Changing Trends in Computational Drug Repositioning
Abstract
:1. Introduction
2. Approaches
2.1. Knowledge-Based Drug Repurposing
2.2. Signature-Based Drug Repurposing
2.3. In Silico Methods for Drug Repositioning
2.3.1. Machine Learning
2.3.2. Network Models
2.3.3. Mining Electronic Health Records for Drug Repurposing
2.4. Open Innovation—Crowd Sourcing
National Center for Advancing Translational Sciences (NCATS)—NIH-Academia-Industry Partnerships Initiative
2.5. Open Source Software
3. Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Scannell, J.W.; Blanckley, A.; Boldon, H.; Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 2012, 11, 191–200. [Google Scholar] [PubMed]
- Akhondzadeh, S. The Importance of Clinical Trials in Drug Development. Avicenna J. Med. Biotechnol. 2016, 8, 151. [Google Scholar] [PubMed]
- Plenge, R.M.; Scolnick, E.M.; Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov. 2013, 12, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Kola, I.; Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 2004, 3, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve RD productivity: The pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov. 2010, 9, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Booth, B.; Zemmel, R. Opinion/Outlook: Prospects for productivity. Nat. Rev. Drug Discov. 2004, 3, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Graul, A.I.; Cruces, E.; Stringer, M. The year’s new drugs & biologics, 2013: Part I. Drugs of Today 2014, 50, 51–100. [Google Scholar] [PubMed]
- Hurle, M.R.; Yang, L.; Xie, Q.; Rajpal, D.K.; Sanseau, P.; Agarwal, P. Computational drug repositioning: From data to therapeutics. Clin. Pharmacol. Ther. 2013, 93, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Papapetropoulos, A.; Szabo, C. Inventing new therapies without reinventing the wheel: The power of drug repurposing. Br. J. Pharmacol. 2018, 2016–2018. [Google Scholar] [CrossRef] [PubMed]
- Padhy, B.M.; Gupta, Y.K. Drug repositioning: Re-investigating existing drugs for new therapeutic indications. J. Postgrad. Med. 2011, 57, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Nosengo, N. Can you teach old drugs new tricks? Nature 2016, 534, 314–316. [Google Scholar] [CrossRef] [PubMed]
- Sardana, D.; Zhu, C.; Zhang, M.; Gudivada, R.C.; Yang, L.; Jegga, A.G. Drug repositioning for orphan diseases. Brief. Bioinform. 2011, 12, 346–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cha, Y.; Erez, T.; Reynolds, I.J.; Kumar, D.; Ross, J.; Koytiger, G.; Kusko, R.; Zeskind, B.; Risso, S.; Kagan, E.; et al. Drug repurposing from the perspective of pharmaceutical companies. Br. J. Pharmacol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zheng, S.; Chen, B.; Butte, A.J.; Swamidass, S.J.; Lu, Z. A survey of current trends in computational drug repositioning. Brief. Bioinform. 2016, 17, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Prathipati, P.; Mizuguchi, K. Systems Biology Approaches to a Rational Drug Discovery Paradigm. Curr. Top. Med. Chem. 2015, 16, 1009–1025. [Google Scholar] [CrossRef]
- Li, Y.Y.; Jones, S.J.M. Drug repositioning for personalized medicine. Genome Med. 2012, 4, 27. [Google Scholar] [PubMed]
- Jin, G.; Wong, S.T.C. Toward better drug repositioning: Prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today 2014, 19, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Fang, H.; Reagan, K.; Xu, X.; Mendrick, D.L.; Slikker, W.; Tong, W. In silico drug repositioning: What we need to know. Drug Discov. Today 2013, 18, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Emig, D.; Ivliev, A.; Pustovalova, O.; Lancashire, L.; Bureeva, S.; Nikolsky, Y.; Bessarabova, M. Drug Target Prediction and Repositioning Using an Integrated Network-Based Approach. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Liu, C.; Jiang, J.; Lu, W.; Li, W.; Liu, G.; Zhou, W.; Huang, J.; Tang, Y. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol. 2012, 8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Li, S. Network-based relating pharmacological and genomic spaces for drug target identification. PLoS ONE 2010, 5. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Agarwal, P. Systematic drug repositioning based on clinical side-effects. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Kinnings, S.L.; Liu, N.; Buchmeier, N.; Tonge, P.J.; Xie, L.; Bourne, P.E. Drug discovery using chemical systems biology: Repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. PLoS Comput. Biol. 2009, 5. [Google Scholar] [CrossRef] [PubMed]
- Jadamba, E.; Shin, M. A Systematic Framework for Drug Repositioning from Integrated Omics and Drug Phenotype Profiles Using Pathway-Drug Network. BioMed Res. Int. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lu, Z. Pathway-based drug repositioning using causal inference. BMC Bioinform. 2013, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotelnikova, E.; Yuryev, A.; Mazo, I.; Daraselia, N. Computational approaches for drug repositioning and combination therapy design. J. Bioinform. Comput. Biol. 2010, 8, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Cramer, P.; Cirrito, J.; Wesson, D. ApoE-Directed Therapeutics Rapidly Clear beta-Amyloid and Reverse Deficits in AD Mouse Models. Science 2012, 335, 1503–1506. [Google Scholar] [CrossRef] [PubMed]
- Sivachenko, A.; Kalinin, A.; Yuryev, A. Pathway Analysis for Design of Promiscuous Drugs and Selective Drug Mixtures. Curr. Drug Discov. Technol. 2006, 3, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Strittmatter, W.J. Old drug, new hope for Alzheimer’s disease. Science 2012, 335, 1447–1448. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Zhao, H.; Zhou, X.; Wong, S.T.C. An enhanced Petri-Net model to predict synergistic effects of pairwise drug combinations from gene microarray data. Bioinformatics 2011, 27. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Fu, C.; Zhao, H.; Cui, K.; Chang, J.; Wong, S.T.C. A novel method of transcriptional response analysis to facilitate drug repositioning for cancer therapy. Cancer Res. 2012, 72, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Iskar, M.; Zeller, G.; Blattmann, P.; Campillos, M.; Kuhn, M.; Kaminska, K.H.; Runz, H.; Gavin, A.C.; Pepperkok, R.; Van Noort, V.; et al. Characterization of drug-induced transcriptional modules: Towards drug repositioning and functional understanding. Mol. Syst. Biol. 2013, 9. [Google Scholar] [CrossRef] [PubMed]
