New Antibiotics for the Treatment of Acute Bacterial Skin and Soft Tissue Infections in Pediatrics
Abstract
:1. Introduction
2. Topical Antibiotics
Ozenoxacin (OZ)
3. Oral and Parenteral Antibiotics
3.1. Ceftaroline Fosamil
3.2. Lipoglycopeptide Antibiotics
3.3. Tedizolid (TD)
3.4. Delafloxacin (DL)
3.5. Omadacycline (OM)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- May, A.K. Skin and Soft Tissue Infections. Surg. Clin. N. Am. 2009, 89, 403–420. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, K.; Salinas, R.C.; Agudelo Higuita, N.I. Skin and Soft Tissue Infections. Am. Fam. Physician 2015, 92, 474–483. [Google Scholar] [PubMed]
- Fritz, S.A.; Shapiro, D.J.; Hersh, A.L. National Trends in Incidence of Purulent Skin and Soft Tissue Infections in Patients Presenting to Ambulatory and Emergency Department Settings, 2000–2015. Clin. Infect. Dis. 2019, 70, 2715–2718. [Google Scholar] [CrossRef]
- Fenster, D.B.; Renny, M.H.; Ng, C.; Roskind, C.G. Scratching the Surface. Curr. Opin. Pediatr. 2015, 27, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Hersh, A.L.; Chambers, H.F.; Maselli, J.H.; Gonzales, R. National Trends in Ambulatory Visits and Antibiotic Prescribing for Skin and Soft-Tissue Infections. Arch. Intern. Med. 2008, 168, 1585–1591. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.G.; Eisenberg, D.F.; Liu, H.; Chang, C.-L.; Wang, Y.; Luthra, R.; Wallace, A.E.; Fang, C.; Singer, J.; Suaya, J.A. Incidence of Skin and Soft Tissue Infections in Ambulatory and Inpatient Settings, 2005–2010. BMC Infect. Dis. 2015, 15, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, E.; Hohmann, S.; Ridgway, J.P.; Daum, R.S.; David, M.Z.; Ridgeway, J. Decreasing Incidence of Skin and Soft-tissue Infections in 86 US Emergency Departments, 2009–2014. Clin. Infect. Dis. 2018, 68, 453–459. [Google Scholar] [CrossRef]
- Pallin, D.J.; Egan, D.J.; Pelletier, A.J.; Espinola, J.A.; Hooper, D.C.; Camargo, C.A. Increased US Emergency Department Visits for Skin and Soft Tissue Infections, and Changes in Antibiotic Choices, During the Emergence of Community-Associated Methicillin-Resistant Staphylococcus aureus. Ann. Emerg. Med. 2008, 51, 291–298. [Google Scholar] [CrossRef]
- Stevens, D.L.; Bisno, A.L.; Chambers, H.F.; Dellinger, E.P.; Goldstein, E.J.; Gorbach, S.L.; Hirschmann, J.V.; Kaplan, S.L.; Montoya, J.G.; Wade, J.C. Practice Guidelines for the Diagnosis and Management of Skin and Soft Tissue Infections: 2014 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2014, 59, e10–e52. [Google Scholar] [CrossRef] [Green Version]
- Lodise, T.P.; Patel, N.; Lomaestro, B.M.; Rodvold, K.A.; Drusano, G.L. Relationship between Initial Vancomycin Concentration-Time Profile and Nephrotoxicity among Hospitalized Patients. Clin. Infect. Dis. 2009, 49, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Rybak, M.J.; Lomaestro, B.M.; Rotschafer, J.C.; Moellering, J.R.C.; Craig, W.A.; Billeter, M.; Dalovisio, J.R.; Levine, D.P. Vancomycin Therapeutic Guidelines: A Summary of Consensus Recommendations from the Infectious Diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clin. Infect. Dis. 2009, 49, 325–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attassi, K.; Hershberger, E.; Alam, R.; Zervos, M.J. Thrombocytopenia Associated with Linezolid Therapy. Clin. Infect. Dis. 2002, 34, 695–698. [Google Scholar] [CrossRef] [PubMed]
