Phytochelatin Modified Electrode Surface as a Sensitive Heavy- Metal Ion Biosensor
Abstract
:Introduction
Materials and methods
Chemicals
Electrochemical measurements
-Adsorptive transfer stripping (AdTS) differential pulse voltammetry (DPV) of phytochelatin
Real samples
-Preparation of human urine
-Preparation of cis-platin – pharmaceutical drug
Statistical analysis
Results and discussion
Adsorptive transfer stripping technique as a base of electrochemical biosensor
Using the adsorptive transfer stripping technique for determination of phytochelatin
Modification of the HMDE surface by phytochelatin
Electrochemical behaviour of phytochelatin-modified HMDE in presence of Cd(II) and Zn(II)
Determination of Cd(II) and Zn(II) by PC2 modified HMDE in biological matrix
Using of peptide-modified HMDE to study of anticancer drug – cis-platin
Conclusions
Acknowledgments
References
- Zehnalek, J.; Adam, V.; Kizek, R. Influence of heavy metals on production of protecting compounds in agriculture plants. Listy Cukrov 2004, 120, 222. [Google Scholar]
- Zehnalek, J.; Vacek, J.; Kizek, R. Application of higher plants in phytoremetiation of heavy metals. Listy Cukrov 2004, 120, 220. [Google Scholar]
- Kizek, R.; Vacek, J.; Trnkova, L.; Klejdus, B.; Kuban, V. Electrochemical biosensors in agricultural and environmental analysis. Chem. Listy 2003, 97, 1003. [Google Scholar]
- Sures, B.; Knopf, K. Parasites as a threat to freshwater eels? Science 2004, 304, 208. [Google Scholar]
- Speir, T.W.; van Schaik, A.P.; Lloyd-Jones, A.R.; Kettles, H.A. Temporal response of soil biochemical properties in a pastoral soil after cultivation following high application rates of undigested sewage sludge. Biol. Fertil. Soil 2003, 38, 377. [Google Scholar]
- Zimmermann, S.; Sures, B. Significance of platinum group metals emitted from automobile exhaust gas converters for the biosphere. Environ. Sci. Pollut, Res. 2004, 11, 194. [Google Scholar]
- Sures, B.; Siddall, R.; Taraschewski, H. Parasites as accumulation indicators of heavy metal pollution. Parasitology Today 1999, 15, 16. [Google Scholar]
- Sures, B. Environmental parasitology: Relevancy of parasites in monitoring environmental pollution. Trends Parasitol 2004, 20, 170. [Google Scholar]
- Wu, A.H.B.; McKay, C.; Broussard, L.A.; Hoffman, R.S.; Kwong, T.C.; Moyer, T.P.; Otten, E.M.; Welch, S.L.; Wax, P. National academy of clinical biochemistry laboratory medicine practice guidelines: Recommendations for the use of laboratory tests to support poisoned patients who present to the emergency department. Clin. Chem. 2003, 49, 357. [Google Scholar]
- Nordberg, G.; Jin, T.; Leffler, P.; Svensson, M.; Zhou, T.; Nordberg, M. Metallothioneins and diseases with special reference to cadmium poisoning. Analusis 2000, 28, 396. [Google Scholar]
- Dong, L.M.; Yan, X.P.; Li, Y.; Jiang, Y.; Wang, S.W.; Jiang, D.Q. On-line coupling of flow injection displacement sorption preconcentration to high-performance liquid chromatography for speciation analysis of mercury in seafood. J. Chrom. A. 2004, 1036, 119. [Google Scholar]
- Soylak, M.; Narin, I.; Divrikli, U.; Saracoglu, S.; Elci, L.; Dogan, M. Preconcentration-separation of heavy metal ions in environmental samples by membrane filtration-atomic absorption spectrometry combination. Anal. Letters 2004, 37, 767. [Google Scholar]