- Gaiteri, C.; Ding, Y.; French, B.; Tseng, G.C.; Sibille, E. Beyond modules and hubs: The potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders. Genes Brain Behav. 2014, 13, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Iorio, F.; Rittman, T.; Ge, H.; Menden, M.; Saez-Rodriguez, J. Transcriptional data: A new gateway to drug repositioning? Drug Discov. Today 2013, 18, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Sirota, M.; Dudley, J.T.; Kim, J.; Chiang, A.P.; Morgan, A.A.; Sweet-Cordero, A.; Sage, J.; Butte, A.J. Discovery and preclinical validation of drug indications using compendia of public gene expression data (Science Translational Medicine (2011) 3, (102er)). Sci. Transl. Med. 2011, 3, 96ra77. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; So, H.-C. A machine learning approach to drug repositioning based on drug expression profiles: Applications in psychiatry. arXiv, 2017; arXiv:1706.03014. [Google Scholar]
- Wang, Y.; Yella, J.; Chen, J.; McCormack, F.X.; Madala, S.K.; Jegga, A.G. Unsupervised gene expression analyses identify IPF-severity correlated signatures, associated genes and biomarkers. BMC Pulm. Med. 2017, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claerhout, S.; Lim, J.Y.; Choi, W.; Park, Y.-Y.; Kim, K.; Kim, S.-B.; Lee, J.-S.; Mills, G.B.; Cho, J.Y. Gene Expression Signature Analysis Identifies Vorinostat as a Candidate Therapy for Gastric Cancer. PLoS ONE 2011, 6, e24662. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Smith, S.; Thorpe, A.; Barratt, M.J.; Karim, F. Evaluation of phenoxybenzamine in the CFA model of pain following gene expression studies and connectivity mapping. Mol. Pain 2010, 6. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.C.; Xu, Q.; Pan, Y.J.; Pan, W.; Ji, N.; Li, Y.B.; Liu, H.J.J.K.; Ji, Z.L. ADReCS: An ontology database for aiding standardization and hierarchical Classification of adverse drug reaction terms. Nucleic Acids Res. 2015, 43, D907–D913. [Google Scholar] [CrossRef] [PubMed]
- Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; et al. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012, 40. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.J. Internet-based tools for communication and collaboration in chemistry. Drug Discov. Today 2008, 13, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Narayan, R.; Corsello, S.M.; Peck, D.D.; Natoli, T.E.; Lu, X.; Gould, J.; Davis, J.F.; Tubelli, A.A.; Asiedu, J.K.; et al. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell 2017, 171, 1437–1452. [Google Scholar] [CrossRef] [PubMed]
- Mattingly, C.J.; Colby, G.T.; Forrest, J.N.; Boyer, J.L. The Comparative Toxicogenomics Database (CTD). Environ. Health Perspect. 2003, 111, 793. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health: Health & Human Services DailyMed. Available online: http://dailymed.nlm.nih.gov/dailymed/index.cfm (accessed on 25 April 2018).
- Griffith, M.; Griffith, O.L.; Coffman, A.C.; Weible, J.V.; Mcmichael, J.F.; Spies, N.C.; Koval, J.; Das, I.; Callaway, M.B.; Eldred, J.M.; et al. DGIdb: Mining the druggable genome. Nat. Methods 2013, 10, 1209–1210. [Google Scholar] [CrossRef] [PubMed]
- DrugBank DrugBank. Available online: http://www.drugbank.ca (accessed on 22 April 2018).
- Ursu, O.; Holmes, J.; Knockel, J.; Bologa, C.G.; Yang, J.J.; Mathias, S.L.; Nelson, S.J.; Oprea, T.I. DrugCentral: Online drug compendium. Nucleic Acids Res. 2017, 45, D932–D939. [Google Scholar] [CrossRef] [PubMed]
- Pihan, E.; Colliandre, L.; Guichou, J.F.; Douguet, D. E-Drug3D: 3D structure collections dedicated to drug repurposing and fragment-based drug design. Bioinformatics 2012, 28, 1540–1541. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Soares, J.; Greninger, P.; Edelman, E.J.; Lightfoot, H.; Forbes, S.; Bindal, N.; Beare, D.; Smith, J.A.; Thompson, I.R.; et al. Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013, 41. [Google Scholar] [CrossRef] [PubMed]
- Koscielny, G.; An, P.; Carvalho-Silva, D.; Cham, J.A.; Fumis, L.; Gasparyan, R.; Hasan, S.; Karamanis, N.; Maguire, M.; Papa, E.; et al. Open Targets: A platform for therapeutic target identification and Validation. Nucleic Acids Res. 2017, 45, D985–D994. [Google Scholar] [CrossRef] [PubMed]
- Hewett, M.; Oliver, D.E.; Rubin, D.L.; Easton, K.L.; Stuart, J.M.; Altman, R.B.; Klein, T.E. PharmGKB: The pharmacogenetics knowledge base. Nucleic Acids Res. 2002, 30, 163–165. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Cowley, G.S.; Weir, B.A.; Vazquez, F.; Tamayo, P.; Scott, J.A.; Rusin, S.; East-Seletsky, A.; Ali, L.D.; Gerath, W.F.J.; Pantel, S.E.; et al. Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies. Sci. Data 2014, 1. [Google Scholar] [CrossRef] [PubMed]
- Von Eichborn, J.; Murgueitio, M.S.; Dunkel, M.; Koerner, S.; Bourne, P.E.; Preissner, R. PROMISCUOUS: A database for network-based drug-repositioning. Nucleic Acids Res. 2011, 39. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem substance and compound databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, M.; Letunic, I.; Jensen, L.J.; Bork, P. The SIDER database of drugs and side effects. Nucleic Acids Res. 2016, 44, D1075–D1079. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, M.; von Mering, C.; Campillos, M.; Jensen, L.J.; Bork, P. STITCH: Interaction networks of chemicals and proteins. Nucleic Acids Res. 2008, 36. [Google Scholar] [CrossRef] [PubMed]
- Dunkel, M.; Günther, S.; Ahmed, J.; Wittig, B.; Preissner, R. SuperPred: Drug classification and target prediction. Nucleic Acids Res. 2008, 36. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ji, Z.L.; Chen, Y.Z. TTD: Therapeutic Target Database. Nucleic Acids Res. 2002, 30, 412–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wishart, D.; Arndt, D.; Pon, A.; Sajed, T.; Guo, A.C.; Djoumbou, Y.; Knox, C.; Wilson, M.; Liang, Y.; Grant, J.; et al. T3DB: The toxic exposome database. Nucleic Acids Res. 2015, 43, D928–D934. [Google Scholar] [CrossRef] [PubMed]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Akbarian, S.; Liu, C.; Knowles, J.A.; Vaccarino, F.M.; Farnham, P.J.; Crawford, G.E.; Jaffe, A.E.; Pinto, D.; Dracheva, S.; Geschwind, D.H.; et al. The PsychENCODE project. Nat. Neurosci. 2015, 18, 1707–1712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunkin, S.M.; Ng, L.; Lau, C.; Dolbeare, T.; Gilbert, T.L.; Thompson, C.L.; Hawrylycz, M.; Dang, C. Allen Brain Atlas: An integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res. 2013, 41, D996–D1008. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, H. ArrayExpress--a public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 2004, 33, D553–D555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V; Sonkin, D.; et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity Supp. Nature 2012, 483, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Forbes, S.A.; Beare, D.; Gunasekaran, P.; Leung, K.; Bindal, N.; Boutselakis, H.; Ding, M.; Bamford, S.; Cole, C.; Ward, S.; et al. COSMIC: Exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015, 43, D805–D811. [Google Scholar] [CrossRef] [PubMed]
