In vitro anti-inflammatory effects of quercetin 3-O-methyl ether and other constituents from Rhamnus species. Planta Med. 2001, 67, 745–747. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.L.; Wu, J.L.; Li, N.; Guo, M.Q. Screening for anti-proliferative and anti-inflammatory components from Rhamnus davurica pall. using bio-affinity ultrafiltration with multiple drug targets. Anal. Bioanal. Chem. 2018, 6, 1–9. [Google Scholar]
- Ruchado, P.; Vit, P.; Heard, T.A.; Tomas-Barberan, F.A.; Ferreres, F. Determination of interglycosidic linkages in O-glycosyl flavones by high-performance liquid chromatography/photodiode-array detection coupled to electrospray ionization ion trap mass spectrometry. Its application to Tetragonula carbonaria honey from Australia. Rapid Commun. Mass Spectrom. 2015, 29, 948–954. [Google Scholar]
- Lai, J.P.; Lim, Y.H.; Su, J.; Shen, H.M.; Ong, C.N. Identification and characterization of major flavonoids and caffeoylquinic acids in three Compositae plants by LC/DAD-APCI/MS. J. Chromatogr. B 2007, 848, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhu, M.Z.; Zhang, C.Y.; Guo, M.Q. Quantitative analysis and comparison of flavonoids in lotus plumules of four representative lotus cultivars. J. Spectrosc. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.Z.; Wu, W.; Jiao, L.L.; Yang, P.F.; Guo, M.Q. Analysis of flavonoids in lotus (Nelumbo nucifera) leaves and their antioxidant activity using macroporous resin chromatography coupled with LC-MS/MS and antioxidant biochemical assays. Molecules 2015, 20, 10553–10565. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.L.; Liu, R.; Lu, Q.; Hao, P.Y.; Xu, A.Q.; Zhang, J.L.; Tan, J. Biochemical properties, antibacterial and cellular antioxidant activities of buckwheat honey in comparison to manuka honey. Food Chem. 2018, 252, 243–249. [Google Scholar] [CrossRef]
- Zou, Y.P.; Chang, S.K.; Gu, Y.; Qian, S.Y. Antioxidant activity and phenolic compositions of lentil (Lens culinaris var. Morton) extract and its fractions. J. Agric. Food Chem. 2011, 59, 2268–2276. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.L.; Fan, M.X.; Wu, J.L.; Li, N.; Guo, M.Q. Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule. Food Chem. 2019, 277, 706–712. [Google Scholar] [CrossRef]
- Huang, C.Q.; Li, W.; Zhang, Q.F.; Chen, L.H.; Chen, W.M.; Zhang, H.C.; Ni, Y.X. Anti-inflammatory activities of Guang-pheretima extract in lipopolysaccharide-stimulated raw 264.7 murine macrophages. BMC Complement. Altern. Med. 2018, 18, 46–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
TPC (mg GAE/g) | TFC (mg RE/g) | |
---|---|---|
CRE | 26.86 ± 1.57 a | 41.46 ± 4.80 a |
228.21 ± 13.34 b | 352.25 ± 10.95 b | |
SPRE | 553.67 ± 7.06 c | 958.21 ± 21.18 c |
Sample | DPPH | ABTS | ||
---|---|---|---|---|
IC50 (mg/mL) | μM TE/g | IC50 (mg/mL) | μM TE/g | |
CRE | 0.510 ± 0.046 | 945.5 ± 85.2 | 0.596 ± 0.005 | 273.5 ± 2.29 |
SPRE | 0.204 ± 0.005 ** | 2361.3 ± 57.9 | 0.096 ± 0.004 ** | 1697.9 ± 70.7 |
BHT | 0.286 ± 0.010 | 1684.3 ± 46.3 | 0.059 ± 0.003 | 2762.7 ± 71.2 |
Trolox | 0.121 ± 0.005 | ND | 0.041 ± 0.002 | ND |
