Small-Target Detection Algorithm Based on Improved YOLOv11n
Highlights
- First, we add a 160 × 160 resolution detection head with AFPN, replace SPPF with SCASPPF (which highlights small target features and suppresses background clutter), optimize the loss function via MPDIoU-InnerIoU fusion, and enhance C3k2 with IDC (which improves localization accuracy and receptive field). These measures collectively boost performance.
- Second, on the Visdrone2019 dataset, we find that the improved YOLOv11n achieves 39.256% mAP@0.5, a 6.689% gain over the benchmark.
- First, it provides a new method for small-target detection in drones, demonstrating that integrating non-adjacent feature fusion, attention mechanisms, expanded receptive fields, and improved loss functions can enhance performance.
- Second, the algorithm can be directly applied to UAV surveillance, rescue, reconnaissance, and environmental monitoring, reducing missed/false detections.
Abstract
1. Introduction
2. Related Work
3. Proposed Algorithm
3.1. P2 Small-Target Detection Layer and AFPN
3.2. Improved SPPF
3.3. MPDInnerIoU Loss Function
3.4. C3k2_IDC
3.5. Algorithm Process
| Algorithm 1: Algorithm of improved target detection |
| Input: Image dataset . |
| 1: for each image in do |
| 2: Divide the image into S × S grids. |
| 3: Extract the feature map through improved YOLOv11n Network |
| 4: Extract feature vectors through the detection |
| 5: for each in |
| 6: Calculate the best and delete the remaining (NMS) |
| 7: Generate test results R |
| 8: end for |
| 9: end for |
| Output: R |
4. Experimental Results and Analysis
4.1. Dataset and Experimental Environment
4.2. Analysis of Ablation Experiment
4.3. Experimental Analysis of MPDInnerIoU Parameter Settings
4.4. Detection Results of Different Sizes
4.5. Experimental Results of Other Datasets
4.6. Comparative Experiment
4.7. VisDrone2019 Feature Map Visualization
4.8. Comparative Experiment on the Stability of YOLOv11n and the Improved YOLOv11n
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AFPN | Asymptotic Feature Pyramid Network |
| IDC | Inception Depthwise Convolution |
| SCASPPF | Spatial Channel Attention SPPF |
| SPPF | Spatial Pyramid Fast Pooling |
| SE | Squeeze and Excitation Module |
| CSPDarknet-53 | Cross Stage Partial Network Darknet-53 |
| C2PSA | Cross Stage Partial with Pyramid Squeeze Attention |
| CSP | Cross Stage Partial |
| CIoU | Complete-IoU |
| BCE | Binary Cross-Entropy |
| DFL | Distribution Focal Loss |
| CoT | Contextual Transformer |
| EMA | Efficient Multi-Scale Attention |
| SCAM | Spatial-Channel Attention Mechanism |
| CMTL | Cotton Multitask Learning |
| CLMGE | Cross-Level Multi-Granular Encoder |
| MSDAF | Multitask Self-Distilled Attention Fusion |
References
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate target Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time target Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Sorbelli, F.B.; Palazzetti, L.; Pinotti, C.M. YOLO based detection of halyomorpha halys in orchards using RGB cameras and drones. Comput. Electron. Agric. 2023, 213, 108228. [Google Scholar] [CrossRef]
- Hoshino, W.; Seo, J.; Yamazaki, Y. A study for detecting disaster victims using multi-copter drone with a thermo- graphic camera and image target recognition by SSD. In Proceedings of the 2021 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Lyon, France, 12–16 July 2021. [Google Scholar]
- Bisio, I.; Haleem, H.; Garibotto, C.; Lavagetto, F.; Sciarrone, A. Performance evaluation and analysis of drone-based vehicle detection techniques from deep learning perspective. IEEE Internet Things J. 2021, 9, 10920–10935. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, T.; Chen, Y.; Yuan, X. Small-target detection algorithm for unmanned aerial vehicles based on contextual information and feature refinement. Comput. Eng. Appl. 2024, 60, 183–190. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y. Small-target detection in drone images under complex backgrounds. Comput. Eng. Appl. 2023, 59, 107–114. [Google Scholar]