- Mailman, M.D.; Feolo, M.; Jin, Y.; Kimura, M.; Tryka, K.; Bagoutdinov, R.; Hao, L.; Kiang, A.; Paschall, J.; Phan, L.; et al. The NCBI dbGaP database of genotypes and phenotypes. Nat. Genet. 2007, 39, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Sherry, S.T. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Lappalainen, I.; Lopez, J.; Skipper, L.; Hefferon, T.; Spalding, J.D.; Garner, J.; Chen, C.; Maguire, M.; Corbett, M.; Zhou, G.; et al. DbVar and DGVa: Public archives for genomic structural variation. Nucleic Acids Res. 2013, 41. [Google Scholar] [CrossRef] [PubMed]
- Piñero, J.; Queralt-Rosinach, N.; Bravo, À.; Deu-Pons, J.; Bauer-Mehren, A.; Baron, M.; Sanz, F.; Furlong, L.I. DisGeNET: A discovery platform for the dynamical exploration of human diseases and their genes. Database 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Grossman, R.L.; Heath, A.P.; Ferretti, V.; Varmus, H.E.; Lowy, D.R.; Kibbe, W.A.; Staudt, L.M. Toward a Shared Vision for Cancer Genomic Data. N. Engl. J. Med. 2016, 375, 1109–1112. [Google Scholar] [CrossRef] [PubMed]
- Barrett, T. NCBI GEO: Mining millions of expression profiles--database and tools. Nucleic Acids Res. 2004, 33, D562–D566. [Google Scholar] [CrossRef] [PubMed]
- Lonsdale, J.; Thomas, J.; Salvatore, M.; Phillips, R.; Lo, E.; Shad, S.; Hasz, R.; Walters, G.; Garcia, F.; Young, N.; et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013, 45, 580–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.-S.; Pinto, S.M.; Getnet, D.; Nirujogi, R.S.; Manda, S.S.; Chaerkady, R.; Madugundu, A.K.; Kelkar, D.S.; Isserlin, R.; Jain, S.; et al. A draft map of the human proteome. Nature 2014, 509, 575–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancer, T. International Cancer Genome Consortium. Cancer 2011, 2011, 1–20. [Google Scholar] [CrossRef]
- Clarke, L.; Fairley, S.; Zheng-Bradley, X.; Streeter, I.; Perry, E.; Lowy, E.; Tassé, A.M.; Flicek, P. The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data. Nucleic Acids Res. 2017, 45, D854–D859. [Google Scholar] [CrossRef] [PubMed]
- Aymé, S.; Schmidtke, J. Networking for rare diseases: A necessity for Europe. Bundesgesundheitsblatt Gesundheitsforschunq Gesundheitsschutz 2007, 50, 1477–1483. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, B.E.; Stamatoyannopoulos, J.A.; Costello, J.F.; Ren, B.; Milosavljevic, A.; Meissner, A.; Kellis, M.; Marra, M.A.; Beaudet, A.L.; Ecker, J.R.; et al. The NIH roadmap epigenomics mapping consortium. Nat. Biotechnol. 2010, 28, 1045–1048. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Franceschini, A.; Kuhn, M.; Simonovic, M.; Roth, A.; Minguez, P.; Doerks, T.; Stark, M.; Muller, J.; Bork, P.; et al. The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2011, 39. [Google Scholar] [CrossRef] [PubMed]
- Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.P.; Subramanian, A.; Ross, K.N.; et al. The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease. Science 2006, 313, 1929–1935. [Google Scholar] [CrossRef] [PubMed]
- Musa, A.; Ghoraie, L.S.; Zhang, S.-D.; Galzko, G.; Yli-Harja, O.; Dehmer, M.; Haibe-Kains, B.; Emmert-Streib, F. A review of connectivity map and computational approaches in pharmacogenomics. Brief. Bioinform. 2017, bbw112. [Google Scholar] [CrossRef] [PubMed]
- Angermueller, C.; Pärnamaa, T.; Parts, L.; Oliver, S. Deep Learning for Computational Biology. Mol. Syst. Biol. 2016, 878. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, A.; Stein, G.Y.; Ruppin, E.; Sharan, R. PREDICT: A method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 2011, 7. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Guo, F.; Gu, J.; Wang, Y.; Li, Y.; Wang, D.; Lu, L.; Li, D.; He, F. Similarity-based prediction for Anatomical Therapeutic Chemical classification of drugs by integrating multiple data sources. Bioinformatics 2015, 31, 1788–1795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Lu, Z. A new method for computational drug repositioning using drug pairwise similarity. In Proceedings of the 2012 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2012, Philadelphia, PA, USA, 4–7 October 2012; pp. 453–456. [Google Scholar]
- Luo, H.; Wang, J.; Li, M.; Luo, J.; Peng, X.; Wu, F.X.; Pan, Y. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Bioinformatics 2016, 32, 2664–2671. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.; Ahn, J.; Yoon, Y. A network-based classification model for deriving novel drug-disease associations and assessing their molecular actions. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Mamoshina, P.; Vieira, A.; Putin, E.; Zhavoronkov, A. Applications of Deep Learning in Biomedicine. Mol. Pharm. 2016, 13, 1445–1454. [Google Scholar] [CrossRef] [PubMed]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Aliper, A.; Plis, S.; Artemov, A.; Ulloa, A.; Mamoshina, P.; Zhavoronkov, A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol. Pharm. 2016, 13, 2524–2530. [Google Scholar] [CrossRef] [PubMed]
- Unterthiner, T.; Mayr, A.; Klambauer, G.; Hochreiter, S. Toxicity Prediction using Deep Learning. Front. Environ. Sci. 2015, 3, 10. [Google Scholar] [CrossRef]
- Ramsundar, B.; Kearnes, S.; Riley, P.; Webster, D.; Konerding, D.; Pande, V. Massively Multitask Networks for Drug Discovery. arXiv, 2015; arXiv:1502.02072. [Google Scholar]
- Schadt, E.E. Molecular networks as sensors and drivers of common human diseases. Nature 2009, 461, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Azuaje, F. Drug interaction networks: An introduction to translational and clinical applications. Cardiovasc. Res. 2013, 97, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Liu, Q.; Wei, J. Construction of drug network based on side effects and its application for drug repositioning. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, S.; Pauwels, E.; Stoven, V.; Goto, S.; Yamanishi, Y. Relating drug-protein interaction network with drug side effects. Bioinformatics 2012, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campillos, M.; Kuhn, M.; Gavin, A.-C.; Jensen, L.J.; Bork, P. Drug target identification using side-effect similarity. Science 2008, 321, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.S.; Kong, S.W.; Kohane, I.S.; Patel, C.J. ksRepo: A generalized platform for computational drug repositioning. BMC Bioinform. 2016, 17. [Google Scholar] [CrossRef] [PubMed]
