The Role of Monoclonal Antibodies in Smoldering and Newly Diagnosed Transplant-Eligible Multiple Myeloma
Abstract
:1. Introduction
2. Discussion
2.1. Monoclonal Antibodies in Smoldering Multiple Myeloma
2.2. Anti-CD-38 Monoclonal Antibodies
2.3. Anti-SLAM F7 Monoclonal Antibodies
2.4. Monoclonal Antibodies in Newly Diagnosed Transplant-Eligible Multiple Myeloma
2.5. Anti-CD-38 Monoclonal Antibodies
2.5.1. Daratumumab
2.5.2. Isatuximab
2.6. Anti-SLAM F7 Monoclonal Antibodies
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kumar:, S.K.; Dispenzieri, A.; Lacy, M.Q.; Gertz, M.A.; Buadi, F.K.; Pandey, S.; Kapoor, P.; Dingli, D.; Hayman, S.R.; Leung, N.; et al. Continued improvement in survival in multiple myeloma: Changes in early mortality and outcomes in older patients. Leukemia 2014, 28, 1122–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varga, C.; Maglio, M.; Ghobrial, I.M.; Richardson, P.G. Current use of monoclonal antibodies in the treatment of multiple myeloma. Br. J. Haematol. 2018, 181, 447–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ntanasis-Stathopoulos, I.; Gavriatopoulou, M.; Terpos, E. Antibody therapies for multiple myeloma. Expert Opin. Biol. Ther. 2020, 20, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.-V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef]
- Rajkumar, S.V.; Langdren, O.; Mateos, M.V. Smoldering multiple myeloma. Blood 2015, 125, 3069–3075. [Google Scholar] [CrossRef] [PubMed]
- Mateos, M.V.; Hernández, M.T.; Giraldo, P.; Rubia, J.; Arriba, F.; Corral, L.L.; Rosiñol, L.; Paiva, B.; Palomera, L.; Bargay, J.; et al. Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma. N. Engl. J. Med. 2013, 369, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Lonial, S.; Jacobus, S.; Fonseca, R.; Weiss, M.; Kumar, S.; Orlowski, R.Z.; Kaufman, J.L.; Yacoub, A.M.; Buadi, F.K.; O’Brien, T.; et al. Randomized Trial of Lenalidomide Versus Observation in Smoldering Multiple Myeloma. J. Clin. Oncol. 2020, 38, 1126–1137. [Google Scholar] [CrossRef]
- Mateos, M.V.; González-Calle, V. Timing of treatment of smoldering myeloma: Early treatment. Blood Adv. 2018, 2, 3045–3049. [Google Scholar] [CrossRef] [Green Version]
- Munshi, N.C.; Avet-Loiseau, H.; Rawstron, A.C.; Owen, R.G.; Child, J.A.; Thakurta, A.; Sherrington, P.; Samur, M.K.; Georgieva, A.; Anderson, K.C.; et al. Association of Minimal Residual Disease with Superior Survival Outcomes in Patients with Multiple Myeloma: A Meta-analysis. JAMA Oncol. 2017, 3, 28–35. [Google Scholar] [CrossRef]
- Moreau, P.; Attal, M.; Hulin, C.; Arnulf, B.; Belhadj, K.; Benboubker, L.; Béné, M.C.; Broijl, A.; Caillon, H.; Caillot, D.; et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): A randomised, open-label, phase 3 study. Lancet 2019, 394, 29–38. [Google Scholar] [CrossRef]
