Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring
Abstract
:1. Introduction
Related Work
2. Methods
2.1. General Workflow
- A network of reference points should be established.
- A geodetic network should be designed near the object of the study.
- TLS should be performed by taking good care of the object coverage.
- The object shape must be modelled with appropriate surfaces.
- The object model is to be reduced to single, representative points.
- On the basis of representative points, different deformation analysis approaches can be applied.
2.2. Reference Points
2.3. Geodetic Network
2.4. Terrestrial Laser Scanning
2.5. Modelling the Object Shape
2.6. Determination of Representative Points
2.7. Deformation Analysis
3. Research
3.1. The Test Field and Its Characteristics
3.2. Field Work
4. Results
4.1. GNSS
4.2. Tacheometry
4.3. Terrestrial Laser Scanning
- the point on the axis: P0(x0, y0, z0),
- the direction vector: and
- radius: r,
5. Analysis and Discussion
5.1. The Datum Stability
5.2. Determination of Representative Points
- the observation point locations which were treated as control points supporting the representative points computation (mentioned in Section 2.3);
- pillar axes (parameterized by points on the axes and direction vectors).
5.3. Displacement Evaluation
6. Conclusions and Future Work
Acknowledgments
References and Notes
- Chrzanowski, A. Tasks and achievements of the FIG Working Group on deformation measurements and analysis. Proceedings of 3rd IAG Symposium of Geodesy for Geotechnical and Structural Engineering and 12th FIG Symposium on Deformation Measurements, Baden, Austria, May 22–24, 2006.
- Gordon, S.J.; Lichti, D.D. Modelling of terrestrial laser scanner data for precise structural deformation measurement. J. Surv. Eng. 2007, 133, 72–80. [Google Scholar]
- Alba, M.; Fregonese, L.; Prandi, F.; Scaioni, M.; Valgoi, P. Structural monitoring of a large dam by terrestrial laser scanning. Proceedings of International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Dresden, Germany, September 25–27, 2006. Vol. XXXVI.
- Gonzales-Aguilera, D.; Gomez-Lahoz, J.; Sanchez, J. A new approach for structural monitoring of large dams with a three-dimensional laser scanner. Sensors 2008, 8, 5866–5883. [Google Scholar]
- Van Gosliga, R.; Lindenbergh, R.; Pfeifer, N. Deformation analysis of a bored tunnel by means of terrestrial laser scanning. Proceedings of International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Dresden, Germany, September 25–27, 2006. Vol. XXXVI.
- Lovas, T.; Berényi, A. Laser scanning in deformation measurement. GIM Int. 2009, 23, 17–21. [Google Scholar]
- Park, H.S.; Lee, H.M. A new approach for health monitoring of structures: Terrestrial laser scanning. Comput.-Aided Civil Infrastr. E. 2007, 22, 19–30. [Google Scholar]
- Lichti, D.D. Error modelling, calibration and analysis of an AM–CW terrestrial laser scanner system. ISPRS J. Photogramm. 2007, 61, 307–324. [Google Scholar]
- Dorninger, P.; Nothegger, C.; Pfeifer, N.; Molnar, G. On-the-job detection and correction of systematic cyclic distance measurement errors of terrestrial laser scanners. J. Appl. Geodesy 2008, 2, 191–204. [Google Scholar]
- International GNSS Service. Available online: http://igscb.jpl.nasa.gov/igscb/center/analysis/ (accessed on 10 August 2009).
- EUREF Permanent Network. Guidelines for EPN Analysis Centres. Available online: http://www.epncb.oma.be/_organisation/guidelines/guidelines_analysis_centres.pdf (accessed on 12 March 2009).
- Bergeot, N.; Bouin, M.N.; Diament, M.; Pelletier, B.; Régnier, M.; Calmant, S.; Ballu, V. Horizontal and vertical interseismic velocity fields in the Vanuatu subduction zone from GPS measurements: Evidence for a central Vanuatu locked zone. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Caporali, A.; Aichhorn, C.; Barlik, M.; Becker, M.; Fejes, I.; Gerhatova, L.; Ghitau, D.; Grenerczy, G.; Hefty, J.; Krauss, S.; Medak, D.; Milev, G.; Mojzes, M.; Mulic, M.; Nardo, A.; Pesec, P.; Rus, T.; Simek, J.; Sledzinski, J.; Solaric, M.; Stangl, G.; Stopar, B.; Vespe, F.; Virag, G. Surface kinematics in the Alpine–Carpathian–Dinaric and Balkan region inferred from a new multi-network GPS combination solution. Tectonophysics 2009, 474, 295–321. [Google Scholar]
- Joeckel, R.; Stober, M. Elektronische Entfernungs- und Richtungsmessung; Witter: Stuttgart, Germany, 1989; pp. 152–176. [Google Scholar]
- Soudarissanane, S.; Lindenbergh, R.; Gorte, B. Reducing the error in terrestrial laser scanning by optimizing the measurement set-up. Proceedings of International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, July 3–11, 2008; Vol. XXXVII. pp. 615–620.
- Soudarissanane, S.; Van Ree, J.; Bucksch, A.; Lindenbergh, R. Error budget of terrestrial laser scanning: Influence of the incidence angle on the scan quality. Proceedings of 3D-NordOst, Berlin, Germany, December 5–December 8, 2007.