- Setoain, J.; Franch, M.; Martínez, M.; Tabas-Madrid, D.; Sorzano, C.O.S.; Bakker, A.; Gonzalez-Couto, E.; Elvira, J.; Pascual-Montano, A. NFFinder: An online bioinformatics tool for searching similar transcriptomics experiments in the context of drug repositioning. Nucleic Acids Res. 2015, 43, W193–W199. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Shoemaker, R.; Wang, W. A novel knowledge-driven systems biology approach for phenotype prediction upon genetic intervention. IEEE/ACM Trans. Comput. Biol. Bioinform. 2011, 8, 1170–1182. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, H.; Zhang, Z.; Cao, Y.; Tang, W. Network-based inference methods for drug repositioning. Comput. Math. Methods Med. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Gudivada, R.C.; Aronow, B.J.; Jegga, A.G. Computational drug repositioning through heterogeneous network clustering. BMC Syst. Biol. 2013, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009, 37. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhao, X.; Zhou, J.; Yang, J.; Zhang, Y.; Kuang, W.; Peng, J.; Chen, L.; Zeng, J. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Himmelstein, D.S.; Lizee, A.; Hessler, C.; Brueggeman, L.; Chen, S.L.; Hadley, D.; Green, A.; Khankhanian, P.; Baranzini, S.E. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. eLife 2017, 6, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Thompson, W.K.; Herr, T.M.; Zeng, Z.; Berendsen, M.A.; Jonnalagadda, S.R.; Carson, M.B.; Starren, J. Natural Language Processing for EHR-Based Pharmacovigilance: A Structured Review. Drug Saf. 2017, 40, 1075–1089. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Aldrich, M.C.; Chen, Q.; Liu, H.; Peterson, N.B.; Dai, Q.; Levy, M.; Shah, A.; Han, X.; Ruan, X.; et al. Validating drug repurposing signals using electronic health records: A case study of metformin associated with reduced cancer mortality. J. Am. Med. Inform. Assoc. 2014, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.S.; Patel, C.J. A review of validation strategies for computational drug repositioning. Brief. Bioinform. 2018, 19, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H. Open access target validation is a more efficient way to accelerate drug discovery. PLoS Biol. 2015, 13, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.J.; Donner, A.; Lee, W.H.; Bountra, C. Establishing a reliable framework for harnessing the creative power of the scientific crowd. PLoS Biol. 2017, 15. [Google Scholar] [CrossRef] [PubMed]
- Rijnders, T.W.; Tzalis, D.; Jaroch, S. The European lead factory—An experiment in colla- borative drug discovery. J. Med. Dev. Sci. 2015, 1, 20–33. [Google Scholar]
- Munos, B. Can open-source drug RD repower pharmaceutical innovation? Clin. Pharmacol. Ther. 2010, 87, 534–536. [Google Scholar] [CrossRef] [PubMed]
- Lakhani, K.R.; Boudreau, K.J.; Loh, P.R.; Backstrom, L.; Baldwin, C.; Lonstein, E.; Lydon, M.; MacCormack, A.; Arnaout, R.A.; Guinan, E.C. Prize-based contests can provide solutions to computational biology problems. Nat. Biotechnol. 2013, 31, 108–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentzien, J.; Muegge, I.; Hamner, B.; Thompson, D.C. Crowd computing: Using competitive dynamics to develop and refine highly predictive models. Drug Discov. Today 2013, 18, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.C.; Coyle, A.J. Building a new biomedical ecosystem: Pfizer’s centers for therapeutic innovation. Clin. Pharmacol. Ther. 2013, 94, 314–316. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Monteiro, C.D.; Jagodnik, K.M.; Fernandez, N.F.; Gundersen, G.W.; Rouillard, A.D.; Jenkins, S.L.; Feldmann, A.S.; Hu, K.S.; McDermott, M.G.; et al. Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Dorsch, H.; Jurock, A.E.; Schoepe, S.; Lessl, M.; Asadullah, K. Grants4Targets: An open innovation initiative to foster drug discovery collaborations. Nat. Rev. Drug Discov. 2014, 14, 74. [Google Scholar] [CrossRef] [PubMed]
- Markoff, J. Scientists see advances in deep learning. New York Times 2012. [Google Scholar]
- Alvim-Gaston, M.; Grese, T.; Mahoui, A.; Palkowitz, A.; Pineiro-Nunez, M.; Watson, I. Open Innovation Drug Discovery (OIDD): A Potential Path to Novel Therapeutic Chemical Space. Curr. Top. Med. Chem. 2014, 14, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Margolin, A.A.; Bilal, E.; Huang, E.; Norman, T.C.; Ottestad, L.; Mecham, B.H.; Sauerwine, B.; Kellen, M.R.; Mangravite, L.M.; Furia, M.D.; et al. Systematic analysis of challenge-driven improvements in molecular prognostic models for breast cancer. Sci. Transl. Med. 2013, 5. [Google Scholar] [CrossRef] [PubMed]
- Aksulu, A.; Wade, M. A Comprehensive Review and Synthesis of Open Source Research. J. Assoc. Inf. Syst. 2010, 11, 576–656. [Google Scholar] [CrossRef]
- Stajich, J.E.; Lapp, H. Open source tools and toolkits for bioinformatics: Significance, and where are we? Brief. Bioinform. 2006, 7, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Kluyver, T.; Ragan-kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.; Grout, J.; Corlay, S.; et al. Jupyter Notebooks—A publishing format for reproducible computational workflows. Position. Power Acad. Publ. Play. Agents Agendas 2016, 87–90. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar] [CrossRef]
- Demšar, J.; Curk, T.; Erjavec, A.; Hočevar, T.; Milutinovič, M.; Možina, M.; Polajnar, M.; Toplak, M.; Starič, A.; Stajdohar, M.; et al. Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 2013, 14, 23492353. [Google Scholar]
- Hall, M.A.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. SIGKDD Explor. 2009, 11, 10–18. [Google Scholar] [CrossRef]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A System for Large-Scale Machine Learning TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16), Savannah, Georgia, 22 August 2016; pp. 265–284. [Google Scholar]
- Chollet, F. Keras. Available online: https://github.com/fchollet/keras (accessed on 23 April 2018).
