Isoeugenol and Hybrid Acetamides against Candida albicans Isolated from the Oral Cavity
Abstract
:1. Introduction
2. Results
2.1. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) Determination
2.2. Interference of Isoeugenol on C. albicans Micromorphology
2.3. In Vitro Association Assay
2.4. Molecular Docking Analysis
3. Discussion
4. Materials and Methods
4.1. Substances
4.2. Microorganisms
4.3. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) Determination
4.4. Effect on the Micromorphology of C. albicans
4.5. In Vitro Association Study
4.6. Molecular Docking Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ATCC | American Type Culture Collection |
CFU | Colony Forming Units |
DMSO | Dimethyl Sulfoxide |
FICI | Fractional Inhibitory Concentration Index |
FIC | Fractional Inhibitory Concentration |
MFC | Minimum Fungicidal Concentration |
MIC | Minimum Inhibitory Concentration |
MVD | Molegro Virtual Docker |
PDB | Protein Data Bank |
RPMI | Roswell Park Memorial Institute |
SDA | Sabouraud Dextrose Agar |
References
- Millsop, J.W.; Fazel, N. Oral candidiasis. Clin. Dermatol. 2016, 34, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Colombo, A.L.; Guimarães, T. Epidemiologia das infecções hematogênicas por Candida spp. Rev. Soc. Bras. Med. Trop. 2003, 36, 599–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassetti, M.; Merelli, M.; Righi, E.; Diaz-Martin, A.; Rosello, E.M.; Luzzari, R.; Parra, A.; Trecarichi, E.M.; Sanguinetti, M.; Posteraro, B.; et al. Epidemiology, species distribution, antifungal susceptibility, and outcome of candidemia across five sites in Italy and Spain. J. Clin. Microbiol. 2013, 51, 4167–4172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.A.S.; Ahmad, I.; Cameotra, S.S. Phenyl aldehyde and propanoids exert multiple sites of action towards cell membrane and cell wall targeting ergosterol in Candida albicans. AMB Express 2013, 3, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Yapar, N. Epidemiology and risk factors for invasive candidiasis. Ther. Clin. Risk Manag. 2014, 10, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Castro, R.D.; Souza, T.M.P.A.; Bezerra, L.M.D.; Ferreira, G.L.S.; Costa, E.M.M.B.; Cavalcanti, A.L. Antifungal activity and mode action of thymol and its synergism with nystatin against Candida species involved with infections in the oral cavity: An in vitro study. BMC Complement Altern. Med. 2015, 15, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kalaiarasan, K.; Singh, R.; Chaturvedula, L. Changing virulence factors amongs vaginal non-albicans Candida species. Indian J. Med. Microbiol. 2018, 36, 364–368. [Google Scholar]
- Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans pathogenecy mechanisms. Virulence 2013, 4, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.; Lewis, M. Pathogenesis and treatment of oral candidoses. J. Oral. Microbiol. 2011, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A. Oral candidiasis: An opportunistic infection: A review. Int. J. Applied Dent. Sci. 2019, 5, 23–27. [Google Scholar]
- Silva, S.; Rodrigues, C.F.; Araújo, D.; Rodrigues, M.E.; Henrique, M. Candida species biofilms antifungal resistence. J. Fungi. 2017, 3, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gárcia-Cuesta, C.; Sarrion-Pérez, M.G.; Bagán, J.V. Current treatment of oral candidiasis: A literature review. J. Clin. Exp. Dent. 2014, 6, e576. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Peghin, M.; Timsit, J.F. The current treatment landscape: Candidiasis. J. Antimicrob. Chem. 2016, 71, ii13–ii22. [Google Scholar] [CrossRef] [PubMed]