- Bhavnani, S.M.; Rubino, C.M.; Ambrose, P.G.; Drusano, G.L. Daptomycin Exposure and the Probability of Elevations in the Creatine Phosphokinase Level: Data from a Randomized Trial of Patients with Bacteremia and Endocarditis. Clin. Infect. Dis. 2010, 50, 1568–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leong, H.N.; Kurup, A.; Tan, M.Y.; Kwa, A.L.H.; Liau, K.H.; Wilcox, M.H. Management of Complicated Skin and Soft Tissue Infections with a Special Focus on the Role of Newer Antibiotics. Infect. Drug Resist. 2018, 11, 1959–1974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tirupathi, R.; Areti, S.; Salim, S.A.; Palabindala, V.; Jonnalagadda, N. Acute Bacterial Skin and Soft Tissue Infections: New Drugs in ID Armamentarium. J. Community Hosp. Intern. Med. Perspect. 2019, 9, 310–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bangert, S.; Levy, M.; Hebert, A.A. Bacterial Resistance and Impetigo Treatment Trends: A Review. Pediatric Dermatol. 2012, 29, 243–248. [Google Scholar] [CrossRef]
- Hartman-Adams, H.; Banvard, C.; Juckett, G. Impetigo: Diagnosis and Treatment. Am. Fam. Physician 2014, 90, 229–235. [Google Scholar]
- Koning, S.; Van Der Sande, R.; Verhagen, A.P.; Van Suijlekom-Smit, L.W.A.; Morris, A.D.; Butler, C.C.; Berger, M.; Van Der Wouden, J.C. Interventions for Impetigo. Cochrane Database Syst. Rev. 2012, 1, CD003261. [Google Scholar] [CrossRef] [Green Version]
- Khoshnood, S.; Heidary, M.; Asadi, A.; Soleimani, S.; Motahar, M.; Savari, M.; Saki, M.; Abdi, M. A Review on Mechanism of Action, Resistance, Synergism, and Clinical Implications of Mupirocin Against Staphylococcus Aureus. Biomed. Pharmacother. 2019, 109, 1809–1818. [Google Scholar] [CrossRef]
- Williamson, D.A.; Carter, G.P.; Howden, B.P. Current and Emerging Topical Antibacterials and Antiseptics: Agents, Action, and Resistance Patterns. Clin. Microbiol. Rev. 2017, 30, 827–860. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, A.J.; Larsen, A.; Henriksen, A.S.; Chopra, I. A Fusidic Acid-Resistant Epidemic Strain of Staphylococcus aureus Carries the fusB Determinant, whereas fusA Mutations Are Prevalent in Other Resistant Isolates. Antimicrob. Agents Chemother. 2004, 48, 3594–3597. [Google Scholar] [CrossRef] [Green Version]
- McLinn, S. A Bacteriologically Controlled, Randomized Study Comparing the Efficacy of 2% Mupirocin Ointment (Bactroban) with Oral Erythromycin in the Treatment of Patients with Impetigo. J. Am. Acad. Dermatol. 1990, 22, 883–885. [Google Scholar] [CrossRef]
- Bork, K.; Brauers, J.; Kresken, M. Efficacy and Safety of 2% Mupirocin Ointment in the Treatment of Primary and Secondary Skin Infections—An Open Multicentre Trial. Br. J. Clin. Pract. 1989, 43, 284–288. [Google Scholar] [PubMed]
- Barton, L.L.; Friedman, A.D.; Sharkey, A.M.; Schneller, D.J.; Swierkosz, E.M. Impetigo Contagiosa III. Comparative Efficacy of Oral Erythromycin and Topical Mupirocin. Pediatric Dermatol. 1989, 6, 134–138. [Google Scholar] [CrossRef] [PubMed]
- White, D.G.; Collins, P.O.; Rowsell, R.B. Topical Antibiotics in the Treatment of Superficial Skin Infections in General Practice—A Comparison of Mupirocin with Sodium Fusidate. J. Infect. 1989, 18, 221–229. [Google Scholar] [CrossRef]
- Goldfarb, J.; Crenshaw, D.; O’Horo, J.; Lemon, E.; Blumer, J.L. Randomized Clinical Trial of Topical Mupirocin Versus Oral Erythromycin for Impetigo. Antimicrob. Agents Chemother. 1988, 32, 1780–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Medicines Agency. Altargo. Available online: https://www.ema.europa.eu/en/documents/public-statement/public-statement-altargo-withdrawal-marketing-authorisation-european-union_en.pdf (accessed on 20 January 2020).