- Paszke, A.; Chanan, G.; Lin, Z.; Gross, S.; Yang, E.; Antiga, L.; Devito, Z. Automatic differentiation in PyTorch. Adv. Neural Inf. Process. Syst. 2017, 30, 1–4. [Google Scholar]
- Yu, D.; Huang, X. Microsoft Computational Network Toolkit (CNTK). In Neural Information Processing Systems (NIPS); Palais des Congrès de Montréal: Montréal, QC, Canada, 2015. [Google Scholar]
- Vedaldi, A.; Lenc, K. MatConvNet—Convolutional Neural Networks for MATLAB. arXiv, 2014; arXiv:1412.4564. [Google Scholar]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In Proceedings of the Third International AAAI Conference on Weblogs and Social Media, San Jose, CA, USA, 17–20 May 2009; pp. 361–362. [Google Scholar]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Corsello, S.M.; Bittker, J.A.; Liu, Z.; Gould, J.; McCarren, P.; Hirschman, J.E.; Johnston, S.E.; Vrcic, A.; Wong, B.; Khan, M.; et al. The Drug Repurposing Hub: A next-generation drug library and information resource. Nat. Med. 2017, 23, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Liu, Y.; Guan, N.; Bo, X.; Luo, Z.; Barnes, M.R. Cogena, a novel tool for co-expressed gene-set enrichment analysis, applied to drug repositioning and drug mode of action discovery. BMC Genomics 2016, 17. [Google Scholar] [CrossRef] [PubMed]
- Altae-Tran, H.; Ramsundar, B.; Pappu, A.S.; Pande, V. Low Data Drug Discovery with One-Shot Learning. ACS Cent. Sci. 2017, 3, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Gao, M.; Skolnick, J. Comprehensive prediction of drug-protein interactions and side effects for the human proteome. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Douguet, D. e-LEA3D: A computational-aided drug design web server. Nucleic Acids Res. 2010, 38. [Google Scholar] [CrossRef] [PubMed]
- Miteva, M.A.; Guyon, F.; Tufféry, P. Frog2: Efficient 3D conformation ensemble generator for small compounds. Nucleic Acids Res. 2010, 38. [Google Scholar] [CrossRef] [PubMed]
- Zu, S.; Chen, T.; Li, S. Global optimization-based inference of chemogenomic features from drug-target interactions. Bioinformatics 2015, 31, 2523–2529. [Google Scholar] [CrossRef] [PubMed]
- Louhimo, R.; Laakso, M.; Belitskin, D.; Klefström, J.; Lehtonen, R.; Hautaniemi, S. Data integration to prioritize drugs using genomics and curated data. BioData Min. 2016, 9. [Google Scholar] [CrossRef] [PubMed]
- Steinbeck, C.; Han, Y.; Kuhn, S.; Horlacher, O.; Luttmann, E.; Willighagen, E. The Chemistry Development Kit (CDK): An open-source Java library for chemo- and bioinformatics. J. Chem. Inf. Comput. Sci. 2003, 43, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.; Reid, S.P.; Clark, N.R.; Wang, Z.; Fernandez, N.F.; Rouillard, A.D.; Readhead, B.; Tritsch, S.R.; Hodos, R.; Hafner, M.; et al. L1000CDS2: LINCS L1000 characteristic direction signatures search engine. NPJ Syst. Biol. Appl. 2016, 2, 16015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrella, D.; Napolitano, F.; Rispoli, R.; Miglietta, M.; Carissimo, A.; Cutillo, L.; Sirci, F.; Gregoretti, F.; Di Bernardo, D. Mantra 2.0: An online collaborative resource for drug mode of action and repurposing by network analysis. Bioinformatics 2014, 30, 1787–1788. [Google Scholar] [CrossRef] [PubMed]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open chemical toolbox. J. Cheminform. 2011, 3. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.J.; Harland, L.; Groth, P.; Pettifer, S.; Chichester, C.; Willighagen, E.L.; Evelo, C.T.; Blomberg, N.; Ecker, G.; Goble, C.; et al. Open PHACTS: Semantic interoperability for drug discovery. Drug Discov. Today 2012, 17, 1188–1198. [Google Scholar] [CrossRef] [PubMed]
- Garfield, E. The Who and Why of ISI. Essays of Information Scientist. 1966. Available online: http://garfield.library.upenn.edu/essays/V1p033y1962-73.pdf (accessed on 1 June 2018).
