Anacardic Acid Constituents from Cashew Nut Shell Liquid: NMR Characterization and the Effect of Unsaturation on Its Biological Activities
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General
3.2. Cashew Nut Shell Liquid
3.3. Extraction of Anacardic Acid from Cashew Nut Shell Liquid
3.4. Separation of CNSL Constituents In Silica Gel Chromatographic Column Impregnated with Silver Nitrate (AgNO3)
3.5. Antioxidant Activity Was Determined by a Spectrophotometric Procedure
3.6. Quantitative Evaluation of AChE Inhibition by Microplate Assay
3.7. Assessment of Anticholinesterase Activity by TLC
3.8. Antifungal Activity
3.9. Brine Shrimp (Artemia salina) Lethality Assay
3.10. Statistical Analysis
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Oliveira, V.H. Cashew crop. Rev. Bras. Frutic. 2008, 30, 1–284. [Google Scholar]
- Kubo, I.; Muroi, H.; Himejima, M. Structure–Antibacterial activity relationships of anacardic acids. J. Agric. Food Chem. 1993, 41, 1016–1019. [Google Scholar] [CrossRef]
- Oliveira, M.S.C.; Morais, S.M.; Magalhães, D.V.; Batista, W.P.; Vieira, I.G.P.; Craveiro, A.A.; Menezes, J.E.S.A.; Carvalho, A.F.U.; Lima, G.P.G. Antioxidant, larvicidal and antiacetylcholinesterase activities of cashew nut shell liquid constituents. Acta Trop. 2010, 117, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; He, L.; Zhang, L.; Chen, J.; Yi, Z.; Zhang, J.; Liu, M.; Pang, X. Anacardic Acid (6-Pentadecylsalicylic Acid) Inhibits Tumor Angiogenesis by Targeting Src/FAK/Rho GTPases Signaling Pathway. J. Pharmacol. Exp. Ther. 2011, 339, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Paramashivappa, P.; Kumar, P.P.; Vithayathil, P.J.; Rao, A.S. Novel method for isolation of major phenolic components from cashew (Anacardium occidentale L.). J. Agric. Food Chem. 2001, 49, 2548–2551. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, M.T.; Pfundstein, B.; Haubner, R.; Würtele, G.; Spiegelhalder, B.; Bartsch, H.; Owen, R.W. Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity. Food Chem. Toxicol. 2006, 44, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Kubo, I.; Masuoka, N.; Ha, T.J.; Tsujimoto, K. Antioxidant activity of anacardic acids. Food Chem. 2006, 99, 555–562. [Google Scholar] [CrossRef]
- Dewick, P.M. Medicinal Natural Products—A Biosynthetic Approach, 2nd ed.; John Wiley & Sons, Ltd.: West Sussex, England, 2004; 507p. [Google Scholar]
- Praveen Kumar, S.N.; Bhadre Gowda, D.G.; Vathsala Deepu, C.; Mantelingu, K.; Rangappa, K.S. Development and validation of a normal phase HPLC method for separation of anacardic acid isomers in cashew nut shell liquid. J. Chem. Pharm. Res. 2013, 5, 369–373. [Google Scholar]
- Van Beek, T.A.; Wintermans, M.S. Preparative isolation and dual column high-performance liquid chromatography of ginkgolic acids from Ginkgo biloba. J. Chromatogr. A 2001, 930, 109–117. [Google Scholar] [CrossRef]
- Suo, M.R.; Isao, H.; Ishida, Y.; Shimano, Y.; Bi, C.X.; Kato, H.; Takano, F.; Ohta, T. Phenolic lipid ingredients from cashew nuts. J. Nat. Med. 2012, 66, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Muroi, H.; Kubo, I. Bactericidal activity of anacardic acids against Streptococcus mutans and their potentiation. J. Agric. Food Chem. 1993, 41, 1780–1783. [Google Scholar] [CrossRef]
- Mendes, N.M.; de Oliveira, A.B.; Guimarães, J.E.; Pereira, J.P.; Katz, N. Molluscacide activity of a mixture of 6-n-alkyl salicylic acids (anacardic acid) and 2 of its complexes with copper (II) and lead (II). Rev. Soc. Bras. Med. Trop. 1990, 23, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Grazzini, R.; Hesk, D.; Heininger, E.; Hildenbrandt, G.; Reddy, C.C.; Cox-Foster, D.; Medford, J.; Craig, R.; Mumma, R.O. Inhibition of lipoxygenase and prostaglandin endoperoxide synthase by anacardic acids. Biochem. Biophys. Res. Commun. 1991, 176, 775–780. [Google Scholar] [CrossRef]