- Wang, Z.; Xu, H.; Zhu, X.; Li, T.; Liu, Z. Improved dense pedestrian detection algorithm based on YOLOv8: MER-YOLO. Comput. Eng. Sci. 2024, 46, 1050–1062. [Google Scholar]
- Feng, Z.; Xie, Z.; Bao, Z.; Chen, K. Real time dense small-target detection algorithm for unmanned aerial vehicles based on improved YOLOv5. Acta Aeronaut. Sin. 2023, 44, 251–265. [Google Scholar]
- Gomaa, A.; Abdelwahab, M.M.; Abo-Zahhad, M. Efficient vehicle detection and tracking strategy in aerial videos by employing morphological operations and feature points motion analysis. Multimed. Tools Appl. 2020, 79, 26023–26043. [Google Scholar] [CrossRef]
- Gomaa, A. Advanced Domain Adaptation Technique for target Detection Leveraging Semi-Automated Dataset Construction and Enhanced YOLOv8. In Proceedings of the 2024 6th Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza, Egypt, 20–22 February 2024; pp. 211–214. [Google Scholar]
- Salem, M.; Gomaa, A.; Tsurusaki, N. Detection of Earthquake-Induced Building Damages Using Remote Sensing Data and Deep Learning: A Case Study of Mashiki Town, Japan. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; pp. 2350–2353. [Google Scholar]
- Gomaa, A.; Abdalrazik, A. Novel Deep Learning Domain Adaptation Approach for target Detection Using Semi-Self Building Dataset and Modified YOLOv4. World Electr. Veh. J. 2024, 15, 255. [Google Scholar] [CrossRef]
- Abdalrazik, A.; Gomaa, A.; Afifi, A. Multiband circularly-polarized stacked elliptical patch antenna with eye-shaped slot for GNSS applications. Int. J. Microw. Wirel. Technol. 2024, 16, 1229–1235. [Google Scholar] [CrossRef]
- Abdalrazik, A.; Gomaa, A.; Kishk, A.A. A wide axial-ratio beamwidth circularly-polarized oval patch antenna with sunlight-shaped slots for gnss and wimax applications. Wirel. Netw. 2022, 28, 3779–3786. [Google Scholar] [CrossRef]
- Hassan, O.F.; Ibrahim, A.F.; Gomaa, A.; Makhlouf, M.A.; Hafiz, B. Real-time driver drowsiness detection using transformer architectures: A novel deep learning approach. Sci. Rep. 2025, 15, 17493. [Google Scholar] [CrossRef]
- Gomaa, A.; Abdelwahab, M.M.; Abo-Zahhad, M. Real-Time Algorithm for Simultaneous Vehicle Detection and Tracking in Aerial View Videos. In Proceedings of the 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), Windsor, ON, Canada, 5–8 August 2018; pp. 222–225. [Google Scholar]
- Rahima, K.; Muhammad, H. YOLOv11: An Overview of the Key Architectural Enhancements. arXiv 2024, arXiv:2410.17725. [Google Scholar] [CrossRef]
- Umirzakova, S.; Muksimova, S.; Shavkatovich Buriboev, A.; Primova, H.; Choi, A.J. A Unified Transformer Model for Simultaneous Cotton Boll Detection, Pest Damage Segmentation, and Phenological Stage Classification from UAV Imagery. Drones 2025, 9, 555. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of target Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Tan, M.; Pang, R. EfficientDet: Scalable and Efficient target Detection. arXiv 2020, arXiv:1911.09070. [Google Scholar]
- Gomaa, A.; Saad, O.M. Residual Channel-attention (RCA) network for remote sensing image scene classification. Multimed. Tools Appl. 2025, 84, 33837–33861. [Google Scholar] [CrossRef]
- Ouyang, D.; He, S.; Zhang, G.; Luo, M.; Guo, H.; Zhan, J.; Huang, Z. Efficient Multi-Scale Attention Module with Cross-Spatial Learning. arXiv 2023, arXiv:2305.13563. [Google Scholar]
- Zhang, Y.; Ye, M.; Zhu, G.; Liu, Y.; Guo, P.; Yan, J. FFCA-YOLO for small-target detection in Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–15. [Google Scholar]