- Boswihi, S.S.; Udo, E.E.; AlFouzan, W. Antibiotic resistance and typing of the methicillin-resistant Staphylococcus aureus clones in Kuwait hospitals, 2016–2017. BMC Microbiol. 2020, 20, 314. [Google Scholar] [CrossRef] [PubMed]
- Babu, T.; Rekasius, V.; Parada, J.P.; Schreckenberger, P.; Challapalli, M. Mupirocin Resistance among Methicillin-Resistant Staphylococcus Aureus-Colonized Patients at Admission to a Tertiary Care Medical Center. J. Clin. Microbiol. 2009, 47, 2279–2280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonov, N.K.; Garzon, M.C.; Morel, K.D.; Whittier, S.; Planet, P.J.; Lauren, C.T. High Prevalence of Mupirocin Resistance in Staphylococcus aureus Isolates from a Pediatric Population. Antimicrob. Agents Chemother. 2015, 59, 3350–3356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desroches, M.; Potier, J.; Laurent, F.; Bourrel, A.S.; Doucet-Populaire, F.; Decousser, J.W.; Microbs Study Group. Prevalence of Mupirocin Resistance Among Invasive Coagulase-Negative Staphylococci and Methicillin-Resistant Staphylococcus Aureus (MRSA) in France Emergence of Amupirocin-Resistant MRSA Clone Harbouring Mup, A.J. Antimicrob. Chemother. 2013, 68, 1714–1717. [Google Scholar] [CrossRef]
- Nagant, C.; Deplano, A.; Nonhoff, C.; De Mendonça, C.; Roisin, S.; Dodémont, M.; Denis, O. Low Prevalence of Mupirocin Resistance in Belgian Staphylococcus Aureus Isolates Collected During a 10 Year Nationwide Surveillance. J. Antimicrob. Chemother. 2015, 71, 266–267. [Google Scholar] [CrossRef] [Green Version]
- Farmer, T.H.; Gilbart, J.; Elson, S.W. Biochemical Basis of Mupirocin Resistance in Strains of Staphylococcus Aureus. J. Antimicrob. Chemother. 1992, 30, 587–596. [Google Scholar] [CrossRef]
- Food and Drug Administration. Xepi (ozenoxacin) Cream. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208945Orig1s000TOC.cfm (accessed on 20 January 2020).
- European Medicines Agency. List of Nationally Authorized Medicinal Products. Ozenoxacin. Available online: https://www.ema.europa.eu/en/documents/psusa/ozenoxacin-list-nationally-authorised-medicinal-products-psusa/00010651/201805_en.pdf (accessed on 10 January 2020).
- Morrissey, I.; Cantón, R.; Vila, J.; Gargallo-Viola, D.; Zsolt, I.; Garcia-Castillo, M.; López, Y. Microbiological Profile of Ozenoxacin. Future Microbiol. 2019, 14, 773–787. [Google Scholar] [CrossRef] [Green Version]
- López, Y.; Tato, M.; Eespinal, P.; Garcia-Alonso, F.; Gargallo-Viola, D.; Cantón, R.; Vila, J. In Vitro Selection of Mutants Resistant to Ozenoxacin Compared with Levofloxacin and Ciprofloxacin in Gram-Positive Cocci. J. Antimicrob. Chemother. 2014, 70, 57–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamakawa, T.; Mitsuyama, J.; Hayashi, K. In Vitro and in Vivo Antibacterial Activity of T-3912, a Novel Non-Fluorinated Topical Quinolone. J. Antimicrob. Chemother. 2002, 49, 455–465. [Google Scholar] [CrossRef]
- Gropper, S.; Cepero, A.L.; Santos, B.; Kruger, D. Systemic Bioavailability and Safety of Twice-Daily Topical Ozenoxacin 1% Cream in Adults and Children with Impetigo. Future Microbiol. 2014, 9, S33–S40. [Google Scholar] [CrossRef]