- Omanakuttan, A.; Nambiar, J.; Harris, R.M.; Bose, C.; Pandurangan, N.; Varghese, R.K.; Kumar, G.B.; Tainer, J.A.; Banerji, A.; Perry, J.J.P.; et al. Anacardic Acid Inhibits the Catalytic Activity of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9. Mol. Pharmacol. 2012, 82, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Morais, T.C.; Pinto, N.B.; Carvalho, K.M.; Rios, J.B.; Ricardo, N.M.; Trevisan, M.T.; Rao, V.S.; Santos, F.A. Protective effect of anacardic acids from cashew (Anacardium occidentale) on ethanol-induced gastric damage in mice. Chem. Biol. Interact. 2010, 183, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Masuoka, N.; Kubo, I. Characterization of xanthine oxidase inhibition by anacardic acids. Biochim. Biophys. Acta 2004, 1688, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Krishnaraju, A.V.; Rao, T.V.N.; Sundararaju, D.; Vanisree, M.; Tsay, H.; Subbaraju, G.V. Assessment of Bioactivity of Indian Medicinal Plants using Brine Shrimp (Artemia salina) Lethality Assay. Int. J. Appl. Sci. Eng. 2005, 3, 125–134. [Google Scholar]
- Podunavac-Kuzmanović, S.O.; Velimirović, S.D. Correlation between the lipophilicity and antifungal activity of some benzoxazole derivatives. Acta Period. Technol. 2010, 41, 177–185. [Google Scholar] [CrossRef]
- Andreão, P.S.S.; Giacomini, R.A.; Stumbo, A.M.; Waldman, W.R.; Braz-Filho, R.; Ligiéro, C.B.P.; Miranda, P.C.M.L. Utilização e recuperação de sílica gel impregnada com nitrato de prata. Quím. Nova 2010, 33, 212–215. [Google Scholar]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. Featherstone. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–90. [Google Scholar] [CrossRef]
- Rhee, I.K.; van de Meent, M.; Ingkaninan, K.; Verpoorte, R. Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. J. Chromatogr. A 2001, 915, 217–223. [Google Scholar] [CrossRef]
- Fontenelle, R.O.S.; Morais, S.M.; Brito, E.H.S.; Brilhante, R.S.N.; Cordeiro, R.A.; Nascimento, N.R.F.; Kerntopf, M.R.; Sidrim, J.J.C.; Rocha, M.F.G. Antifungal activity of essential oils of Croton species from the Brazilian Caatinga biome. J. Appl. Microbiol. 2008, 104, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.N.; Ferrigini, N.R.; Putnam, J.E.; Jacobsen, L.B.; Nichols, D.E.; Mclaughlin, J.L. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med. 1982, 45, 31–34. [Google Scholar] [CrossRef] [PubMed]
Peak Number | Constituent | Retention Time (min) | Yield (%) |
---|---|---|---|
1 | Cardol triene | 4.41 | 15.36 |
2 | Cardol diene | 5.75 | 6.96 |
3 | Anacardic acid triene | 7.48 | 28.00 |
4 | Cardol monoene | 8.43 | 1.66 |
5 | Cardanol triene | 8.83 | 2.96 |
6 | Anacardic acid diene | 10.35 | 17.77 |
7 | Cardanol diene | 12.53 | 2.29 |
8 | Anacardic acid monoene | 15.93 | 17.13 |
9 | Cardanol monoene | 20.03 | 1.74 |
Sample | IC50 (mg/mL) |
---|---|
Monoene anacardic acid | 2.06 ± 0.28 a |
Diene anacardic acid | 1.78 ± 0.01 a |
Triene anacardic acid | 0.81 ± 0.13 b |
BHT | 0.266 ± 0.005 c |
Constituents | BSLT * LC50 (µg/mL) | AChE Inhibition Zone (cm) | AChE Inhibition (µg·mL−1) |
---|---|---|---|
Monoene anacardic acid | 347.65 | 0.6 | 6.345 ± 0.532 d |
Diene anacardic acid | 206.25 | 0.8 | 1.771 ± 0.416 a,c |
Triene anacardic acid | 109.71 | 1.0 | 0.980 ± 0.271 a,b |
K2Cr2O7 (control) | 11.01 | - | - |
Physostigmine | - | 0.9 | 1.149 ± 0.046 a |
Compound | MIC (mg/mL) | MFC (mg/mL) | LogP |
---|---|---|---|
Anacardic acid monoene | 0.2567 b | 0.5167 b | 8.29 |
Anacardic acid diene | 0.6733 a | 1.3553 a | 7.61 |
Anacardic acid triene | 0.6733 a | 1.3500 a | 6.85 |
C.V. (%) | 40.59 | 40.47 | - |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morais, S.M.; Silva, K.A.; Araujo, H.; Vieira, I.G.P.; Alves, D.R.; Fontenelle, R.O.S.; Silva, A.M.S. Anacardic Acid Constituents from Cashew Nut Shell Liquid: NMR Characterization and the Effect of Unsaturation on Its Biological Activities. Pharmaceuticals 2017, 10, 31. https://doi.org/10.3390/ph10010031
Morais SM, Silva KA, Araujo H, Vieira IGP, Alves DR, Fontenelle ROS, Silva AMS. Anacardic Acid Constituents from Cashew Nut Shell Liquid: NMR Characterization and the Effect of Unsaturation on Its Biological Activities. Pharmaceuticals. 2017; 10(1):31. https://doi.org/10.3390/ph10010031
Chicago/Turabian StyleMorais, Selene M., Katherine A. Silva, Halisson Araujo, Icaro G.P. Vieira, Daniela R. Alves, Raquel O.S. Fontenelle, and Artur M.S. Silva. 2017. "Anacardic Acid Constituents from Cashew Nut Shell Liquid: NMR Characterization and the Effect of Unsaturation on Its Biological Activities" Pharmaceuticals 10, no. 1: 31. https://doi.org/10.3390/ph10010031
APA StyleMorais, S. M., Silva, K. A., Araujo, H., Vieira, I. G. P., Alves, D. R., Fontenelle, R. O. S., & Silva, A. M. S. (2017). Anacardic Acid Constituents from Cashew Nut Shell Liquid: NMR Characterization and the Effect of Unsaturation on Its Biological Activities. Pharmaceuticals, 10(1), 31. https://doi.org/10.3390/ph10010031