- Repeat after me. Nature 2012, 488, 253. [CrossRef]
- Begley, C.G.; Ellis, L.M. Drug development: Raise standards for preclinical cancer research. Nature 2012, 483, 531–533. [Google Scholar] [CrossRef] [PubMed]
- Baker, M. Irreproducible biology research costs put at $28 billion per year. Nature 2015. [Google Scholar] [CrossRef]
- Peng, R.D. Reproducible research in computational science. Science 2011, 334, 1226–1227. [Google Scholar] [CrossRef] [PubMed]
- Gentleman, R. Reproducible Research: A Bioinformatics Case Study. Stat. Appl. Genet. Mol. Biol. 2005, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guney, E. Reproducible Drug Repurposing: When Similarity Does Not Suffice. Pac. Symp. Biocomput. 2016, 22, 132–143. [Google Scholar]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torre, D.; Krawczuk, P.; Jagodnik, K.M.; Lachmann, A.; Wang, Z.; Wang, L.; Kuleshov, M.V.; Ma’Ayan, A. Datasets2Tools, repository and search engine for bioinformatics datasets, tools and canned analyses. Sci. Data 2018, 5. [Google Scholar] [CrossRef] [PubMed]
- Ram, K. Git can facilitate greater reproducibility and increased transparency in science. Source Code Biol. Med. 2013, 8. [Google Scholar] [CrossRef] [PubMed]
- Merkel, D. Docker: Lightweight Linux containers for consistent development and deployment. Linux J. 2014, 2014, 2. [Google Scholar]
Drug | Original Indication | New Indication |
---|---|---|
Allopurinol | Cancer | Gout |
Amantadine | Influenza | Parkinson’s disease |
Amphotericin | Antifungal | Leishmaniasis |
Arsenic | Syphilis | Leukemia |
Aspirin | Inflammation, pain | Antiplatelet |
Atomexetine | Depressive disorder | ADHD |
Bimatoprost | Glaucoma | Promoting eyelash growth |
Bromocriptine | Parkinson’s disease | Diabetes mellitus |
Bupropion | Depression | Smoking cessation |
Colchicine | Gout | Recurrent pericarditis |
Colesevelam | Hyperlipidemia | Type 2 diabetes mellitus |
Dapsone | Leprosy | Malaria |
Disulfiram | Alcoholism | Melanoma |
Doxepin | Depressive disorder | Antipruritic |
Eflornithine | Depression | ADHD |
Finasteride | Benign prostatic hyperplasia | Male pattern baldness |
Gabapentin | Epilepsy | Neuropathic pain |
Gemcitabine | Antiviral | Cancer |
Lomitapide | Lipidemia | Familial hypercholesterolemia |
Methotrexate | Cancer | Psoriasis, rheumatoid arthritis |
Miltefosine | Cancer | Visceral leishmaniasis |
Minoxidil | Hypertension | Hair loss |
Naltrexone | Opioid addiction | Alcohol withdrawal |
Naproxen | Inflammation, pain | Alzheimer’s disease |
Nortriptyline | Depression | Neuropathic pain |
Premetrexed | Mesothelioma | Lung cancer |
Propranolol | Hypertension | Migraine prophylaxis |
Raloxifene | Contraceptive | Osteoporosis |
Sildenafil | Angina | Erectile dysfunction; pulmonary hypertension |
Thalidomide | Morning sickness | Leprosy; multiple myeloma |
Tretinoin | Acne | Leukemia |
Zidovudine | Cancer | HIV/AIDS |
Zileuton | Asthma | Acne |
Database | Type | Description | URL | Ref. |
---|---|---|---|---|
ADReCS | Drug | System Toxicology and in silico drug safety evaluation. Contains 137,619 Drug-ADR pairs | http://bioinf.xmu.edu.cn/ADReCS/ | [41] |
ChEMBL | Drug | Database of bioactive drug-like small molecules and abstracted bioactivities | https://www.ebi.ac.uk/chembl | [42] |
ChemSpider | Drug | Database of 64 million chemical structures | http://www.chemspider.com/ | [43] |
Clue (L1000 Platform) | Drug | Dataset of transcriptional responses of human cells to chemical and genetic perturbation. 1.2 Million L1000 profiles and tools for their analysis. | https://clue.io/ | [44] |
Comparative Toxicogenomics Database | Drug | Associations of Drug-Gene, Gene-Disease, Drug-Disease and gene-gene | http://ctdbase.org/ | [45] |
DailyMED | Drug | Catalogue of drug listings/drug label information | https://dailymed.nlm.nih.gov/dailymed/ | [46] |
DGIdb | Drug | Drug-gene annotations, interactions and potential drug ability database | http://dgidb.org/ | [47] |
DrugBank | Drug | Contains 11,000 drug entries and each entry contains more than 200 data fields of chemical information and drug targets. | https://www.drugbank.ca/ | [48] |
DrugCentral | Drug | Information on active ingredients chemical entities, pharmaceutical products, drug mode of action, indications, pharmacologic action | http://drugcentral.org/ | [49] |
e-Drug3D | Drug | e-Drug3D offers a facility to explore FDA approved drugs and active metabolites | http://chemoinfo.ipmc.cnrs.fr/MOLDB/index.html | [50] |
Genomics of Drug Sensitivity in Cancer (GDSC) | Drug | Screenings of >1000 genetically characterized human cancer cell lines with a wide range of anti-cancer therapeutics | http://www.cancerrxgene.org/ | [51] |
Inxight Drugs | Drug | A comprehensive portal for drug development information from NCATS | https://drugs.ncats.io/ginas/app | |
Open Targets Platform | Drug | comprehensive and robust data integration for access to and visualization of potential drug targets associated with disease | https://www.targetvalidation.org | [52] |
PharmGKB | Drug | Curated dataset of genetic variation on drug response | https://www.pharmgkb.org/ | [53] |
pkCSM | Drug | Small-molecule pharmacokinetic (ADMET) properties prediction using SMILE data | http://biosig.unimelb.edu.au/pkcsm/prediction | [54] |
Project Achilles | Drug | A genome-wide catalog of tumor dependencies, to identify vulnerabilities associated with genetic and epigenetic alterations | https://portals.broadinstitute.org/achilles | [55] |
Promiscuous | Drug | Database contains three different types of entities: drugs, proteins and side-effects as well as relations between them | http://bioinformatics.charite.de/promiscuous/ | [56] |
PubChem | Drug | PubChem contains more than 90 million compounds chemical information along with their bio activities, gene and protein targets | http://pubchem.ncbi.nlm.nih.gov/ | [57] |
SIDER | Drug | Information on marketed medicines and their recorded adverse drug reactions | http://sideeffects.embl.de/ | [58] |
STITCH | Drug | 68,000 chemicals, interactions and over 1.5 million proteins in 373 species | http://stitch.embl.de/ | [59] |
SuperPred | Drug | A prediction webserver for ATC code and target prediction of compounds | http://prediction.charite.de/ | [60] |