- Hipólito, T.M.M.; Bastos, G.T.L.; Barbosa, T.W.L.; Souza, T.B.; Coelho, L.F.L.; Dias, A.L.T.; Rodríguez, I.C.; Santos, M.H.; Dias, D.F.; Franco, L.L.; et al. Synthesis, activity and docking studies of eugenol-based glucosides as new agents against Candida sp. Chem. Biol. Drug Des. 2018, 92, 1514–1524. [Google Scholar] [CrossRef]
- Zarlaha, A.; Kourkoumelis, N.; Stanojkovic, T.P.; Kovala-Demertri, D. Cytotoxic activity of essential oil and extracts of Ocimum basilicum against human carcinoma cells. Molecular docking study of isoeugenol as a potent cox and lox inhibitor. Dig. J. Nanomater. Biostruct. 2014, 9, 907–917. [Google Scholar]
- Freire, J.C.P.; Júnior, J.K.D.O.; Silva, D.D.F.; Sousa, J.P.; Guerra, F.Q.S.; Lima, E.O. Antifungal activity of essential oils against Candida albicans strains isolated from users of dental prostheses. Evid-Based Complement. Altern. Med. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [Green Version]
- D’Souza, S.P.; Channavanar, S.V.; Kanchanashri, B.; Niveditha, S.B. Pharmaceutical perspectives of spices and condiments as alternative antimicrobial remedy. Evid-Based Complement. Altern. Med. 2017, 22, 1002–1010. [Google Scholar] [CrossRef] [Green Version]
- Afonso, R.S.; Rennó, M.N.; Slana, G.B.C.A.; França, T.C.C. Aspectos químicos e biológicos do óleo essencial de cravo da Índia. Rev. Virtual Quím. 2012, 4, 146–161. [Google Scholar]
- Peixoto, L.R.; Rosalen, P.L.; Ferreira, G.L.S.; Freires, I.A.; Carvalho, F.G.; Castellano, L.R.; Castro, R.D. Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp. Arch. Oral Biol. 2017, 73, 179–185. [Google Scholar] [CrossRef]
- Jukié, M.; Politeo, O.; Milos, M. Chemical Composition and antioxidant effect of free volatile aglycones from nutmeg (Myristica fragrans Houtt.) compared to its essential oil. Croat. Chem. Acta 2006, 79, 209–214. [Google Scholar]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V.D. Essential oils and antifungal activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maia, J.G.S.; Andrade, E.H.A. Database of the amazon aromatic plants and their essential oils. Quim. Nova 2009, 32, 595–622. [Google Scholar] [CrossRef] [Green Version]
- Gallucci, M.N.; Carezzano, M.E.; Oliva, M.M.; Demo, M.S.; Pizzolitto, R.P.; Zunino, M.P.; Zygadlo, J.Á.; Dambolema, J.S. In vitro activity of natural phenolic compounds against fluconazole-resistant Candida species: A quantitative structure–activity relationship analysis. J. Appl. Microbiol. 2014, 116, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Kiessling, A.; Johansson, D.; Zahl, I.H.; Samuelsen, O.B. Pharmacokinetics, plasma cortisol and effectiveness of benzocaine, MS-222 and isoeugenol measured in individual dorsal aorta-cannulated Atlantic salmon (Salmo salar). Aquaculture 2009, 286, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Ruider, S.A.; Maulide, N. Strong bonds made weak: Towards the general utility of amides as synthetic modules. Angew. Chem. Int. Ed. 2015, 54, 13856–13858. [Google Scholar] [CrossRef]
- Katke, S.A.; Amrutkar, S.V.; Bhor, R.J.; Khairnar, M.V. Synthesis of biologically active 2-chloro-N-alkyl/aryl acetamide derivatives. Int. J. Pharm. Sci. Res. 2011, 2, 148–156. [Google Scholar]
- Patel, R.V.; Kumari, P.; Rajani, D.P.; Chikhalia, K.H. Synthesis of coumarin-based 1, 3, 4-oxadiazol-2ylthio-N-phenyl/benzothiazolyl acetamides as antimicrobial and antituberculosis agents. Med. Chem. Res. 2013, 22, 195–210. [Google Scholar] [CrossRef]
- Jetti, V.; Chidurala, P.; Meshram, J.S. Synthesis of new Acetamide-conjugated Monobactam antibiotics. Int. J. Pharm. Sci. Res. 2015, 6, 1553–1561. [Google Scholar]