- Apostoli, P. Elements in environmental and occupational medicine. J. Chrom. B 2002, 778, 63. [Google Scholar]
- Lewen, N.; Mathew, S.; Schenkenberger, M.; Raglione, T. A rapid ICP-MS screen for heavy metals in pharmaceutical compounds. J. Pharm. Biomed. Anal. 2004, 35, 739. [Google Scholar]
- Karami, H.; Mousavi, M.F.; Yamini, Y.; Shamsipur, M. On-line preconcentration and simultaneous determination of heavy metal ions by inductively coupled plasma-atomic emission spectrometry. Anal. Chim. Acta 2004, 509, 89. [Google Scholar]
- Zhang, B.; Li, F.M.; Houk, R.S.; Armstrong, D.W. Pore exclusion chromatography-inductively coupled plasma-mass spectrometry for monitoring elements in bacteria: A study on microbial removal of uranium from aqueous solution. Anal. Chem. 2003, 75, 6901. [Google Scholar]
- Szlyk, E.; Szydlowska-Czerniak, A. Determination of cadmium, lead, and copper in margarines and butters by galvanostatic stripping chronopotentiometry. J. Agr. Food Chem. 2004, 52, 4064. [Google Scholar]
- Vacek, J.; Petrek, J.; Kizek, R.; Havel, L.; Klejdus, B.; Trnkova, L.; Jelen, F. Electrochemical determination of lead and glutathione in a plant cell culture. Bioelectrochemistry 2004, 63, 347. [Google Scholar]
- Mikkelsen, O.; Schroder, K.H. Amalgam electrodes for electroanalysis. Electroanalysis 2003, 15, 679. [Google Scholar]
- Baldo, M.A.; Daniele, S.; Ciani, I.; Bragato, C.; Wang, J. Remote stripping analysis of lead and copper by a mercury-coated platinum microelectrode. Electroanalysis 2004, 16, 360. [Google Scholar]
- Pei, J.H.; Tercier-Waeber, M.L.; Buffle, J. Simultaneous determination and speciation of zinc, cadmium, lead, and copper in natural water with minimum handling and artifacts, by voltammetry on a gel-integrated microelectrode array. Anal. Chem. 2000, 72, 161. [Google Scholar]
- Kizek, R.; Vacek, J.; Trnková, L.; Klejdus, B.; Havel, L. Application of catalytic reactions on a mercury electrode for metallothionein electrochemical detection. Chem. Listy 2004, 98, 160. [Google Scholar]
- Strouhal, M.; Kizek, R.; Vacek, J.; Trnková, L.; Němec, M. Electrochemical study of heavy metals and metallothionein in yeast Yarrowia lipolytica. Bioelectrochemistry 2003, 60, 29. [Google Scholar]
- Trnkova, L.; Kizek, R.; Vacek, J. Catalytic signal of rabbit liver metallothionein on a mercury electrode: A combination of derivative chronopotentiometry with adsorptive transfer stripping. Bioelectrochemistry 2002, 56, 57. [Google Scholar]
- Šestáková, I.; Vodičková, H.; Mader, P. Voltammetric methods for speciation of plant metallothioneins. Electroanalysis 1998, 10, 764. [Google Scholar]
- Fojta, M. Electrochemical sensors for DNA interactions and damage. Electroanalysis 2002, 14, 1449. [Google Scholar]
- Cukrowska, E.; Trnkova, L.; Kizek, R.; Havel, J. Use of artificial neural networks for the evaluation of electrochemical signals of adenine and cytosine in mixtures interfered with hydrogen evolution. J. Electroanal. Chem. 2001, 503, 117. [Google Scholar]
- Kizek, R.; Trnkova, L.; Sevcikova, S.; Smarda, J.; Jelen, F. Silver electrode as a sensor for determination of zinc in cell cultivation medium. Anal. Biochem. 2002, 301, 8. [Google Scholar]
- Fojta, M.; Havran, L.; Kizek, R.; Billova, S.; Palecek, E. Multiply osmium-labeled reporter probes for electrochemical DNA hybridization assays: Detection of trinucleotide repeats. Biosen. Bioelectron. 2004, 20, 985. [Google Scholar]