- Santos, B.; Ortiz, J.; Gropper, S. In Vitro Percutaneous Absorption and Metabolism of Ozenoxacin in Excised Human Skin. Future Microbiol. 2014, 9, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Tarragó, C.; Esquirol, L.P.; Arañó, A.; Lachamp, L.; D’Aniello, F.; Zsolt, I. Therapeutic Efficacy of Ozenoxacin in Animal Models of Dermal Infection with Staphylococcus Aureus. Future Microbiol. 2018, 13, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Gropper, S.; Albareda, N.; Chelius, K.; Kruger, D.; Mitha, I.; Vahed, Y.; Gani, M.; García-Alonso, F. Ozenoxacin 1% Cream in the Treatment of Impetigo: A Multicenter, Randomized, Placebo-and Retapamulin-Controlled Clinical Trial. Future Microbiol. 2014, 9, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- Gropper, S.; Albareda, N.; Santos, B.; Febbraro, S. Skin Tissue Exposure of Once- Versus Twice-Daily Topical Ozenoxacin 2% Cream: A Phase I Study in Healthy Volunteers. Future Microbiol. 2014, 9, S17–S22. [Google Scholar] [CrossRef] [PubMed]
- Gropper, S.; Cepero, A.L.; Dosik, J.S.; Lastella, P.; Siemetzki, H.; Wigger-Alberti, W. Cumulative Irritation, Sensitizing Potential, Phototoxicity and Photoallergy of Ozenoxacin in Healthy Adult Volunteers. Future Microbiol. 2014, 9, S23–S31. [Google Scholar] [CrossRef] [PubMed]
- Rosen, T.; Albareda, N.; Rosenberg, N.; Alonso, F.G.; Roth, S.; Zsolt, I.; Hebert, A.A. Efficacy and Safety of Ozenoxacin Cream for Treatment of Adult and Pediatric Patients with Impetigo. JAMA Dermatol. 2018, 154, 806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Cunha, N.M.; Peterson, G.M.; Baby, K.E.; Thomas, J. Impetigo: A Need for New Therapies in a World of Increasing Antimicrobial Resistance. J. Clin. Pharm. Ther. 2017, 43, 150–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drugs. Xepi Prices, Coupons and Patient Assistance Programs. Available online: https://www.drugs.com/price-guide/xepi (accessed on 10 January 2020).
- Sader, H.S.; Fritsche, T.R.; Kaniga, K.; Ge, Y.; Jones, R.N. Antimicrobial Activity and Spectrum of PPI-0903M (T-91825), a Novel Cephalosporin, Tested against a Worldwide Collection of Clinical Strains. Antimicrob. Agents Chemother. 2005, 49, 3501–3512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sader, H.S.; Mendes, R.E.; Farrell, D.J.; Flamm, R.K.; Jones, R.N. Ceftaroline Activity Tested Against Bacterial Isolates from Pediatric Patients. Pediatric Infect. Dis. J. 2014, 33, 837–842. [Google Scholar] [CrossRef]
- Clark, C.; McGhee, P.; Appelbaum, P.C.; Kosowska-Shick, K. Multistep Resistance Development Studies of Ceftaroline in Gram-Positive and -Negative Bacteria. Antimicrob. Agents Chemother. 2011, 55, 2344–2351. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, S.; Warner, M.; Ge, Y.; Kaniga, K.; Livermore, D.M. In Vitro Activity of Ceftaroline (PPI-0903M, T-91825) Against Bacteria with Defined Resistance Mechanisms and Phenotypes. J. Antimicrob. Chemother. 2007, 60, 300–311. [Google Scholar] [CrossRef]
- CADTH Common Drug Reviews, 2018. Clinical Review Report. Ozenoxacin 1% Cream (Ozanex). Available online: https://www.cadth.ca/sites/default/files/cdr/clinical/SR0553_Ozanex_CL_Report.pdf (accessed on 16 October 2020).