- Aschale, M. Synthesis and antimicrobial evaluation of some novel substituted 2-chloroacetanalides. Int. J. Chemtech. Res. 2012, 4, 1437–1441. [Google Scholar]
- Nielsen, J. Combinatorial synthesis of natural products. Curr. Op. Chem. Biol. 2002, 3, 297–305. [Google Scholar] [CrossRef]
- Cordeiro, L.; Figueiredo, P.; Souza, H.; Sousa, A.; Andrade-Júnior, F.; Medeiros, D.; Nóbrega, J.; Silva, D.; Martins, E.; Barbosa-Filho, J.; et al. Terpinen-4-ol as an Antibacterial and Antibiofilm Agent against Staphylococcus aureus. Int. J. Mol. Sci. 2020, 21, 4531. [Google Scholar] [CrossRef] [PubMed]
- Strushkevich, N.; Usanov, S.A.; Park, H.W. Structural basis of human CYP51 inhibition by antifungal azoles. J. Mol. Biol. 2010, 397, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Roberti, R.; Blobel, G. Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum. Nature 2015, 517, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monk, B.C.; Tomasiak, T.M.; Keniya, M.V.; Huschmann, F.U.; Tyndall, J.D.; O’Connell, J.D.; Cannon, R.D.; McDonald, J.G.; Rodriguez, A.; Finer-Moore, J.S.; et al. Architecture of a single membrane spanning cytochrome P450 suggests constraints that orient the catalytic domain relative to a bilayer. Proc. Natl. Acad. Sci. USA 2014, 111, 3865–3870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garlatti, V.; Belloy, N.; Martin, L.; Lacroix, M.; Matsushita, M.; Endo, Y.; Fujita, T.; Camps, J.C.F.; Arlaud, G.J.; Thielens, N.M.; et al. Structural insights into the innate immune recognition specificities of L-and H-ficolins. EMBO J. 2007, 26, 623–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatia, R.; Shreaz, S.; Khan, N.; Muralidhar, S.; Basir, S.F.; Manzoor, N.; Khan, L.A. Proton pumping ATPase mediated fungicidal activity of two essential oil components. J. Basic Microbiol. 2012, 52, 504–512. [Google Scholar] [CrossRef]
- Zemek, J.; Košiková, B.; Augustín, J.; Joniak, D. Antibiotic properties of lignin components. Folia Microbiol. 1979, 24, 483–486. [Google Scholar] [CrossRef]
- Pizzolito, R.P.; Barberis, C.L.; Dambolema, J.S.; Herrera, J.M.; Zunino, M.P.; Magnoli, C.E.; Rubinstein, H.R.; Zyglalo, J.; Dalcero, A.M. Inhibitory effect of natural phenolic compounds on Aspergillus parasiticus growth. J. Chem. 2015, 2015, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Laekeman, G.M.; Hoof, L.V.; Haermers, A.; Berghe, D.A.V.; Herman, A.G.; Vlietinck, A.J. Eugenol a valuable compound for in vitro experimental research and worthwhile for further in vivo investigation. Phytother. Res. 1990, 4, 90–96. [Google Scholar] [CrossRef]
- Siddique, Z.N.; Farooq, F.; Musthafa, T.N.M.; Ahmad, A.; Khan, A.U. Synthesis, characterization and antimicrobial evaluation of novel halopyrazole derivatives. J. Saudi Chem. Soc. 2013, 17, 316–333. [Google Scholar] [CrossRef] [Green Version]
- Dambolena, J.S.; López, A.G.; Meriles, J.M.; Rubistien, H.R.; Zygadlo, J.A. Inhibitory effect of 10 natural phenolic compounds on Fusarium verticillioides. A structure- property- activity relationship study. Food Control 2012, 28, 163–170. [Google Scholar] [CrossRef]
- Abourashed, E.A.; Galal, A.M.; Shebl, A.M.; Mossa, J.S. Enhancing effect of isoeugenol on the antimicrobial activity of isoniazid, 6-paradol and 6- shogaol. J. Herbs Spices Med. Plants 2013, 13, 95–103. [Google Scholar] [CrossRef]
- Clinical Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 2nd ed.; CLSI document M27-A2; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2002. [Google Scholar]