- Paiva, B.; Mateos, M.V.; Sanchez-Abarca, L.I.; Puig, N.; Vidriales, M.-B.; López-Corral, L.; Corchete, L.A.; Hernandez, M.T.; Bargay, J.; Arriba, F.D.; et al. Immune status of high-risk smoldering multiple myeloma patients and its therapeutic modulation under LenDex: A longitudinal analysis. Blood 2016, 127, 1151–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, N.S.; Dhodapkar, M.V.; Lonial, S. The role of early intervention in high-risk smoldering myeloma. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Landgren, O.; Chari, A.; Cohen, C.; Spencer, A.; Voorhees, P.; Estell, J.A.; Sandhu, I.; Jenner, M.W.; Williams, C.; Cavo, M.; et al. Daratumumab monotherapy for patients with intermediate-risk or high-risk smoldering multiple myeloma: A randomized, open-label, multicenter, phase 2 study (CENTAURUS). Leukemia 2020, 34, 1840–1852. [Google Scholar] [CrossRef] [PubMed]
- Korde, N.; Roschewski, M.; Zingone, A.; Kwok, M.; Manasanch, E.E.; Bhutani, M.; Tageja, N.; Kazandjian, D.; Mailankody, S.; Wu, P.; et al. Treatment with carfilzomib-lenalidomide- dexamethasone with lenalidomide extension in patients with smoldering or newly diagnosed multiple myeloma. JAMA Oncol. 2015, 1, 746–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateos, M.V.; Martinez Lopez, J.; Otero, P.R.; Calle, V.G.; González, M.-S.; Oriol, A.; Gutiérrez, N.-C.; Paiva, B.; Rios, R.; Rosiñol, L.; et al. Curative strategy for high-risk smoldering myeloma (GEM-CESAR): Carfilzomib, lenalidomide and dexamethasone (KRd) as induction followed by HDT-ASCT, consolidation with Krd and maintenance with Rd. Blood 2017, 130, 402. [Google Scholar] [CrossRef]
- Mateos, M.V.; Hernandez, M.T.; Giraldo, P.; Rubia, J.; Arriba, F.; Corral, L.L.; Rosiñol, L.; Paiva, B.; Palomera, L.; Bargay, J.; et al. Lenalidomide plus dexamethasone versus observation in patients with high-risk smouldering multiple myeloma (QuiRedex): Long-term follow-up of a randomised, controlled, phase 3 trial. Lancet Oncol. 2016, 17, 1127–1136. [Google Scholar] [CrossRef]
- Lakshman, A.; Rajkumar, S.V.; Buadi, F.K.; Binder, M.; Gertz, M.A.; Lacy, M.Q.; Dispenzieri, A.; Dingli, D.; Fonder, A.L.; Hayman, S.R.; et al. Risk stratification of smoldering multiple myeloma incorporating revised IMWG diagnostic criteria. Blood Cancer J. 2018, 8, 59. [Google Scholar] [CrossRef]
- Lonial, S.; Dimopoulous, M.; Palumbo, A.; White, D.; Grosicki, S.; Spicka, I.; Walter-Croneck, A.; Moreau, P.; Mateos, M.-V.; Magen, H.; et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N. Engl. J. Med. 2015, 373, 621–631. [Google Scholar] [CrossRef] [Green Version]
- Collins, S.; Bakan, C.; Swartzel, G.D.; Hofmeister, C.C.; Efebera, Y.A.; Kwon, H.; Starling, G.C.; Ciarlariello, D.; Bhaskar, S.; Briercheck, E.L.; et al. Elotuzumab directly enhances NK cell cytotoxicity against myeloma via CS1 ligation: Evidence for augmented NK cell function complementing ADCC. Cancer Immunol. Immunother. 2013, 62, 1841–1849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagannath, S.; Laubach, J.; Wong, E.; Stockerl-Goldstein, K.; Rosenbaum, C.; Dhodapkar, M.; Jou, Y.-M.; Lynch, M.; Robbins, M.; Shelat, S.; et al. Elotuzumab monotherapy in patients with smouldering multiple myeloma: A phase 2 study. Br. J. Haematol. 