Peak No. | Rt (min) | [M–H]− (m/z) | MS/MS ions | Tentative Identification | AUC (%) |
---|---|---|---|---|---|
1 | 11.33 | 341 | 341, 221, 179, 131, 119 | Caffeic acid 4-O-hexoside a | 0.31 |
2 | 12.60 | 153 | 153, 109, 108 | Protocatechuic acid a | 0.33 |
3 | 12.98 | 447 | 447, 285, 229, 207, 165, 137 | Kaempferol 3-O-glucoside a | 0.18 |
4 | 13.68 | 305 | 305, 221, 179, 165, 125 | Gallocatechin a | 0.68 |
5 | 15.48 | 577 | 577, 289, 245, 161, 125 | Proanthocyanidin B3 a | 0.31 |
6 | 16.04 | 447 | 447, 327, 285, 284, 255, 227 | Luteolin 5-O-glucoside a | 0.35 |
7 | 16.60 | 769 | 769, 623, 315, 299 | Isorhamnetin 3-O-rhamninoside a | 2.03 |
8 | 16.95 | 483 | 483, 356, 353, 337, 239, 195, 127 | Quercetin 3-O-methyl ether peracetate a | 0.48 |
9 | 17.20 | 303 | 303, 285, 241, 217, 151, 125 | Taxifolin b | 0.42 |
10 | 18.33 | 597 | 597, 465, 422, 353, 241, 209 | Unknown | 0.61 |
11 | 18.98 | 447 | 447, 284, 284, 255, 227 | Kaempferol 7-O-glucoside a | 1.09 |
12 | 20.02 | 287 | 287, 259, 215, 151, 125 | Aromadendrin a | 1.86 |
13 | 20.43 | 811 | 811, 315, 300, 271 | Rhamnetin 3-O-acetyl-rhamninoside a | 0.28 |
14 | 20.67 | 431 | 431, 341, 311, 283, 269 | Apigenin 8-C-glucoside (Vitexin) b | 0.33 |
15 | 20.96 | 463 | 463, 301, 300, 243, 179 | Quercetin-3-O-glucoside (Isoquercetin) b | 0.71 |
16 | 21.57 | 377 | 377, 257, 215, 187 | β-Sorigenin 1-O-glucoside a | 1.14 |
17 | 22.72 | 445 | 445, 283, 268, 239 | Physcion 8-O-glucoside a | 1.99 |
18 | 23.55 | 463 | 463, 301, 300, 271, 255, 179 | Quercetin 7-O-glucoside a | 1.18 |
19 | 23.90 | 465 | 465, 303, 273, 223, 181 | Dihydroquercetin 3-O-glucoside a | 1.44 |
20 | 24.31 | 181 | 181, 137, 93 | 4-(2-Hydroxyethoxy) benzoic acid a | 0.75 |
21 | 24.85 | 431 | 431, 269, 265, 241 | Apigenin 7-O-glucoside a | 1.15 |
22 | 25.26 | 449 | 449, 359, 286, 257, 227, 171 | Maesopsin 6-O-glucoside a | 0.84 |
23 | 25.70 | 195 | 195, 151, 107, 91 | 4-(2-Hhydroxyethoxymethyl) benzoic acid a | 1.00 |
24 | 26.28 | 477 | 477, 315, 299, 254, 243 | Quercetin 3-methyl ether 7-O-galactoside a | 0.63 |
25 | 26.49 | 781 | 781, 635, 285, 255 | Rhamnocitrin 3-O-rhamninoside a | 0.63 |
26 | 26.98 | 473 | 473, 327, 307, 165, 145 | Kaempferol 3,5,7-trimethyl ether 4’-O-pentoside a | 0.67 |
27 | 28.48 | 1017 | 1017, 677, 451, 225, 207 | Unknown | 1.69 |
28 | 29.20 | 503 | 503, 327, 323, 193, 179, 165 | Kaempferol 3,5,7-trimethyl ether 4’-O-glucuronide a | 1.59 |
29 | 29.77 | 287 | 287, 269, 259, 243, 151, 125. | Eriodictyo a | 7.62 |
30 | 30.45 | 595 | 481, 301, 287, 257, 179, 125 | Aromadendrin 3-rutinoside a | 1.64 |
31 | 30.79 | 595 | 595, 567, 301, 287, 283, 259 | Quercetin diglycoside a | 1.05 |
32 | 30.98 | 853 | 853, 751, 623, 315, 299, 271 | Hovenidulcioside B1 | 0.98 |
33 | 31.42 | 415 | 415, 253, 215, 209 | Chrysophanol 8-O-glucoside a | 2.95 |
34 | 32.09 | 461 | 461, 315, 213, 151 | Rhamnetin 3-O-rhamnoside a | 1.73 |
35 | 32.69 | 563 | 563, 417, 311, 269, 225 | Emodin 8-O-glucophyranosyl (6-1)-O-xylopyranoside a | 0.94 |
36 | 33.39 | 215 | 215, 187, 171, 159 | β-sorigenin a | 2.31 |
37 | 33.92 | 251 | 251, 219, 207, 179, 135 | 4’-Methoxyflavone a | 0.80 |