- Yang, G.; Lei, J.; Zhu, Z.; Cheng, S.; Feng, Z.; Liang, R. AFPN: Asymptotic Feature Pyramid Network for target Detection. arXiv 2023, arXiv:2306.15988. [Google Scholar]
- Gao, D.; Chen, T.; Miao, L. Road target Detection Algorithm Based on Improved YOLOv8n. Comput. Eng. Appl. 2024, 60, 186–197. [Google Scholar]
- Xu, X. Research and Implementation of Parasite Egg Detection and Recognition Based on Improved YOLOv5 Algorithm. Master’s Thesis, Nanchang University, Nanchang, China, 2024. [Google Scholar]
- Liu, S.; Huang, D.; Wang, Y. Learning Spatial Fusion for Single-Shot target Detection. arXiv 2023, arXiv:1911.09516. [Google Scholar]
- Ma, S.; Xu, Y. MPDIoU: A Loss for Efficient and Accurate Bounding Box Regression. arXiv 2023, arXiv:2307.07662. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, C.; Zhang, S. Inner-IoU: More Effective Intersection over Union Loss with Auxiliary Bounding Box. arXiv 2023, arXiv:2311.02877. [Google Scholar]
- Yu, W.; Zhou, P.; Yan, S.; Wang, X. InceptionNeXt:When Inception Meets ConvNeXt. arXiv 2023, arXiv:2303.16900. [Google Scholar]
- Wang, X.; Hang, J.; Tan, W.; Shen, Z. Target detection based on deep feature enhancement and path aggregation optimization. Comput. Sci. 2025, 52, 184–195. [Google Scholar]
- Wang, Z.; Su, Y.; Kang, F.; Wang, L.; Lin, Y.; Wu, Q.; Li, H.; Cai, Z. Pc-yolo11s: A lightweight and effective feature extraction method for small target image detection. Sensors 2025, 25, 348. [Google Scholar] [CrossRef]
- Zeng, K.; Yu, W.; Qin, X.; Han, J.; Hou, Z.; Ma, S. Improved UAV Aerial Vehicle Detection Algorithm Based on YOLOv11n. In Proceedings of the Image and Graphics, Xi’an, China, 18–20 June 2025. Volume 16162. [Google Scholar]

















| Parameter | Parameter Settings |
|---|---|
| Training Batch (epoch) | 200 |
| Batch size | 16 |
| Workers | 4 |
| Optimizer | SGD |
| Patience | 50 |
| lr0 | 0.01 |
| lrf | 0.01 |
| Model | mAP@0.5 | Params/M | GFLOPs | Average Inference Time per Image |
|---|---|---|---|---|
| ①: YOLOv11n | 32.567% | 2.59 | 6.4 | 24.4 ms |
| ②: ① + P2 | 36.916% | 2.70 | 12.3 | 27.9 ms |
| ③: ② + AFPN | 38.033% | 3.24 | 15.1 | 36.2 ms |
| ④: ③ + SCASPPF | 38.157% | 3.28 | 15.2 | 37.7 ms |
| ⑤: ④ + C3k2_IDC | 38.730% | 3.30 | 16.3 | 43.1 ms |
| ⑥: ⑤ + MPDInnerIoU | 39.256% | 3.30 | 16.3 | 44.5 ms |
| ⑦: ④ + InnerIoU | 38.393% | 3.28 | 15.2 | 37.9 ms |
| ⑧: ④ + MPDInnerIoU | 38.537% | 3.28 | 15.2 | 38.1 ms |
| Category | AP@0.5(YOLOv11n) | AP@0.5 (Improved YOLOv11n) |
|---|---|---|
| Articulated-bus | 99.2% | 98.9% |
| Bus | 97.0% | 97.6% |
| Car | 73.6% | 78.2% |
| Freight | 98.3% | 96.8% |
| Motorbike | 20.6% | 49.3% |
| Small bus | 96.5% | 97.7% |
| Truck | 75.6% | 84.6% |
| Model | Params/M | mAP@0.5 | GFLOPs |
|---|---|---|---|
| Faster-R-CNN | 63.20 | 30.9% | 207.0 |
| SSD | 12.30 | 24.0% | 63.2 |
| YOLOv5s | 9.10 | 38.8% | 23.8 |
| YOLOv8s | 11.20 | 39.0% | 28.5 |
| YOLOv11s | 9.40 | 39.0% | 21.3 |
| YOLOv10n | 2.26 | 34.2% | 6.5 |
| YOLOv10s | 7.22 | 39.0% | 21.4 |
| YOLO-FEPA [33] | 2.8 | 36.7% | 7.5 |
| Drone-YOLO | 3.91 | 37.0% | - |
| PC-YOLOn [34] | 2.00 | 36.1% | - |
| [35] | 3.29 | 38.3% | 21.9 |
| Ours | 3.30 | 39.3% | 16.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zeng, K.; Yu, W.; Qin, X.; Long, S. Small-Target Detection Algorithm Based on Improved YOLOv11n. Sensors 2026, 26, 71. https://doi.org/10.3390/s26010071
Zeng K, Yu W, Qin X, Long S. Small-Target Detection Algorithm Based on Improved YOLOv11n. Sensors. 2026; 26(1):71. https://doi.org/10.3390/s26010071
Chicago/Turabian StyleZeng, Ke, Wangsheng Yu, Xianxiang Qin, and Siyu Long. 2026. "Small-Target Detection Algorithm Based on Improved YOLOv11n" Sensors 26, no. 1: 71. https://doi.org/10.3390/s26010071
APA StyleZeng, K., Yu, W., Qin, X., & Long, S. (2026). Small-Target Detection Algorithm Based on Improved YOLOv11n. Sensors, 26(1), 71. https://doi.org/10.3390/s26010071