2018, 182, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Kyle, R.A.; Durie, B.; Rajkumar, S.V.; Landgren, O.; Blade, J.; Merlini, G.; Kröger, N.; Einsele, H.; Vesole, D.H.; Dimopoulos, M.; et al. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia 2010, 24, 1121–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.J.; Ghobrial, I.M.; Bustoros, M.; Reyes, K.; Hornburg, K.; Badros, A.Z.; Vredenburgh, J.J.; Boruchov, A.; Matous, J.V.; Caola, A.; et al. Phase 2 trial of combination of elotuzumab, lenalidomide and dexamethasone for high-risk smoldering multiple myeloma. Blood 2018, 132 (Suppl. S1), 134. [Google Scholar] [CrossRef]
- Avet-Loiseau, H.; Moreau, M.; Attal, M.; Hulin, C.; Arnulf, B.; Corre, J.; Garderet, L.; Karlin, L.; Lambert, J.; Macro, M.; et al. Efficacy of daratumumab (DARA) + bortezomib/thalidomide/dexamethasone (D-VTd) in transplant-eligible newly diagnosed multiple myeloma (TE NDMM) based on minimal residual disease (MRD) status: Analysis of the CASSIOPEIA trial. J. Clin. Oncol. 2019, 37, 8017. [Google Scholar] [CrossRef]
- Moreau, P.; Zweegman, S.; Perrot, A.; Hulin, C.; Caillot, D.; Facon, T.; Leleu, X.; Belhadj, K.; Benboubker, L.K.; Levin, L.; et al. Evaluation of the Prognostic Value of Positron Emission Tomography-Computer Tomography (PET/CT) at Diagnosis and Follow-up in Transplant-Eligible Newly Diagnosed Multiple Myeloma (TE NDMM) Patients Treated in the Phase 3 Cassiopeia study; Results of the Cassiopet Companion Study. Blood 2019, 134, 692. [Google Scholar]
- Voorhees, P.M.; Kaufman, J.L.; Sborov, D.W.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.; Costa, L.J.; Anderson, L.D.; Nathwani, N.; et al. Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: The Griffin trial. Blood 2020, 136, 936–945. [Google Scholar] [CrossRef]
- Voorhees, P.M.; Rodriguez, B.; Reeves, B.; Nathwani, N.; Costa, L.J.; Lutska, Y.; Hoehn, D.; Pei, H.; Ukropec, J.; Qi, M.; et al. Efficacy and updated safety analysis of a safety run-in cohort from GRIFFIN, a phase 2 randomized study of daratumumab (DARA), bortezomib (V), lenalidomide (R), and dexamethasone (d; DARA-VRd) vs. VRd in patients with newly diagnosed multiple myeloma (NDMM) eligible for high-dose therapy (HDT) and autologous stem cell transplantation (ASCT). In Proceedings of the 60th American Society of Hematology (ASH) Annual Meeting and Exposition, San Diego, CA, USA, 1–4 December 2018. [Google Scholar]
- Chari, A.; Usmani, S.Z.; Krishnan, A.; Lonial, S.; Comenzo, R.; Wu, K.; Wang, J.; Doshi, P.; Weiss, B.M.; Schecter, J.; et al. Daratumumab (DARA) in combination with Carfilzomib, Lenalidomide, and Dexamethasone (KRd) in patients with newly diagnosed multiple myeloma (MMY1001): Updated results from an Open-Label, Phase 1b Study. Blood 2017, 130 (Suppl. S1), 3110. [Google Scholar]