- Cannavino, C.R.; Mendes, R.E.; Sader, H.S.; Farrell, D.J.; Critchley, I.A.; Biek, D.; Le, J.; Skochko, S.M.; Jones, R.N.; Bradley, J.S. Evolution of Ceftaroline-Resistant Mrsa in a Child with Cystic Fibrosis Following Repeated Antibiotic Exposure. Pediatric Infect. Dis. J. 2016, 35, 813–815. [Google Scholar] [CrossRef]
- Sanchez, E.H.; Mendes, R.E.; Sader, H.S.; Allison, G.M. In Vivo Emergence of Ceftaroline Resistance During Therapy for MRSA Vertebral Osteomyelitis: Table 1. J. Antimicrob. Chemother. 2016, 71, 1736–1738. [Google Scholar] [CrossRef] [Green Version]
- US Food and Drug Administration. Clinical Review. Available online: https://www.fda.gov/files/drugs/published/N200327S0160---17-Ceftaroline-fosamil-Clinical-PREA.pdf (accessed on 20 January 2020).
- European Medicines Agency. Ceftaroline Fosamil. Available online: https://www.ema.europa.eu/en/documents/product-information/zinforo-epar-product-information_en.pdf (accessed on 20 January 2020).
- Beresford, E.; Biek, D.; Jandourek, A.; Mawal, Y.; Riccobene, T.; Friedland, H.D. Ceftaroline Fosamil for the Treatment of Acute Bacterial Skin and Skin Structure Infections. Expert Rev. Clin. Pharmacol. 2014, 7, 123–135. [Google Scholar] [CrossRef]
- Friedland, H.D.; O’Neal, T.; Biek, D.; Eckburg, P.B.; Rank, D.R.; Llorens, L.; Smith, A.; Witherell, G.W.; Laudano, J.B.; Thye, D. CANVAS 1 and 2: Analysis of Clinical Response at Day 3 in Two Phase 3 Trials of Ceftaroline Fosamil versus Vancomycin plus Aztreonam in Treatment of Acute Bacterial Skin and Skin Structure Infections. Antimicrob. Agents Chemother. 2012, 56, 2231–2236. [Google Scholar] [CrossRef] [Green Version]
- Rosanova, M.T.; Aguilar, P.S.; Sberna, N.; Lede, R. Efficacy and Safety of Ceftaroline: Systematic Review and Meta-Analysis. Ther. Adv. Infect. Dis. 2018, 6, 2049936118808655. [Google Scholar] [CrossRef]
- Medical Monitor Cerexa Forest Laboratories. Pharmacokinetics of Ceftaroline in Subjects 12 to 17 Years of Age; NCT00633126; Forest Laboratories: Hauppauge, NY, USA, 2009. [Google Scholar]
- Forest Laboratories. Study of Blood Levels of Ceftaroline Fosamil in Children Who Are Receiving Antibiotic Therapy in the Hospital; NCT01298843; Forest Laboratories: Hauppauge, NY, USA, 2014. [Google Scholar]
- Korczowski, B.; Antadze, T.; Giorgobiani, M.; Stryjewski, M.E.; Jandourek, A.; Smith, A.; O’Neal, T.; Bradley, J.S. A Multicenter, Randomized, Observer-blinded, Active-controlled Study to Evaluate the Safety and Efficacy of Ceftaroline Versus Comparator in Pediatric Patients with Acute Bacterial Skin and Skin Structure Infection. Pediatric Infect. Dis. J. 2016, 35, e239–e247. [Google Scholar] [CrossRef] [PubMed]
- Cannavino, C.; Nemeth, A.; Korczowski, B.; Bradley, J.S.; O’Neal, T.; Jandourek, A.; Friedland, H.D.; Kaplan, S.L. A Randomized, Prospective Study of Pediatric Patients with Community-Acquired Pneumonia Treated with Ceftaroline vs. Ceftriaxone. Pediatric Infect. Dis. J. 2016, 35, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Blumer, J.B.; Ghonghadze, T.; Cannavino, C.; O’Neal, T.; Jandourek, A.; Friedland, H.D.; Bradley, J.S. A Multicenter, Randomized, Observer-Blinded, Active-Controlled Study Evaluating the Safety and Effectiveness of Ceftaroline Versus Ceftriaxone Plus Vancomycin in Pediatric Patients with Complicated Community-Acquired Bacterial Pneumonia. Pediatric Infect. Dis. J. 2016, 35, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Riccobene, T.A.; Khariton, T.; Knebel, W.; Das, S.; Li, J.; Jandourek, A.; Carrothers, T.J.; Bradley, J.S. Population PK Modeling and Target Attainment Simulations to Support Dosing of Ceftaroline Fosamil in Pediatric Patients with Acute Bacterial Skin and Skin Structure Infections and Community-Acquired Bacterial Pneumonia. J. Clin. Pharmacol. 2016, 57, 345–355. [Google Scholar] [CrossRef]