Therapeutic Target Database (TTD) | Drug | Dataset of known and explored therapeutic protein and nucleic acid targets, the targeted disease, pathway information and the corresponding drugs directed at each of these target | http://bidd.nus.edu.sg/group/cjttd/ | [61] |
Toxin and Toxin-Target Database (T3DB) | Drug | A database of 3673 toxins described by 41,733 synonyms, including pollutants, pesticides, drugs, and food toxins, which are linked to 2087 corresponding toxin target records | http://www.t3db.ca/ | [62] |
Human Protein Atlas | Disease and Drug | Consists of three separate parts; the Tissue Atlas showing the distribution of the proteins across all major tissues and organs in the human body, the Cell Atlas showing the subcellular localization of proteins in single cells, and finally the Pathology Atlas showing the impact of protein levels for survival of patients with cancer. | https://www.proteinatlas.org/ | [63] |
KEGG Medicus | Disease and Drug | Collection of databases dealing with genomes, biological pathways, diseases, drugs, and chemical substances | http://www.genome.jp/kegg/disease/ http://www.kegg.jp/ http://www.genome.jp/kegg/drug/ | [64] |
PsychEncode | Disease | https://www.synapse.org//#!Synapse:syn4921369/wiki/235539 | [65] | |
Allen Brain Atlas | Disease | Gene expression maps for mouse and human brain | http://www.brain-map.org/ | [66] |
ArrayExpress | Disease | Micro array gene expression data at EBI | https://www.ebi.ac.uk/arrayexpress | [67] |
CCLE | Disease | Database of mRNA expression and mutation data over 1100 cancer cell lines | https://portals.broadinstitute.org/ccle | [68] |
COSMIC | Disease | Catalogue of somatic mutations in human cancer | http://cancer.sanger.ac.uk/cosmic | [69] |
dbGAP | Disease | Catalogue of somatic mutations causing cancer | http://www.ncbi.nlm.nih.gov/gap | [70] |
dbSNP | Disease | Database of single nucleotide polymorphisms | https://www.ncbi.nlm.nih.gov/snp | [71] |
dbVar | Disease | Public archives for genomic structural variation | https://www.ncbi.nlm.nih.gov/dbvar | [72] |
DisGeNET | Disease | Database on human disease-associated genes and variants | http://www.disgenet.org/ | [73] |
ENCODE | Disease | Database of comprehensive parts list of functional elements in human genome | https://genome.ucsc.edu/ENCODE/ | [20] |
Genomics Data Commons | Disease | Harmonized Cancer Datasets with 40 cancer mutated gene projects, 22,147 Genes and 3 million mutations | https://gdc.cancer.gov/ | [74] |
GEO | Disease | High throughput gene expression datasets | http://www.ncbi.nlm.nih.gov/geo | [75] |
GTex | Disease | Catalog of genetic variations and their influence on gene expressions | https://www.gtexportal.org/home/ | [76] |
Human Proteome Map | Disease | Interactive resource with massive peptide sequencing results | http://www.humanproteomemap.org/ | [77] |
ICGC | Disease | Dataset with more than 17,000 cancer donors spanning 76 projects and 21 tumor sites | http://icgc.org/ | [78] |
IGSR | Disease | 1000 genome project data usability and extension | http://www.internationalgenome.org/ | [79] |
Orphadata | Disease | Rare diseases, drugs and associated genes | http://www.orphadata.org/cgi-bin/index.php/ | [80] |
Roadmap Epigenomics | Disease | Epigenomic maps for stem cells and primary ex vivo tissues selected to represent the normal counterparts of tissues and organ systems frequently involved in human disease | http://www.roadmapepigenomics.org/ | [81] |
STRING | Disease | Protein-Protein interaction, analysis, and networks | https://string-db.org/cgi/input.pl | [82] |
Name | Description | URL |
---|---|---|
Centers for Therapeutic Innovation (CTI) | Collaborative research platform for clinical applications and drug discovery [118] | https://www.pfizercti.com |
CREEDS | Crowd-extracted expression of differential signatures [119] | http://amp.pharm.mssm.edu/CREEDS |
Grants4Leads | Financial support for exploration of new approaches in infectious diseases [120] | https://www.grants4leads.com/ |
Kaggle | Data scientists and statisticians competition platform with few bioinformatics challenges [117,121] | http://www.kaggle.com/ |
Open Innovation Drug Discovery | Academic and Industry researchers open collaboration platform for drug discovery [122] | https://openinnovation.lilly.com/dd/ |
Sage Bionetworks | Bioinformatics and data science challenge platform building prognostic models for breast cancer [123] | http://sagebionetworks.org/ |
TopCoder | Machine learning engineers, programmers and data scientists challenge platform [116] | http://www.topcoder.com |
Project/Study Title | Year | NCATS Program | Condition |
---|---|---|---|
The Efficacy and Safety of a Selective Estrogen Receptor Beta Agonist (LY500307) | 2013 | NIH-Industry Partnership | Schizophrenia |
Fyn Inhibition by AZD0530 for Alzheimer’s Disease | 2013 | NIH-Industry Partnership | Alzheimer’s disease |
Medication Development of a Novel Therapeutic for Smoking Cessation | 2013 | NIH-Industry Partnership | Cigarette smoking |
A Novel Compound for Alcoholism Treatment: A Translational Strategy | 2013 | NIH-Industry Partnership | Alcoholism |
Partnering to Treat an Orphan Disease: Duchenne Muscular Dystrophy | 2013 | NIH-Industry Partnership | Duchenne muscular dystrophy |
Reuse of ZD4054 for Patients with Symptomatic Peripheral Artery Disease | 2013 | NIH-Industry Partnership | Peripheral artery disease |
Therapeutic Strategy for Lymphangioleiomyomatosis | 2013 | NIH-Industry Partnership | Lymphangioleiomyomatosis |
Therapeutic Strategy to Slow Progression of Calcific Aortic Valve Stenosis | 2013 | NIH-Industry Partnership | Calcific aortic valve stenosis |
Translational Neuroscience Optimization of GlyT1 Inhibitor | 2013 | NIH-Industry Partnership | Schizophrenia |
Anti-inflammatory Small Drug as Adjunctive Therapy to Improve Glucometabolic Variables in Obese, Insulin-Resistant Type 2 Diabetic Patients | 2015 | NIH-Industry Partnership | Insulin-resistant type 2 diabetes |
Evaluation of AZD9291 in Glioblastoma Patients with Activated EGFR | 2015 | NIH-Industry Partnership | Glioblastoma |
Evaluation of a Cathepsin S Inhibitor as a Potential Drug for Chagas Disease | 2015 | NIH-Industry Partnership | Chagas disease |
Wee1 and HDAC Inhibition in Relapsed/Refractory AML | 2015 | NIH-Industry Partnership | Relapsed/refractory AML |