- Costa, L.J.; Chhabra, S.; Godby, K.N.; Medvedova, E.; Cornell, R.F.; Hall, A.C.; Innis-Shelton, R.W.S.; Dhakal, R.; DeIdiaquez, B.; Hardwick, D.; et al. Daratumumab, Carfilzomib, Lenalidomide, and Dexamethasone (Dara-KRd) induction, autologous transplantation and post-transplant, response-adapted, Measurable Residual Disease (MRD)-based Dara-Krd consolidation in patients with newly diagnosed multiple myeloma (NDMM). Blood 2019, 134 (Suppl. S1), 860. [Google Scholar]
- Langdren, O.; Hultcrantz, M.; Lesokhin, A.M.; Mailankody, S.; Hassoun, H.; Smith, E.L.; Shah, U.A.; Lu, S.X.; Mastey, D.; Salcedo, M.; et al. Weekly carfilzomib, lenalidomide, dexamethasone, daratumumab (wKRd-D) combination therapy provides unprecedented MRD negativity rates in newly diagnosed multiple myeloma: A clinical and correlative phase 2 study. Blood 2019, 134, 862. [Google Scholar]
- Yimer, H.; Melear, J.; Faber, E.; Bensinger, W.I.; Burke, J.M.; Narang, M.; Stevens, D.; Gunawardena, S.; Lutska, Y.; Qi, K.; et al. Daratumumab, bortezomib, cyclophosphamide and dexamethasone in newly diagnosed and relapsed multiple myeloma. Br. J. Hematol. 2019, 185, 492–502. [Google Scholar] [CrossRef]
- Weisel, K.; Asemissen, A.M.; Besemer, B.; Hänel, M.; Blau, W.; Goerner, M.; Ko, Y.-D.; Duerig, J.; Staib, P.; Mann, C.; et al. Depth of response to isatuximab, carfilzomib, lenalidomide, and dexamethasone (Isa-KRd) in front-line treatment of high-risk multiple myeloma: Interim analysis of the GMMG-CONCEPT trial. J. Clin. Oncol. 2020, 38, 15. [Google Scholar] [CrossRef]
- Jakubowiak, A.; Offidani, M.; Pégourie, B.; Rubia, J.D.L.; Garderet, L.; Laribi, K.; Bosi, A.; Marasca, R.; Laubach, J.; Mohrbacher, A.; et al. Randomized phase 2 study: Elotuzumab plus bortezomib/dexamethasone vs. bortezomib/dexamethasone for relapsed/refractory MM. Blood 2016, 127, 2833–2840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimopoulos, M.A.; Dytfeld, D.; Grosicki, S.; Moreau, P.; Takezako, N.; Hori, M.; Leleu, X.; LeBlanc, R.; Suzuki, K.; Raab, M.S.; et al. Elotuzumab plus Pomalidomide and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2018, 379, 1811–1822. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; San Miguel, J.; Sonneveld, P.; Mateos, M.V.; Zamagni, E.; Avet-Loiseau, H.; Hajek, R.; Dimopoulos, M.A.; Ludwig, H.; Einsele, H.; et al. Multiple myeloma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28 (Suppl. S4), iv52–iv61. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, P.L.; Holstein, S.A.; Petrucci, M.T.; Richardson, P.G.; Hulin, C.; Tosi, P.; Bringhen, S.; Musto, P.; Anderson, K.C.; Caillot, D.; et al. Lenalidomide maintenance after autologous stem-cell transplantation in newly diagnosed multiple myeloma: A meta-analysis. J. Clin. Oncol. 2017, 35, 3279–3289. [Google Scholar] [CrossRef] [PubMed]
