An Open and Novel Low-Cost Terrestrial Laser Scanner Prototype for Forest Monitoring
Highlights
- The low-cost TLS prototype was constructed for less than EUR 2050.
- All hardware components are publicly available, enabling easy construction.
- Full build documentation will be shared on Zenodo.
- The LCA-TLS prototype, based on the Livox Avia sensor, accurately estimates key dendrometric parameters such as DBH and tree height
Abstract
1. Introduction
2. The Development of a Prototype of a Low-Cost Terrestrial Laser Scanner (LCA-TLS)
2.1. Hardware
- LiDAR sensor Livox Avia.
- M12 cable.
- Power connector.
- Power button.
- Raspberry Pi CM4.
- Mandeye Pro motherboard.
- Mandeye buttons and LED panel.
- Aluminum cooler.
- Cables.
- Battery.
- Step-down DC-DC converter.

2.2. Software
- SDK from Lidar’s manufacturer (Livox Technology Company Limited Co., Ltd., Shenzhen, China) is used to configure and obtain data from Lidar range measurements and IMU.
- GPIOd library from Linux kernel is used to read and write GPIO (General purpose input-outputs) of the SBC.
- Pistache for web interface and debugging.
- LASzip—a library for compressing and saving point cloud in LAZ format.
3. Materials and Methods
3.1. Laser Scanners Used
3.2. Lab Condition Experiment
3.3. Experiment on Plantation of Fast-Growing Trees
3.3.1. Ground Truth Data Collection
3.3.2. Laser Scanning
3.4. Data Processing
3.4.1. Post-Processing of Point Clouds

3.4.2. DBH Extraction
3.4.3. TH Extraction
3.5. Point Cloud Quality Evaluation
3.6. Statistical Evaluation
4. Results
4.1. Point Cloud Quality Evaluation: Distribution and Density
4.2. Lab Condition Experiment
4.3. Forest Condition Experiment
4.3.1. TDR
4.3.2. DBH
4.3.3. Tree Height
4.4. Time Requirements, Cost and Ease of Use/Overall Evaluation
5. Discussion
5.1. From Metrics to Insights: Comparing a Low-Cost TLS with the State- of the Art in Terrestrial Point Cloud Sources
5.2. From Accuracy to Application: Evaluating Efficiency, Cost, and User-Friendliness
5.3. From Challenges to Opportunities: Technical Limits, Future Research, and Real-World Potential
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1
| Term | Df | Sum of Squares | Mean Square | F-Value | p-Value | Significance |
|---|---|---|---|---|---|---|
| Device | 3 | 125.6 | 41.86 | 59.74 | <2 × 10−16 | *** |
| Residuals | 600 | 232.4 | 0.38 |
Appendix A.2
| Comparison * | Mean Diff. (cm) | Lower CI (cm) | Upper CI (cm) | Adjusted p-Value | Significance |
|---|---|---|---|---|---|
| HMLS–TLS | 0.54201 | 0.29382 | 0.79019 | 1.7 × 10−7 | *** |
| LCA-TLS–TLS | 0.77126 | 0.52307 | 1.01944 | 4.48 × 10−10 | *** |
| SLD–TLS | 1.26879 | 1.02061 | 1.51697 | 4.48 × 10−10 | *** |
| LCA-TLS–HMLS | 0.22925 | −0.01893 | 0.47743 | 8.21 × 10−2 | |
| SLD–HMLS | 0.72678 | 0.4786 | 0.97497 | 4.49 × 10−10 | *** |
| SLD–LCA-TLS | 0.49753 | 0.24935 | 0.74572 | 1.96 × 10−6 | *** |
Appendix A.3

