Next Article in Journal
Immunoglobulin G Determination in Human Serum and Milk Using an Immunosensor of New Conception Fitted with an Enzyme Probe as Transducer
Next Article in Special Issue
A Study on Increasing Sensitivity of Rectangular Microcantilevers Used in Biosensors
Previous Article in Journal
Comparative and Combinative Study of Urban Heat island in Wuhan City with Remote Sensing and CFD Simulation
Previous Article in Special Issue
Implantable Biosensors for Real-time Strain and Pressure Monitoring

NeuroMEMS: Neural Probe Microtechnologies

Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Canada H3A 2A7
Department of Physiology, McGill University, 3655 Promenade Osler, Montreal, Canada H3G 1Y6
Author to whom correspondence should be addressed.
Sensors 2008, 8(10), 6704-6726;
Received: 2 July 2008 / Revised: 27 September 2008 / Accepted: 21 October 2008 / Published: 25 October 2008
(This article belongs to the Special Issue BioMEMS)
Neural probe technologies have already had a significant positive effect on our understanding of the brain by revealing the functioning of networks of biological neurons. Probes are implanted in different areas of the brain to record and/or stimulate specific sites in the brain. Neural probes are currently used in many clinical settings for diagnosis of brain diseases such as seizers, epilepsy, migraine, Alzheimer’s, and dementia. We find these devices assisting paralyzed patients by allowing them to operate computers or robots using their neural activity. In recent years, probe technologies were assisted by rapid advancements in microfabrication and microelectronic technologies and thus are enabling highly functional and robust neural probes which are opening new and exciting avenues in neural sciences and brain machine interfaces. With a wide variety of probes that have been designed, fabricated, and tested to date, this review aims to provide an overview of the advances and recent progress in the microfabrication techniques of neural probes. In addition, we aim to highlight the challenges faced in developing and implementing ultralong multi-site recording probes that are needed to monitor neural activity from deeper regions in the brain. Finally, we review techniques that can improve the biocompatibility of the neural probes to minimize the immune response and encourage neural growth around the electrodes for long term implantation studies. View Full-Text
Keywords: Neural probes; Microfabrication; Biocompatibility; Microelectrodes; Brain machine interfaces; Neural prosthesis; NeuroMEMS; BioMEMS Neural probes; Microfabrication; Biocompatibility; Microelectrodes; Brain machine interfaces; Neural prosthesis; NeuroMEMS; BioMEMS
Show Figures

Graphical abstract

MDPI and ACS Style

HajjHassan, M.; Chodavarapu, V.; Musallam, S. NeuroMEMS: Neural Probe Microtechnologies. Sensors 2008, 8, 6704-6726.

AMA Style

HajjHassan M, Chodavarapu V, Musallam S. NeuroMEMS: Neural Probe Microtechnologies. Sensors. 2008; 8(10):6704-6726.

Chicago/Turabian Style

HajjHassan, Mohamad, Vamsy Chodavarapu, and Sam Musallam. 2008. "NeuroMEMS: Neural Probe Microtechnologies" Sensors 8, no. 10: 6704-6726.

Find Other Styles

Article Access Map by Country/Region

Only visits after 24 November 2015 are recorded.
Back to TopTop