- Van Bambeke, F. Lipoglycopeptide Antibacterial Agents in Gram-Positive Infections: A Comparative Review. Drugs 2015, 75, 2073–2095. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Paul, M.; Huttner, A. New and Improved? A Review of Novel Antibiotics for Gram-Positive Bacteria. Clin. Microbiol. Infect. 2017, 23, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Boucher, H.W.; Wilcox, M.; Talbot, G.H.; Puttagunta, S.; Das, A.F.; Dunne, M.W. Once-Weekly Dalbavancin versus Daily Conventional Therapy for Skin Infection. N. Engl. J. Med. 2014, 370, 2169–2179. [Google Scholar] [CrossRef]
- Dunne, M.W.; Puttagunta, S.; Giordano, P.; Krievins, D.; Zelasky, M.; Baldassarre, J. A Randomized Clinical Trial of Single-Dose Versus Weekly Dalbavancin for Treatment of Acute Bacterial Skin and Skin Structure Infection. Clin. Infect. Dis. 2015, 62, 545–551. [Google Scholar] [CrossRef] [Green Version]
- Corey, G.R.; Good, S.; Jiang, H.; Moeck, G.; Wikler, M.; Green, S.; Manos, P.; Keech, R.; Singh, R.; Heller, B.; et al. Single-Dose Oritavancin Versus 7–10 Days of Vancomycin in the Treatment of Gram-Positive Acute Bacterial Skin and Skin Structure Infections: The SOLO II Noninferiority Study. Clin. Infect. Dis. 2014, 60, 254–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jauregui, L.E.; Babazadeh, S.; Seltzer, E.; Goldberg, L.; Krievins, D.; Frederick, M.; Krause, D.; Satilovs, I.; Endzinas, Z.; Breaux, J.; et al. Randomized, Double-Blind Comparison of Once-Weekly Dalbavancin versus Twice-Daily Linezolid Therapy for the Treatment of Complicated Skin and Skin Structure Infections. Clin. Infect. Dis. 2005, 41, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Corey, G.R.; Kabler, H.; Mehra, P.; Gupta, S.; Overcash, J.S.; Porwal, A.; Giordano, P.; Lucasti, C.; Perez, A.; Good, S.; et al. Single-Dose Oritavancin in the Treatment of Acute Bacterial Skin Infections. N. Engl. J. Med. 2014, 370, 2180–2190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, R.; Bartsch, S.; Kelly, B.; Prewitt, M.; Liu, Y.; Chen, Y.; Umscheid, C. Newer Glycopeptide Antibiotics for Treatment of Complicated Skin and Soft Tissue Infections: Systematic Review, Network Meta-Analysis and Cost Analysis. Clin. Microbiol. Infect. 2018, 24, 361–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, M.; Smalley, S.; Dubrovskaya, Y.; Siegfried, J.; Caspers, C.; Pham, V.P.; Press, R.A.; Papadopoulos, J. Dalbavancin Use in the Emergency Department Setting. Ann. Pharmacother. 2019, 53, 1093–1101. [Google Scholar] [CrossRef]
- Bradley, J.S.; Puttagunta, S.; Rubino, C.M.; Blumer, J.L.; Dunne, M.; Sullivan, J.E. Pharmacokinetics, Safety and Tolerability of Single Dose Dalbavancin in Children 12–17 Years of Age. Pediatric Infect. Dis. J. 2015, 34, 748–752. [Google Scholar] [CrossRef]
- Gonzalez, D.; Bradley, J.S.; Blumer, J.; Yogev, R.; Watt, K.M.; James, L.P.; Palazzi, D.L.; Bhatt-Mehta, V.; Sullivan, J.E.; Zhang, L.; et al. Dalbavancin Pharmacokinetics and Safety in Children 3 Months to 11 Years of Age. Pediatric Infect. Dis. J. 2017, 36, 645–653. [Google Scholar] [CrossRef]