Appendix A.4
| Device | Mean Difference (cm) |
Lower Bound
(95% CI) |
Upper Bound
(95% CI) | p-Value | Significance |
|---|---|---|---|---|---|
| Riegl | 0.46988 | 0.37484 | 0.56493 | 9.49 × 10−18 | *** |
| LCA-TLS | 1.24114 | 1.10426 | 1.37801 | 4.21 × 10−39 | *** |
| Stonex | 1.01189 | 0.87586 | 1.14792 | 7.37 × 10−31 | *** |
| iPhone | 1.73867 | 1.57683 | 1.90052 | 4.88 × 10−47 | *** |
Appendix A.5
| Term | Df | Sum of Squares | Mean Square | F-Value | p-Value | Significance |
|---|---|---|---|---|---|---|
| Device | 2 | 133.42 | 66.71 | 591.9 | 2 × 10−16 | *** |
| Residuals | 453 | 51.05 | 0.11 |
Appendix A.6
| Comparison * | Mean Diff. (cm) | Lower CI (cm) | Upper CI (cm) | Adjusted p-Value | Significance |
|---|---|---|---|---|---|
| HMLS–TLS | 0.20142 | 0.11087 | 0.29197 | 8 × 10−7 | *** |
| LCA-TLS–TLS | –1.03340 | –1.12395 | –0.94285 | <0.001 | *** |
| LCA-TLS–HMLS | –1.23482 | –1.32537 | –1.14427 | <0.001 | *** |
Appendix A.7

Appendix A.8
| Device | Mean Difference (m) |
Lower Bound
(95% CI) |
Upper Bound
(95% CI) | p-Value | Significance |
|---|---|---|---|---|---|
| Riegl | 0.12179 | 0.07947 | 0.1641 | 6.50 × 10−8 | *** |
| Stonex | 0.32321 | 0.2689 | 0.37752 | 4.53 × 10−23 | *** |
| LCA-TLS | –0.91161 | –0.97440 | –0.84882 | 5.41 × 10−63 | *** |
Appendix A.9