- Savšek-Safić, S.; Ambrožič, T.; Stopar, B.; Turk, G. Determination of point displacements in the geodetic network. J. Surv. Eng. 2006, 132, 58–63. [Google Scholar]
- Dach, R.; Hugentobler, U.; Fridez, P.; Meindl, M. Bernese GPS Software, Version 5.0; Astronomical Institute, University of Bern: Switzerland, 2007. [Google Scholar]
- Even-Tzur, G.; Salmon, E.; Kozakov, M.; Rosenblum, M. Designing a geodetic-geodynamic network: A comparative study of data processing tools. GPS Solut. 2004, 8, 30–35. [Google Scholar]
- Slovenian GNSS Network SIGNAL. Available online: http://www.gu-signal.si/index.php (accessed on 12 September 2009).
- Altamimi, Z.; Collilieux, X.; Legrand, J.; Garayt, B.; Boucher, C. ITRF2005: A new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J. Geophys. Res. 2007, 112, B09401. [Google Scholar] [CrossRef]
- International Terrestrial Reference Frame. Available online: http://itrf.ensg.ign.fr/ (accessed on 10 September 2009).
- Beutler, G.; Rothacher, M.; Schaer, S.; Springer, T.A.; Kouba, J.; Neilan, R.E. The International GPS Service (IGS): An interdisciplinary service in support of Earth sciences. Adv. Space Res. 1999, 23, 631–653. [Google Scholar]
- McCarthy, D.D.; Petit, G. IERS Conventions (2003), IERS Technical note 32. Available online: http://www.iers.org/MainDisp.csl?pid=46-25776 (accessed on 23 January 2009).
- Onsala Space Observatory. Available online: http://www.oso.chalmers.se/~loading/ (accessed on 9 March 2009).
- Niell, A.E. Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res. 1996, 101, 3227–3246. [Google Scholar]
- Mervat, L. Ambiquity Resolution Techniques in Geodetic and Geodynamic Applications of Global Positioning System. Dissertation, Astronomical Institute of University of Bern, Bern, Switzerland, 1995. [Google Scholar]
- Boucher, C.; Altamimi, Z. Memo: Specification for reference frame fixing in the analysis of a EUREF GPS campaign, Version 7. Available online: http://etrs89.ensg.ign.fr/memo-V7.pdf (accessed on 24 October 2008).
- Mao, A.; Harrison, C.G.A.; Dixon, T.H. Noise in GPS coordinate time series. J. Geophys. Res. 1999, 104, 2797–2816. [Google Scholar]
- Ciddor, P.E. Refractive index of air: new equations for the visible and near infrared. Appl. Opt. 1996, 35, 1566–1573. [Google Scholar]
- Ciddor, P.E.; Hill, R.J. Refractive index of air. 2. Group Index. Appl. Opt. 1999, 38, 1663–1667. [Google Scholar]
- Caspary, W.F. Concepts of Network and Deformation Analysis; Monograph 11; School of Surveying, The University of New South Wales: Kensington, N.S.W.; Australia, 1988; pp. 68–96. [Google Scholar]
- Luhmann, T.; Robson, S.; Kyle, S.; Harley, I. Close Range Photogrammetry. Principles, Methods and Applications; Whittles Publishing: Dunbeath, Scotland, 2006; pp. 87–88. [Google Scholar]
Campaign date | Temperature [°C] | Humidity [%] | Air pressure [mbar] |
---|---|---|---|
June 2008 | 23.4 | 92.0 | 948.9 |
November 2008 | −1.2 | 87.8 | 953.9 |
Campaign date | Min. elevation angle/Sampling rate | Duration |
---|---|---|
June 2008 | 0°/15 s | 48 hours |
November 2008 | 0°/15 s | 72 hours |
Pillar | E [m] | σE [mm] | N [m] | σN [mm] | Epoch |
---|---|---|---|---|---|
4101 | 482,459.5975 | 1.0 | 108,430.2116 | 2.0 | Jun 2008 |
482,459.6140 | 1.0 | 108,430.1959 | 1.0 | Nov 2008 | |
4102 | 483,370.3219 | 1.0 | 108,571.3014 | 2.0 | Jun 2008 |
483,370.3219 | 1.0 | 108,571.3017 | 1.0 | Nov 2008 | |
4103 | 483,681.1483 | 1.0 | 108,464.2422 | 2.0 | Jun 2008 |
483,681.1483 | 1.0 | 108,464.2419 | 1.0 | Nov 2008 |
Epoch | σ̂0 | σ̂Hz[″] | σ̂dist[mm] | σ̂Pos,max[mm] | σ̂Pos,min[mm] | σ̂Pos,avg[mm] |
---|---|---|---|---|---|---|
Jun 2008 | 0.99994 | 1.4 | 0.5 | 0.28 | 0.22 | 0.24 |
Nov 2008 | 1.00002 | 1.3 | 0.4 | 0.22 | 0.14 | 0.18 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Vezočnik, R.; Ambrožič, T.; Sterle, O.; Bilban, G.; Pfeifer, N.; Stopar, B. Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring. Sensors 2009, 9, 9873-9895. https://doi.org/10.3390/s91209873
Vezočnik R, Ambrožič T, Sterle O, Bilban G, Pfeifer N, Stopar B. Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring. Sensors. 2009; 9(12):9873-9895. https://doi.org/10.3390/s91209873
Chicago/Turabian StyleVezočnik, Rok, Tomaž Ambrožič, Oskar Sterle, Gregor Bilban, Norbert Pfeifer, and Bojan Stopar. 2009. "Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring" Sensors 9, no. 12: 9873-9895. https://doi.org/10.3390/s91209873
APA StyleVezočnik, R., Ambrožič, T., Sterle, O., Bilban, G., Pfeifer, N., & Stopar, B. (2009). Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring. Sensors, 9(12), 9873-9895. https://doi.org/10.3390/s91209873