- Babkina, S.S.; Ulakhovich, N.A. Amperometric biosensor based on denatured DNA for the study of heavy metals complexing with DNA and their determination in biological, water and food samples. Bioelectrochemistry 2004, 63, 261. [Google Scholar]
- Rodriguez-Mozaz, S.; Marco, M.P.; de Alda, M.J.L.; Barcelo, D. Biosensors for environmental applications: Future development trends. Pure Appl. Chem. 2004, 76, 723. [Google Scholar]
- Berggren, C.; Bjarnason, B.; Johansson, G. Capacitive biosensors. Electroanalysis 2001, 13, 173. [Google Scholar]
- Lu, Y.; Liu, J.W.; Li, J.; Bruesehoff, P.J.; Pavot, C.M.B.; Brown, A.K. New highly sensitive and selective catalytic DNA biosensors for metal ions. Biosen. Bioelectron. 2003, 18, 529. [Google Scholar]
- Aiken, A.M.; Peyton, B.M.; Apel, W.A.; Petersen, J.N. Heavy metal-induced inhibition of Aspergillus niger nitrate reductase: Applications for rapid contaminant detection in aqueous samples. Anal. Chim. Acta 2003, 480, 131. [Google Scholar]
- Dzyadevych, S.V.; Soldatkin, A.P.; Korpan, Y.I.; Arkhypova, V.N.; El'skaya, A.V.; Chovelon, J.M.; Martelet, C.; Jaffrezic-Renault, N. Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors. Anal. Bioanal. Chem. 2003, 377, 496. [Google Scholar]
- Han, S.B.; Zhu, M.; Yuan, Z.B.; Li, X. A methylene blue-mediated enzyme electrode for the determination of trace mercury(II), mercury(I), methylmercury, and mercury-glutathione complex. Biosen. Bioelectron. 2001, 16, 9. [Google Scholar]
- Krajewska, B.; Zaborska, W.; Chudy, M. Multi-step analysis of Hg2+ ion inhibition of jack bean urease. J. Inorg. Biochem. 2004, 98, 1160. [Google Scholar]
- Kuswandi, B. Simple optical fibre biosensor based on immobilised enzyme for monitoring of trace heavy metal ions. Anal. Bioanal. Chem. 2003, 376, 1104. [Google Scholar]
- Horswell, J.; Speir, T.W.; van Schaik, A.P. Bio-indicators to assess impacts of heavy metals in land-applied sewage sludge. Soil Biol. Biochem. 2003, 35, 1501. [Google Scholar]
- Qian, Z.R.; Tan, T.C. BOD measurement in the presence of heavy metal ions using a thermally-killed-Bacillus subtilis biosensor. Water Res. 1999, 33, 2923. [Google Scholar]
- Bontidean, I.; Lloyd, J.R.; Hobman, J.L.; Wilson, J.R.; Csoregi, E.; Mattiasson, B.; Brown, N.L. Bacterial metal-resistance proteins and their use in biosensors for the detection of bioavailable heavy metals. J. Inorg. Biochem. 2000, 79, 225. [Google Scholar]
- Wu, C.-M.; Lin, L.-Y. Immobilization of metallothionein as a sensitive biosensor chip for the detection of metal ions by surface plasmon resonance. Biosen. Bioelectron. 2004, 4, 864. [Google Scholar]
- Bontidean, I.; Ahlqvist, J.; Mulchandani, A.; Chen, W.; Bae, W.; Mehra, R.K.; Mortari, A.; Csoregi, E. Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosen. Bioelectron. 2003, 18, 547. [Google Scholar]
- Bae, W.; Chen, W.; Mulchandani, A.; Mehra, R.K. Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol. Bioeng. 2000, 70, 518. [Google Scholar]
- Cobbett, C.S. Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr. Opin. Plant Biol. 2000, 3, 211. [Google Scholar]
- di Toppi, S.L.; Gabbrielli, R. Response to cadmium in higher plants. Environ. Exp. Bot. 1999, 41, 105. [Google Scholar]
- Zenk, M.H. Heavy metal detoxification in higher plants – a review. Gene 1996, 179, 21. [Google Scholar]