38 | 34.41 | 609 | 609, 463, 301, 205, 183 | Rutin b | 2.58 |
39 | 35.21 | 377 | 376, 332, 215, 201, 173 | Geshoidin a | 9.62 |
40 | 35.90 | 433 | 433, 313, 283, 271, 201 | Naringenin 8-C-glucoside a | 5.17 |
41 | 36.74 | 825 | 825, 783, 329, 313, 285 | Rhamnazin 3-O-acetyl-rhamninoside a | 1.59 |
42 | 37.02 | 271 | 271, 177, 151, 119 | Naringenin a | 2.07 |
43 | 37.32 | 539 | 539, 377, 257, 215, 187, 161 | α-Sorinin a | 3.55 |
44 | 38.13 | 865 | 865, 781, 575, 327, 285 | Procyanidin trimer a | 1.39 |
45 | 38.88 | 301 | 301, 283, 245, 151, 125 | Quercetin b | 5.79 |
46 | 39.55 | 431 | 431, 311, 281, 265 | Apigenin 6-C-glucoside (Isovitexin) b | 6.45 |
47 | 40.30 | 461 | 461, 299, 283, 265 | Diosmetin 7-O-glucoside a | 2.74 |
48 | 41.22 | 301 | 301, 283, 245, 179, 151, 125 | Herbacetin (8-Hydroxykaempferol) a | 2.31 |
49 | 43.53 | 593 | 561, 298, 285, 241, 225 | Kaempferol 3-O-robinoside a | 0.77 |
50 | 45.20 | 757 | 757, 595, 372, 193, 179 | Quercetin triglycoside a | 0.76 |
51 | 45.50 | 523 | 523, 377, 215, 187, 171 | β-Sorigenin-8-rutinoside a | 0.68 |
52 | 45.99 | 553 | 553, 469, 283, 259, 243, 179 | 6-Methoxy-sorigenin-8-rutinoside a | 0.57 |
53 | 46.79 | 473 | 473, 311, 293, 269, 225 | Sideroxylin 4′-O-glucoside a | 0.98 |
54 | 47.21 | 473 | 473, 269, 253, 241, 225 | Sideroxylin 5-O-glucoside a | 1.27 |
55 | 47.59 | 581 | 581, 357, 193, 179, 161, 135 | Lyoniresinol 3-O-glucopyranoside a | 0.53 |
56 | 49.51 | 317 | 287, 273, 227, 193, 105 | Myricetin a | 0.36 |
57 | 50.88 | 285 | 285, 257, 241, 223, 197 | Luteolin b | 0.29 |
58 | 52.20 | 269 | 269, 241, 225, 181, 169 | Apigenin b | 0.41 |
59 | 53.03 | 285 | 285, 257, 241, 223, 197 | Kaempferol b | 0.52 |
60 | 54.21 | 285 | 285, 241, 225, 211, 165 | Sakuranetin a | 0.77 |
61 | 54.78 | 315 | 315, 300, 271, 171, 151 | Rhamnetin b | 0.73 |
62 | 55.52 | 299 | 299, 284, 271, 165 | Rhamnocitrin a | 0.64 |
63 | 56.04 | 329 | 329, 313, 285, 227, 209, 167 | Rhamnazin a | 1.41 |
64 | 56.40 | 283 | 283, 268, 239, 211, 117 | Physcion b | 0.81 |
65 | 57.20 | 315 | 315, 300, 287, 193, 165, 121 | Rhamnetin isomer a | 0.53 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.-L.; Munyao Mutie, F.; Xu, Y.-B.; Saleri, F.D.; Hu, G.-W.; Guo, M.-Q. Antioxidant, Anti-inflammatory Activities and Polyphenol Profile of Rhamnus prinoides. Pharmaceuticals 2020, 13, 55. https://doi.org/10.3390/ph13040055
Chen G-L, Munyao Mutie F, Xu Y-B, Saleri FD, Hu G-W, Guo M-Q. Antioxidant, Anti-inflammatory Activities and Polyphenol Profile of Rhamnus prinoides. Pharmaceuticals. 2020; 13(4):55. https://doi.org/10.3390/ph13040055
Chicago/Turabian StyleChen, Gui-Lin, Fredrick Munyao Mutie, Yong-Bing Xu, Flora Didii Saleri, Guang-Wan Hu, and Ming-Quan Guo. 2020. "Antioxidant, Anti-inflammatory Activities and Polyphenol Profile of Rhamnus prinoides" Pharmaceuticals 13, no. 4: 55. https://doi.org/10.3390/ph13040055
APA StyleChen, G. -L., Munyao Mutie, F., Xu, Y. -B., Saleri, F. D., Hu, G. -W., & Guo, M. -Q. (2020). Antioxidant, Anti-inflammatory Activities and Polyphenol Profile of Rhamnus prinoides. Pharmaceuticals, 13(4), 55. https://doi.org/10.3390/ph13040055