- Salwender, H.; Bertsch, U.; Weisel, K.; Duerig, J.; Kunz, C.; Benner, A.; Blau, I.W.; Raab, M.S.; Hillengass, J.; Hose, D.; et al. Rationale and design of the German-speaking myeloma multicenter group (GMMG) trial HD6: A randomized phase III trial on the effect of elotuzumab in VRD induction/consolidation and lenalidomide maintenance in patients with newly diagnosed myeloma. BMC Cancer 2019, 19, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldschmidt, H.; Mai, E.K.; Salwender, H.; Bertsch, U.; Miah, K.; Kunz, C.; Fenk, R.; Blau, I.; Scheid, C.; Martin, H.; et al. Bortezomib, Lenalidomide and Dexamethasone with or without Elotuzumab as Induction Therapy for Newly-Diagnosed Transplant-Eligible Multiple Myeloma; Abstract S203; EHA: The Hague, The Netherlands, 2020. [Google Scholar]
- Berdeja, J.G.; Gregory, T.K.; Kambhampati, S.; Anz, B.M.; Tarantolo, S.R.; Meluch, A.A.; Matous, J.V. A phase 2 study to assess the feasibility and tolerance of the combination of elotuzumab, lenalidomide, and dexamethasone (ERd) in the induction, consolidation, and maintenance treatment of transplant-eligible patients newly diagnosed with multiple myeloma (MM). Blood 2019, 134 (Suppl. S1), 603. [Google Scholar]
- Usmani, S.Z.; Ailawadhi, S.; Sexton, R.; Hoering, A.; Lipe, B.; Hita, S.; Durie, B.G.; Zonder, J.A.; Dhodapkar, M.V.; Callander, N.S.; et al. Primary analysis of the randomized phase II trial of bortezomib, lenalidomide, dexamthasone with/without elotuzumab for newly diagnosed, high-risk multiple myeloma (SWOG-1211). J. Clin. Oncol. 2020, 38 (Suppl. 15), 8507. [Google Scholar] [CrossRef]
- Gadi, N.; Schmidt, L.; Ahn, J.; Wu, T.; Rowley, S.D.; Paleoudis, E.G.; Donato, M.L.; Vesole, D.H.; Goldberg, S.L.; Biran, N. Elotuzumab as post-autologous stem cell transplant consolidation in patients with high-risk myeloma. Blood 2019, 134 (Suppl. S1), 3141. [Google Scholar] [CrossRef]
- Wang, X.; Vogt, B.; Shanahan, L.; Siddiqui, A.D.; Subramonia-Iyer, S.; Khanani, S.; Bednarik, J.L.; Mittal, K.; Ramanathan, M.; Gerber, J.M. Elotuzumab-based maintenance therapy following autologous stem cell transplant in multiple myeloma deepens post-transplant responses. Blood Cells Mol. Dis. 2020, 85, 102482. [Google Scholar] [CrossRef]
- Moreau, P.; Touzeau, C.; Vij, R.; Goldsmith, S.R.; Rosko, A.E. Newly Diagnosed Myeloma in 2020. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, e144–e158. [Google Scholar] [CrossRef]
Study | Phase | N pts | Design | Patients | Response | Survival Outcomes |
---|---|---|---|---|---|---|
SMM | ||||||
CENTAURUS trial NCT02316106 Landgren, 2020 | 2 | 123 | Dara monotherapy in 8-week cycles with three different schedules: long intermediate short | SMM Intermediate or high-risk | CR at 15.8 months: 2.4% vs. 4.9% vs. 0% CR at 25.9 months: 4.9% vs. 9.8% vs. 0% | PFS at 2 years: 89.9% vs. 82.0% vs. 75.3% |
NDMM | ||||||
CASSIOPEIA trial NCT02541383 Moreau, 2019 | 3 | 1074 | Dara-VTd vs. VTd induction/consolidations plus ASCT | NDTE | sCR: 29% vs. 20% MFC-MRD negativity (10−5 cut-off): 64% vs. 44% | PFS at 18 months: 93% vs. 85% |
GRIFFIN trial NCT02874742 Voorhees, 2020 | 2 | 207 | Dara-VRd vs. VRd induction/consolidation plus ASCT—Dara-lena or lena maintenance | NDTE | sCR: 42% vs. 32% NGS-MRD negativity (10−5 cut-off): 51% vs. 20% | PFS at 2 years: 95.8% vs. 89.8% |
MMY1001 EQUULEUS trial NCT01998971 Chari, 2017 | 1b | 22 | Dara-KRd ± ASCT K 20 mg—70 mg/m2 1,8,15 | ND TE or non-TE | CR: 57% VGPR: 33% | PFS at 12 months: 95% |