- Prokocimer, P.; Bien, P.; DeAnda, C.; Pillar, C.M.; Bartizal, K. In Vitro Activity and Microbiological Efficacy of Tedizolid (TR-700) against Gram-Positive Clinical Isolates from a Phase 2 Study of Oral Tedizolid Phosphate (TR-701) in Patients with Complicated Skin and Skin Structure Infections. Antimicrob. Agents Chemother. 2012, 56, 4608–4613. [Google Scholar] [CrossRef] [Green Version]
- Thomson, K.S.; Goering, R.V. Activity of Tedizolid (TR-700) against Well-Characterized Methicillin-Resistant Staphylococcus aureus Strains of Diverse Epidemiological Origins. Antimicrob. Agents Chemother. 2013, 57, 2892–2895. [Google Scholar] [CrossRef] [Green Version]
- Hassan, O.K.A.; Karnib, M.; El-Khoury, R.; Nemer, G.; Ahdab-Barmada, M.; Boukhalil, P. Linezolid Toxicity and Mitochondrial Susceptibility: A Novel Neurological Complication in a Lebanese Patient. Front. Pharmacol. 2016, 7, 325. [Google Scholar] [CrossRef] [Green Version]
- Fang, E.; Muñoz, K.A.; Prokocimer, P. Characterization of Neurologic and Ophthalmologic Safety of Oral Administration of Tedizolid for Up to 21 Days in Healthy Volunteers. Am. J. Ther. 2017, 24, e227–e233. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. Drug Trials Snapshot: Sivextro (Tedizolid). Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshot-sivextro-tedizolid (accessed on 20 January 2020).
- European Medicines Agency. Sivextro. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/sivextro#authorisation-details-section (accessed on 20 January 2020).
- Kauf, T.; Xu, P.; Zivkovic, M.; Corvino, F. Cost Implications of Tedizolid use in acute Bacterial Skin and Skin Structure Infection (Absssi) for Hospitals and Managed care Organizations (Mcos). Value Health 2015, 18, A240. [Google Scholar] [CrossRef]
- Corey, R.; Moran, G.; Goering, R.; Bensaci, M.; Sandison, T.; De Anda, C.; Prokocimer, P. Comparison of the Microbiological Efficacy of Tedizolid and Linezolid in Acute Bacterial Skin and Skin Structure Infections: Pooled Data From Phase 3 Clinical Trials. Diagn. Microbiol. Infect. Dis. 2019, 94, 277–286. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, S.; Lawrence, L.; Quintas, M.; Woosley, L.; Flamm, R.; Tseng, C.; Cammarata, S. In Vitro Activity of Delafloxacin and Microbiological Response against Fluoroquinolone-Susceptible and Nonsusceptible Staphylococcus aureus Isolates from Two Phase 3 Studies of Acute Bacterial Skin and Skin Structure Infections. Antimicrob. Agents Chemother. 2017, 61, e00772-17. [Google Scholar] [CrossRef] [Green Version]
- US Food and Drug Administration. Baxdela. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/208610s007,208611s006lbl.pdf (accessed on 20 January 2020).
- European Medicines Agency. EMEA-001080-PIP01-10. Available online: https://www.ema.europa.eu/en/medicines/human/paediatric-investigation-plans/emea-001080-pip01-10-0 (accessed on 20 January 2020).
- Principi, N.; Esposito, S. Appropriate Use of Fluoroquinolones in Children. Int. J. Antimicrob. Agents 2015, 45, 341–346. [Google Scholar] [CrossRef]
- Burgos, R.M.; Rodvold, K.A. Omadacycline: A Novel Aminomethylcycline. Infect. Drug Resist. 2019, 12, 1895–1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, S.K.; Steenbergen, J.; Villano, S. Discovery, Pharmacology, and Clinical Profile of Omadacycline, a Novel Aminomethylcycline Antibiotic. Bioorganic Med. Chem. 2016, 24, 6409–6419. [Google Scholar] [CrossRef] [Green Version]
- US Food and Drug Administration. Drug Approval Package: Nuzyra. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/209816Orig1s000,209817Orig1s000TOC.cfm (accessed on 20 January 2020).