- Silva, D.; Diniz-Neto, H.; Cordeiro, L.; Silva-Neta, M.; Silva, S.; Andrade-Júnior, F.; Leite, M.; Nóbrega, J.; Morais, M.; Souza, J.; et al. (R)-(+)-Citronellol and (S)-(-)-Citronellol in Combination with Amphotericin B against Candida spp. Int. J. Mol. Sci. 2020, 21, 1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadacek, F.; Greger, H. Testing of antifungal natural products: Methodologies, comparability of results and assay choice. Phytochem. Analysis 2000, 11, 137–147. [Google Scholar] [CrossRef]
- Morales, G.; Paredes, A.; Sierra, P.; Loyola, L.A. Antimicrobial activity of three baccharis species used in the tradicional medicine of Northern Chile. Molecules 2008, 13, 790–794. [Google Scholar] [CrossRef] [Green Version]
- Shin, S. Anti-Aspergillus activities of plant essential oils and their combination effects with-ketoconazole or amphotericin b. Arch. Pharm. Res. 2003, 26, 389–393. [Google Scholar] [CrossRef]
- Han, X.; Wang, N.; Li, J.; Wang, Y.; Wang, R.; Chang, J. Identification of nafamostat mesilate as an inhibitor of the fat mass and obesity-associated protein (FTO) demethylase activity. Chem. Biol. Interact. 2019, 297, 80–84. [Google Scholar] [CrossRef]
Substances | MIC Range |
---|---|
ISO A1 | 1024 to > 1024 µg/mL |
ISO A2 | 1024 to > 1024 µg/mL |
ISO A3 | 1024 to > 1024 µg/mL |
ISO A4 | 1024 to > 1024 µg/mL |
ISO A5 | 1024 to > 1024 µg/mL |
ISO A6 | 1024 to > 1024 µg/mL |
ISO A7 | 1024 to > 1024 µg/mL |
ISO A10 | 1024 to > 1024 µg/mL |
ISO A11 | 1024 to > 1024 µg/mL |
Isoeugenol | 128 to 256 µg/mL |
C. albicans | Isoeugenol (µg/mL) | Nystatin (µg/mL) | Controls | |||||
---|---|---|---|---|---|---|---|---|
MIC | MFC | MFC/MIC | MIC | MFC | MFC/MIC | CB | FV | |
LM-4b | 128 | 128 | 1 | 8 | 8 | 1 | - | + |
LM-5b | 128 | 128 | 1 | 8 | 8 | 1 | - | + |
LM-10b | 128 | 128 | 1 | 8 | 8 | 1 | - | + |
LM-11b | 256 | 256 | 1 | 8 | 32 | 4 | - | + |
LM-13b | 256 | 256 | 1 | 8 | 32 | 4 | - | + |
ATCC-76485 | 256 | 256 | 1 | 8 | 32 | 4 | - | + |
C. albicans | FIC | FICI | Effect | |
---|---|---|---|---|
FICA | FICB | |||
LM-4b | 1.10 | 1.98 | 3.09 | Indifference |
ATCC-76485 | 0.98 | 1.12 | 2.10 | Indifference |
Fungal Enzymes | Isoeugenol Binding Energies (kcal/mol) |
---|---|
14-α-demethylase | −69.4023 |
Delta 14-sterol reductase | −84.5773 |
Lanosterol 14-α-demethylase | −34.0519 |
1,3-β-glucan synthase | −53.8295 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medeiros, D.; Oliveira-Júnior, J.; Nóbrega, J.; Cordeiro, L.; Jardim, J.; Souza, H.; Silva, G.; Athayde-Filho, P.; Barbosa-Filho, J.; Scotti, L.; et al. Isoeugenol and Hybrid Acetamides against Candida albicans Isolated from the Oral Cavity. Pharmaceuticals 2020, 13, 291. https://doi.org/10.3390/ph13100291
Medeiros D, Oliveira-Júnior J, Nóbrega J, Cordeiro L, Jardim J, Souza H, Silva G, Athayde-Filho P, Barbosa-Filho J, Scotti L, et al. Isoeugenol and Hybrid Acetamides against Candida albicans Isolated from the Oral Cavity. Pharmaceuticals. 2020; 13(10):291. https://doi.org/10.3390/ph13100291
Chicago/Turabian StyleMedeiros, Daianne, José Oliveira-Júnior, Jefferson Nóbrega, Laísa Cordeiro, Jeane Jardim, Helivaldo Souza, Gracielle Silva, Petrônio Athayde-Filho, José Barbosa-Filho, Luciana Scotti, and et al. 2020. "Isoeugenol and Hybrid Acetamides against Candida albicans Isolated from the Oral Cavity" Pharmaceuticals 13, no. 10: 291. https://doi.org/10.3390/ph13100291
APA StyleMedeiros, D., Oliveira-Júnior, J., Nóbrega, J., Cordeiro, L., Jardim, J., Souza, H., Silva, G., Athayde-Filho, P., Barbosa-Filho, J., Scotti, L., & Lima, E. (2020). Isoeugenol and Hybrid Acetamides against Candida albicans Isolated from the Oral Cavity. Pharmaceuticals, 13(10), 291. https://doi.org/10.3390/ph13100291