Anti-Virulence Drug Repurposing Using Structural Systems Pharmacology | 2016 | Bench-to-Clinic | Bacterial virulence |
CXCR2 Antagonism in the Immunometabolic Regulation of Type 2 Diabetes | 2016 | Bench-to-Clinic | Type 2 diabetes |
Drug Repositioning in Diabetic Nephropathy | 2016 | Bench-to-Clinic | Diabetic nephropathy |
Ketorolac and Related NSAIDs for Targeting Rho-Family GTPases in Ovarian Cancer | 2016 | Bench-to-Clinic | Ovarian cancer |
Network-Driven Drug Repurposing Approaches to Treat Coronary Artery Disease | 2016 | Bench-to-Clinic | Coronary artery disease |
Pre-Clinical Evaluation of a Neutrophil Elastase Inhibitor for the Treatment of Inflammatory Bowel Disease | 2016 | Bench-to-Clinic | Inflammatory bowel disease |
Quantum Model Repurposing of Cethromycin for Liver Stage Malaria | 2016 | Bench-to-Clinic | Liver-stage malaria |
Repurposing Lesogaberan for the Treatment of Type 1 Diabetes | 2016 | Bench-to-Clinic | Type 1 diabetes |
Repurposing Misoprostol for Clostridium Difficile Colitis as Identified by PheWAS | 2016 | Bench-to-Clinic | Clostridium difficile colitis |
Repurposing Pyronaridine as a Treatment for the Ebola Virus | 2016 | Bench-to-Clinic | Ebola virus |
Therapeutic Repurposing of Benserazide for Colon Cancer | 2016 | Bench-to-Clinic | Colon cancer |
Computational Repurposing of Chemotherapies for Pulmonary Hypertension | 2017 | Bench-to-Clinic | Pulmonary hypertension |
Pre-Clinical Evaluation of Vorinostat in Alopecia Areata | 2017 | Bench-to-Clinic | Alopecia areata |
Pre-Clinical Testing of a Novel Therapeutic for Nonalcoholic Steatohepatitis | 2017 | Bench-to-Clinic | Nonalcoholic steatohepatitis |
Repurposing Pyronaridine as a Treatment for Chagas Disease | 2017 | Bench-to-Clinic | Chagas disease |
Single-Cell-Driven Drug Repositioning Approaches to Target Inflammation in Atherosclerosis | 2017 | Bench-to-Clinic | Atherosclerosis |
Impact of SAR152954 on Prenatal Alcohol Exposure-Induced Neurobehavioral Deficits | 2017 | Bench-to-Clinic | Neurobehavioral deficits |
An Endoplasmic Reticulum Calcium Stabilizer for the Treatment of Wolfram Syndrome | 2017 | Bench-to-Clinic | Wolfram syndrome |
Utilization of Phenotypic Precision Medicine to Identify Optimal Drug Combinations for the Treatment of Hepatocellular Carcinoma | 2017 | Bench-to-Clinic | Hepatocellular carcinoma |
Targeting Glucose Metabolism for the Treatment of Hepatocellular Carcinoma | 2017 | Bench-to-Clinic | Hepatocellular carcinoma |
Application of a Repurposed FDA Approved Drug as a Local Osteogenic Agent | 2017 | Bench-to-Clinic | To induce local osteogenesis |
Repurposing Misoprostol to Prevent Recurrence of Clostridium Difficile Infection | 2018 | Bench-to-Clinic | Recurrent Clostridium difficile |
AZD9668: A First in Class Disease Modifying Therapy to Treat Alpha-1 Antitrypsin Deficiency, a Genetically Linked Orphan Disease | 2018 | NIH-Industry Partnership | Alpha-1 antitrypsin deficiency |
AZD9668 and Neutrophil Elastase Inhibition to Prevent Graft-versus-Host Disease | 2018 | NIH-Industry Partnership | Graft-versus-host disease |
Use of the Src Family Kinase Inhibitor Saracatinib in the Treatment of Pulmonary Fibrosis | 2018 | NIH-Industry Partnership | Pulmonary fibrosis |
Tool | Description | URL | Ref |
---|---|---|---|
Clue | Tools for perturbagens (small molecules or genes) query, L1000 cohorts, and gene expression heatmap visualization | https://clue.io | [44] |
Clue Repurposing Tool | Interactive application to access approved and pre-clinical drug annotations | https://clue.io/repurposing | [137] |
COGENA | Analysis, visualizing and clustering tool for gene expression profiles | https://github.com/zhilongjia/cogena | [138] |
DeepChem | Deep learning toolkit for drug discovery and cheminformatics | https://deepchem.io/ | [139] |
DR.PRODIS | Prediction of drug-protein interactions, side effects | http://cssb.biology.gatech.edu/repurpose | [140] |
e-LEA3D | Collection of tools related to computer-aided drug design | http://chemoinfo.ipmc.cnrs.fr/ | [141] |
Frog2 | Chemo-informatics toolkit for small compound 3D generation from 1D/2D input | http://bioserv.rpbs.univ-paris-diderot.fr/services/Frog2/ | [142] |
GIFT | Infer chemogenomic features from drug-target interactions. | http://bioinfo.au.tsinghua.edu.cn/software/GIFT/ | [143] |
GoPredict | Drug target prioritization tool for breast and ovarian cancer | http://csblcanges.fimm.fi/GOPredict/ | [144] |
JOELib/JOELib2 | Toolkit to interconvert chemical file formats, descriptor calculation classes, and SMARTS substructure search | http://www.ra.cs.uni-tuebingen.de/software/joelib/introduction.html | [145] |
ksRepo | Drug repositioning tool that utilizes gene expression drug datasets from different platforms | https://github.com/adam-sam-brown/ksRepo | [101] |
L1000CDS | L1000 dataset based gene expression signature search engine | http://amp.pharm.mssm.edu/L1000CDS2/#/index | [146] |
MANTRA | Prediction and analysis of mechanism of action of drugs for drug repositioning | http://mantra.tigem.it/ | [147] |
NFFinder | Tool to discover multiple drugs with similar drugs based on up/down regulated genes | http://nffinder.cnb.csic.es/ | [102] |
Open babel | Open source chemistry toolbox | http://openbabel.org/wiki/Main_Page | [148] |
Open PHACTS | European funded initiative to bring together industry and academic partners for semantic integration of pharmacological data using an RDF data model | http://www.openphacts.org | [149] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yella, J.K.; Yaddanapudi, S.; Wang, Y.; Jegga, A.G. Changing Trends in Computational Drug Repositioning. Pharmaceuticals 2018, 11, 57. https://doi.org/10.3390/ph11020057
Yella JK, Yaddanapudi S, Wang Y, Jegga AG. Changing Trends in Computational Drug Repositioning. Pharmaceuticals. 2018; 11(2):57. https://doi.org/10.3390/ph11020057
Chicago/Turabian StyleYella, Jaswanth K., Suryanarayana Yaddanapudi, Yunguan Wang, and Anil G. Jegga. 2018. "Changing Trends in Computational Drug Repositioning" Pharmaceuticals 11, no. 2: 57. https://doi.org/10.3390/ph11020057
APA StyleYella, J. K., Yaddanapudi, S., Wang, Y., & Jegga, A. G. (2018). Changing Trends in Computational Drug Repositioning. Pharmaceuticals, 11(2), 57. https://doi.org/10.3390/ph11020057