- European Medicines Agency. Nuzyra: Withdrawal of the Marketing Authorisation Application. Available online: https://www.ema.europa.eu/en/medicines/human/withdrawn-applications/nuzyra (accessed on 20 January 2020).
- Abrahamian, F.M.; Sakoulas, G.; Tzanis, E.; Manley, A.; Steenbergen, J.; Das, A.F.; Eckburg, P.B.; McGovern, P.C. Omadacycline for Acute Bacterial Skin and Skin Structure Infections. Clin. Infect. Dis. 2019, 69, S23–S32. [Google Scholar] [CrossRef]
Antibiotic | Advantages | Limitations |
---|---|---|
Mupirocin 2% | Safe and well tolerated, low cost, generally effective after 5 days of administration. | Not always effective against MRSA. |
Retapamulin 1% | Similar efficacy to mupirocin 2%. | Licensed only for children ≥9 months, not recommended for MRSA, expensive, no longer licensed in Europe. |
Fusidic acid 2% | Safe and well tolerated, low cost. | S. aureus resistance to this drug in 50% of impetigo cases, not available in USA. |
Ozenoxacin | More effective against MSSA and MRSA in comparison with other topical antibiotics. | Increased risk of fungal or bacterial superinfection, high cost. |
Antibiotic | Advantages | Limitations |
---|---|---|
Ceftaroline fosamil | Effective against MRSA. vancomycin-intermediate S. aureus and some Gram-negative rods, excluding those producing extended-spectrum β-lactamases or carbapenemases. | Few data on its superiority over other anti-S. aureus antibiotics in pediatrics. |
Lipoglycopeptide (dalbavancin and oritavancin) | 4- to 8-fold more potent than vancomycin against Gram-positive bacteria, including vancomycin-intermediate and vancomycin-resistant S. aureus; very high protein-binding affinity (>90%); very long half-life. | Lack of randomized clinical trials showing the efficacy and safety of these drugs in the pediatric population. |
Tedizolid | Significantly more effective than linezolid against several Gram-positive strains, including MSSA, MRSA, and vancomycin-resistant S. aureus; more safe and less expensive than linezolid. | Little experience in children. |
Delafloxacin | Significantly more active than other quinolones against several gram-positive and gram-negative bacteria | No study has been carried out in children. |
Omadacycline | Novel tetracycline active against some Gram-negative rods; atypical bacteria; and several multidrug-resistant Gram-positive organisms, including MRSA. | No studies regarding children have been planned. Considering that tetracyclines are not licensed for use in children <8 years due to the risk of adverse events, it is highly likely that this drug will not be developed for use in pediatrics. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Principi, N.; Argentiero, A.; Neglia, C.; Gramegna, A.; Esposito, S. New Antibiotics for the Treatment of Acute Bacterial Skin and Soft Tissue Infections in Pediatrics. Pharmaceuticals 2020, 13, 333. https://doi.org/10.3390/ph13110333
Principi N, Argentiero A, Neglia C, Gramegna A, Esposito S. New Antibiotics for the Treatment of Acute Bacterial Skin and Soft Tissue Infections in Pediatrics. Pharmaceuticals. 2020; 13(11):333. https://doi.org/10.3390/ph13110333
Chicago/Turabian StylePrincipi, Nicola, Alberto Argentiero, Cosimo Neglia, Andrea Gramegna, and Susanna Esposito. 2020. "New Antibiotics for the Treatment of Acute Bacterial Skin and Soft Tissue Infections in Pediatrics" Pharmaceuticals 13, no. 11: 333. https://doi.org/10.3390/ph13110333
APA StylePrincipi, N., Argentiero, A., Neglia, C., Gramegna, A., & Esposito, S. (2020). New Antibiotics for the Treatment of Acute Bacterial Skin and Soft Tissue Infections in Pediatrics. Pharmaceuticals, 13(11), 333. https://doi.org/10.3390/ph13110333