- Cobbett, C.S.; Goldsbrough, P.B. Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 2002, 53, 159. [Google Scholar]
- Grill, E.; Winnacker, E.-L.; Zenk, M.H. Phytochelatins: The principal heavy-metal complexing peptides of higher plants. Science 1985, 320, 674. [Google Scholar]
- Townsend, D.M.; Tew, K.D.; Tapiero, H. The importance of glutathione in human disease. Biomed. Pharmacother. 2003, 57, 145. [Google Scholar]
- Sastre, J.; Pallardo, F.V.; Vina, J. Glutathione, oxidative stress and aging. Age 1996, 19, 129. [Google Scholar]
- Kizek, R.; Vacek, J.; Trnkova, L.; Jelen, F. Cyclic voltammetric study of the redox system of glutathione using the disulfide bond reducant tris(2-carboxythhyl)phosphine. Bioelectrochemistry 2004, 63, 19. [Google Scholar]
- Dolezel, P.; Kuban, V. Mass spectrometric study of platinum complexes based on cisplatin. Chem. Pap-Chem. Zvesti. 2002, 56, 236. [Google Scholar]
- Palchetti, I.; Marrazza, G.; Mascini, M. New procedures to obtain electrochemical sensors for heavy metal detection. Anal. Lett. 2001, 34, 813. [Google Scholar]
- Tsai, H.C.; Doong, R.A.; Chiang, H.C.; Chen, K.T. Sol-gel derived urease-based optical biosensor for the rapid determination of heavy metals. Anal. Chim. Acta 2003, 481, 75. [Google Scholar]
- May, L.M.; Russell, D.A. Novel determination of cadmium ions using an enzyme self-assembled monolayer with surface plasmon resonance. Anal. Chim. Acta 2003, 500, 119. [Google Scholar]
- Leth, S.; Maltoni, S.; Simkus, R.; Mattiasson, B.; Corbisier, P.; Klimant, I.; Wolfbeis, O.S.; Csoregi, E. Engineered bacteria based biosensors for monitoring bioavailable heavy metals. Electroanalysis 2002, 14, 35. [Google Scholar]
- Lehmann, M.; Riedel, K.; Adler, K.; Kunze, G. Amperometric measurement of copper ions with a deputy substrate using a novel Saccharomyces cerevisiae sensor. Biosen. Bioelectron. 2000, 15, 211. [Google Scholar]
- Kukla, A.L.; Kanjuk, N.I.; Starodub, N.F.; Shirshov, Y.M. Multienzyme electrochemical sensor array for determination of heavy metal ions. Sens. Actuators B 1999, 57, 213. [Google Scholar]
- Gooding, J.J.; Hibbert, D.B.; Yang, W. Electrochemical metal ion sensors. Exploiting amino acids and peptides as recognition elements. Sensors 2001, 1, 75. [Google Scholar]
- Corbisier, P.; van der Lelie, D.; Borremans, B.; Provoost, A.; de Lorenzo, V.; Brown, N.L.; Lloyd, J.R.; Hobman, J.L.; Csoregi, E.; Johansson, G.; Mattiasson, B. Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal. Chim. Acta 1999, 387, 235. [Google Scholar]
- Brabec, V. DNA sensor for the determination of antitumor platinum compounds. Electrochim. Acta 2000, 45, 2929. [Google Scholar]
- Kizek, R.; Trnkova, L.; Palecek, E. Determination of metallothionein at the femtomole level by constant current stripping chronopotentiometry. Anal. Chem. 2001, 73, 4801. [Google Scholar]
- Tomschik, M.; Havran, L.; Palecek, E.; Heyrovský, M. The “presodium” catalysis of electroreduction of hydrogn ions on mercury electrodes by metallothionein. An investigation by constant current derivative stripping chronopotentiometry. Electroanalysis 2000, 12, 274. [Google Scholar]
- Sestaková, I.; Mader, P. Voltammetry on mercury and carbon electrodes as a tool for studies of metallothionein interactions with metal ions. Cell. Mol. Biol. 2000, 46, 257. [Google Scholar]