MASTER trial NCT03224507 Costa, 2019 | 2 | 69 | 4 Dara-KRd—ASCT—0,4,8 Dara-KRd consolidation according MRD K 56 mg/mq 1,8,15 | NDTE | NGS-MRD negativity (10−5 cut-off): 34% post-induction, 70% post-ASCT 80% best response NGS-MRD negativity (10−6 cut-off): 28% post-induction, 45% post-ASCT 65% best response | Not reported |
LYRA trial NCT02951819 Yimer et al., 2019 | 2 | 101 | Dara-VCD | ND TE or non-TE (87) RR (14) | ≥VGPR: 55.8% CR: 9.3% | PFS at 12 months: 87% |
GMMG-CONCEPT trial, NCT03104842 Weisel, 2020 | 2 | 152 (50 evaluable) | 6 Isa-KRd +/− ASCT + 4 Isa-KRd + Isa-KR maintenance | ND TE or non-TE HR | VGPR: 44% CR: 46% | Not reported |
Study | Phase | N pts | Design | Patients | Response | Survival Outcomes |
---|---|---|---|---|---|---|
SMM | ||||||
NCT02960555 Jagannath, 2018 | 2 | 31 | Elo monotherapy 20 mg/kg (days 1 and 8 cycle 1, monthly from cycle 2) 10 mg/kg (weekly cycles 1 and 2, twice monthly from cycle 3) | SMM HR | ORR: 10% | PFS at 2 years: 69% |
NCT02279394 Liu, 2018 | 2 | 50 | Elo-len vs. Elo-len-dex | SMM HR | ORR: 84% VGPR: 37% CR: 6% | None of the patients progressed to MM at 3 years |
NDMM | ||||||
GMMGHD6 trial NCT02495922 Goldschmidt, 2020 | 3 | 564 | VRd induction/consolidation (VRd +/− Elo), ASCT, lenalidomide maintenance treatment (lenalidomide +/− Elo) | NDTE | Elo plus VRd vs. VRd induction ORR: 82% vs. 86% VGPR: 58% vs. 54% | Not reported |
NCT02843074 Berdeja, 2019 | 2 | 52 | Elo-len-dex plus ASCT | NDTE | ORR: 92% ≥VGPR: 69% HR: ORR 87%, SR: ORR 93% | PFS at 18 months: 83% OS at 18 months: 89% HR patients median PFS: 20.5 months median OS: 22 months SR patients: median PFS and OS not reached with 20 months of follow-up |
SWOG-1211 trial NCT01668719 Usmani, 2020 | 2 | 103 | Elo plus VRd vs. VRd | ND TE or non-TE HR | Elo plus VRd vs. VRd ORR: 83% vs. 88% ≥VGPR: 23% vs. 26% | Elo plus VRd vs. VRd median PFS: 31 vs. 34 months median OS: 68 months vs. not reached |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamagni, E.; Tacchetti, P.; Deias, P.; Patriarca, F. The Role of Monoclonal Antibodies in Smoldering and Newly Diagnosed Transplant-Eligible Multiple Myeloma. Pharmaceuticals 2020, 13, 451. https://doi.org/10.3390/ph13120451
Zamagni E, Tacchetti P, Deias P, Patriarca F. The Role of Monoclonal Antibodies in Smoldering and Newly Diagnosed Transplant-Eligible Multiple Myeloma. Pharmaceuticals. 2020; 13(12):451. https://doi.org/10.3390/ph13120451
Chicago/Turabian StyleZamagni, Elena, Paola Tacchetti, Paola Deias, and Francesca Patriarca. 2020. "The Role of Monoclonal Antibodies in Smoldering and Newly Diagnosed Transplant-Eligible Multiple Myeloma" Pharmaceuticals 13, no. 12: 451. https://doi.org/10.3390/ph13120451
APA StyleZamagni, E., Tacchetti, P., Deias, P., & Patriarca, F. (2020). The Role of Monoclonal Antibodies in Smoldering and Newly Diagnosed Transplant-Eligible Multiple Myeloma. Pharmaceuticals, 13(12), 451. https://doi.org/10.3390/ph13120451