- Yosypchuk, B.; Novotny, L. Cathodic stripping voltammetry of cysteine using silver and copper solid amalgam electrodes. Talanta 2002, 56, 971. [Google Scholar]
- Erk, M.; Ivankovic, D.; Raspor, B.; Pavicic, J. Evaluation of different purification procedures for the electrochemical quantification of mussel metallothioneins. Talanta 2002, 57, 1211. [Google Scholar]
- Díaz-Cruz, M.S.; Mendieta, J.; Esteban, M. Combined use of differential pulse plarography and multivariate curve resolution: As applied to the study of metal mixed comples of the metallohionein related hexapeptide Lys-Cys-Thr-Cys-Cys-Ala. Electroanalysis 2002, 14, 50. [Google Scholar]
- Yosypchuk, B.; Sestakova, I.; Novotny, L. Voltammetric determination of phytochelatins using copper solid amalgam electrode. Talanta 2003, 59, 1253. [Google Scholar]
- Díaz-Cruz, M.S.; Mendieta, J.; Tauler, R.; Esteban, M. Cadmium-binding properties of glutathione: A chemometrical analysis of voltammetric data. J. Inorg. Biochem. 1997, 66, 29. [Google Scholar]
- Palecek, E.; Postbieglová, I. Adsorptive stripping voltammetry of bimacromolecules with transfer of the adsorbed layer. J. Electroanal Chem. 1986, 214, 359. [Google Scholar]
- Palecek, E. Adsorptive transfer stripping voltammetry: Effect of electrode potential on the structure of DNA adsorbed at the mercury surface. Biolectrochem. Bioenerg. 1992, 28, 71. [Google Scholar]
- Palecek, E. New trends in electrochemical analysis of nucleic acids. Bioelectrochem. Bioenerg. 1988, 20, 179. [Google Scholar]
- Palecek, E. Adsorptive transfer stripping voltammetry - determination of nanogram quanitities of DNA immobilized at the electrode surface. Anal. Biochem. 1988, 170, 421. [Google Scholar]
- Fojta, M.; Havran, L.; Billova, S.; Kostecka, P.; Masarik, M.; Kizek, R. Two-surface strategy in electrochemical DNA hybridization assays: Detection of osmium-labeled target DNA at carbon electrodes. Electroanalysis 2003, 15, 431. [Google Scholar]
- Ozkan, D.; Kara, P.; Kerman, K.; Meric, B.; Erdem, A.; Jelen, F.; Nielsen, P.E.; Ozsoz, M. DNA and PNA sensing on mercury and carbon electrodes by using methylene blue as an electrochemical label. Bioelectrochemistry 2002, 58, 119. [Google Scholar]
- Palecek, E.; Jelen, F.; Postbieglova, I. Adsorptive transfer stripping voltammetry offers new possibilities in DNA research. Studia Biophysica 1989, 130, 51. [Google Scholar]
- Jelen, F.; Tomschik, M.; Palecek, E. Adsorptive stripping square-wave voltammetry of DNA. J. Electroanal. Chem. 1997, 423, 141. [Google Scholar]
- Fojta, M.; Havran, L.; Fulneckova, J.; Kubicarova, T. Adsorptive transfer stripping AC voltammetry of DNA complexes with intercalators. Electroanalysis 2000, 12, 926. [Google Scholar]
- Kizek, R.; Havran, L.; Kubicarova, T.; Yosypchuk, B.; Heyrovsky, M. Voltammetry of two single-stranded isomeric end-labeled -SH deoxyoligonucleotides on mercury electrodes. Talanta 2002, 56, 915. [Google Scholar]
- Heyrovsky, M. Early polarographic studies on proteins. Electroanalysis 2004, 16, 1067. [Google Scholar]
- Heyrovsky, M.; Mader, P.; Vavřička, S.; Veselá, V.; Fedurco, M. The anodic reactions at mercury electrode due to cysteine. J. Electroanal. Chem. 1997, 430, 103. [Google Scholar]
- Kelley, S.O.; Jackson, N.M.; Hill, M.G.; Barton, J.K. Long-range electron transfer through DNA films. Angewandte Chemie-International Edition 1999, 38, 941. [Google Scholar]
- Tlili, A.; Abdelghani, A.; Hleli, S.; Maaref, M.A. Electrical characterization of a thiol SAM on gold as a first step for the fabrication of an immunosensors based on a quartz crystal microbalance. Sensors 2004, 4, 105. [Google Scholar]
- Fawcett, W.R.; Fedurco, M.; Kovacova, Z.; Borkowska, Z. Adsorption study of cysteine, N-acetylcystamine, cysteinesulpfinic acid and cysteic acid on a polycrystalline gold electrode. J. Electroanal. Chem. 1994, 368, 275. [Google Scholar]
- Dabrio, M.; Rodriguez, A.R. Complexing properties of the beta metallothionein domain with cadmium and/or zinc, studied by differential pulse polarography. Analusis 2000, 28, 370. [Google Scholar]
- Dabrio, M.; Rodriguez, A.R. Electrochemical study of human foetal liver metallothionein: Influence of the additions of cadmium and zinc. Anal. Chim. Acta 2000, 406, 171. [Google Scholar]
- Dabrio, M.; Rodriguez, A.R. Study of complexing properties of the a-metallothionein domain with cadmium and/or zinc, using differential pulse polarography. Anal. Chim. Acta 2000, 424, 77. [Google Scholar]
- Dabrio, M.; Rodriguez, A.R.; Bordin, G.; Bebianno, M.J.; De Ley, M.; Sestakova, I.; Vašák, M.; Nordberg, M. Recent developments in quantification methods for metallothionein. J. Inorg. Biochem. 2002, 88, 123. [Google Scholar]
- Dabrio, M.; Van Vyncht, G.; Bordin, G.; Rodriguez, A.R. Study of complexing properties of the alpha and beta metallothionein domains with cadmium and/or zinc using electrospray ionisation mass spectrometry. Anal. Chim. Acta 2001, 435, 319. [Google Scholar]
- Diaz-Cruz, M.S.; Diaz-Cruz, J.M.; Mendieta, J.; Tauler, R.; Esteban, M. Soft- and hard-modeling approaches for the determination of stability constants of metal-peptide systems by voltammetry. Anal. Biochem. 2000, 279, 189. [Google Scholar]
- Diaz-Cruz, M.S.; Esteban, M.; Rodriguez, A.R. Square wave voltammetry data analysis by multivariate curve resolution: application to the mixed-metal system. Anal. Chim. Acta 2001, 428, 285. [Google Scholar]
- Diaz-Cruz, M.S.; Mendieta, J.; Monjonell, A.; Tauler, R.; Esteban, M. Study of the zinc-binding properties of glutathione by differential pulse polarography and multivariate curve resolution. J. Inorg. Biochem. 1998, 70, 91. [Google Scholar]
© 2005 by MDPI ( http://www.mdpi.org). Reproduction is permitted for non-commercial purposes.
Share and Cite
Adam, V.; Zehnalek, J.; Petrlova, J.; Potesil, D.; Sures, B.; Trnkova, L.; Jelen, F.; Vitecek, J.; Kizek, R. Phytochelatin Modified Electrode Surface as a Sensitive Heavy- Metal Ion Biosensor. Sensors 2005, 5, 70-84. https://doi.org/10.3390/s5010070
Adam V, Zehnalek J, Petrlova J, Potesil D, Sures B, Trnkova L, Jelen F, Vitecek J, Kizek R. Phytochelatin Modified Electrode Surface as a Sensitive Heavy- Metal Ion Biosensor. Sensors. 2005; 5(1):70-84. https://doi.org/10.3390/s5010070
Chicago/Turabian StyleAdam, Vojtech, Josef Zehnalek, Jitka Petrlova, David Potesil, Bernd Sures, Libuse Trnkova, Frantisek Jelen, Jan Vitecek, and Rene Kizek. 2005. "Phytochelatin Modified Electrode Surface as a Sensitive Heavy- Metal Ion Biosensor" Sensors 5, no. 1: 70-84. https://doi.org/10.3390/s5010070
APA StyleAdam, V., Zehnalek, J., Petrlova, J., Potesil, D., Sures, B., Trnkova, L., Jelen, F., Vitecek, J., & Kizek, R. (2005). Phytochelatin Modified Electrode Surface as a Sensitive Heavy- Metal Ion Biosensor. Sensors, 5(1), 70-84. https://doi.org/10.3390/s5010070