References
- Liu, Y.; Lei, P.; You, Q.; Tang, X.; Lai, X.; Chen, J.; You, H. Individual Tree Aboveground Biomass Estimation Based on UAV Stereo Images in a Eucalyptus Plantation. Forests 2023, 14, 1748. [Google Scholar] [CrossRef]
- Mitchard, E.T.A. The tropical forest carbon cycle and climate change. Nature 2018, 559, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Chevallier, F.; Gomez, C.; Guanter, L.; Hicke, J.A.; Huete, A.R.; Ichii, K.; Ni, W.; Pang, Y.; Rahman, A.F.; et al. Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 2019, 233, 111383. [Google Scholar] [CrossRef]
- Balenović, I.; Liang, X.; Jurjević, L.; Hyyppä, J.; Seletković, A.; Kukko, A. Hand-held personal laser scanning–current status and perspectives for forest inventory application. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2021, 42, 165–183. [Google Scholar]
- Chen, S.; Liu, H.; Feng, Z.; Shen, C.; Chen, P. Applicability of personal laser scanning in forestry inventory. PLoS ONE 2019, 14, e0211392. [Google Scholar] [CrossRef]
- Burkhart, H.E.; Tomé, M. Modeling Forest Trees and Stands, 1st ed.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar] [CrossRef]
- West, T.; Strimbu, B. Diameter and height modeling for accurate prediction of tree size in a Douglas-fir rainforest. For. Int. J. For. Res. 2025, cpaf010. [Google Scholar] [CrossRef]
- Gao, Q.; Kan, J. Automatic Forest DBH Measurement Based on Structure from Motion Photogrammetry. Remote Sens. 2022, 14, 2064. [Google Scholar] [CrossRef]
- Guenther, M.; Heenkenda, M.K.; Morris, D.; Leblon, B. Tree Diameter at Breast Height (DBH) Estimation Using an iPad Pro LiDAR Scanner: A Case Study in Boreal Forests, Ontario, Canada. Forests 2024, 15, 214. [Google Scholar] [CrossRef]
- Skladan, M.; Chudá, J.; Singh, A.; Masný, M.; Lieskovský, M.; Pástor, M.; Mokroš, M.; Vyboštok, J. Choosing the right close-range technology for measuring DBH in fast-growing trees plantations. Trees For. People 2025, 19, 100747. [Google Scholar] [CrossRef]
- Hyyppä, E.; Hyyppä, J.; Hakala, T.; Kukko, A.; Wulder, M.A.; White, J.C.; Pyörälä, J.; Yu, X.; Wang, Y.; Virtanen, J.-P.; et al. Under-canopy UAV laser scanning for accurate forest field measurements. ISPRS J. Photogramm. Remote Sens. 2020, 164, 41–60. [Google Scholar] [CrossRef]
- Li, J.; Yang, B.; Yang, Y.; Zhao, X.; Liao, Y.; Zhu, N.; Dai, W.; Liu, R.; Chen, R.; Dong, Z. Real-time automated forest field inventory using a compact low-cost helmet-based laser scanning system. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103299. [Google Scholar] [CrossRef]
- Calders, K.; Adams, J.; Armston, J.; Bartholomeus, H.; Bauwens, S.; Bentley, L.P.; Chave, J.; Danson, F.M.; Demol, M.; Disney, M.; et al. Terrestrial laser scanning in forest ecology: Expanding the horizon. Remote Sens. Environ. 2020, 251, 112102. [Google Scholar] [CrossRef]
- Čerňava, J.; Mokroš, M.; Tuček, J.; Antal, M.; Slatkovská, Z. Processing Chain for Estimation of Tree Diameter from GNSS-IMU-Based Mobile Laser Scanning Data. Remote Sens. 2019, 11, 615. [Google Scholar] [CrossRef]
- Tang, J.; Chen, Y.; Kukko, A.; Kaartinen, H.; Jaakkola, A.; Khoramshahi, E.; Hakala, T.; Hyyppä, J.; Holopainen, M.; Hyyppä, H. SLAM-Aided Stem Mapping for Forest Inventory with Small-Footprint Mobile LiDAR. Forests 2015, 6, 4588–4606. [Google Scholar] [CrossRef]
- Qian, C.; Liu, H.; Tang, J.; Chen, Y.; Kaartinen, H.; Kukko, A.; Zhu, L.; Liang, X.; Chen, L.; Hyyppä, J. An Integrated GNSS/INS/LiDAR-SLAM Positioning Method for Highly Accurate Forest Stem Mapping. Remote Sens. 2017, 9, 3. [Google Scholar] [CrossRef]
- Čerňava, J.; Tuček, J.; Koreň, M.; Mokroš, M. Estimation of diameter at breast height from mobile laser scanning data collected under a heavy forest canopy. J. For. Sci. 2017, 63, 433–441. [Google Scholar] [CrossRef]
- Chiappini, S.; Pierdicca, R.; Malandra, F.; Tonelli, E.; Malinverni, E.S.; Urbinati, C.; Vitali, A. Comparing Mobile Laser Scanner and manual measurements for dendrometric variables estimation in a black pine (Pinus nigra Arn.) plantation. Comput. Electron. Agric. 2022, 198, 107069. [Google Scholar] [CrossRef]
- Vandendaele, B.; Martin-Ducup, O.; Fournier, R.A.; Pelletier, G.; Lejeune, P. Mobile Laser Scanning for Estimating Tree Structural Attributes in a Temperate Hardwood Forest. Remote Sens. 2022, 14, 4522. [Google Scholar] [CrossRef]
- Tomaštík, J.; Saloň, Š.; Tunák, D.; Chudý, F.; Kardoš, M. Tango in forests—An initial experience of the use of the new Google technology in connection with forest inventory tasks. Comput. Electron. Agric. 2017, 141, 109–117. [Google Scholar] [CrossRef]
- Mokroš, M.; Mikita, T.; Singh, A.; Tomaštík, J.; Chudá, J.; Wężyk, P.; Kuželka, K.; Surový, P.; Klimánek, M.; Zięba-Kulawik, K.; et al. Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102512. [Google Scholar] [CrossRef]
- Liang, X.; Hyyppä, J.; Kaartinen, H.; Lehtomäki, M.; Pyörälä, J.; Pfeifer, N.; Holopainen, M.; Brolly, G.; Francesco, P.; Hackenberg, J.; et al. International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS J. Photogramm. Remote Sens. 2018, 144, 137–179. [Google Scholar] [CrossRef]
- Kükenbrink, D.; Marty, M.; Bösch, R.; Ginzler, C. Benchmarking laser scanning and terrestrial photogrammetry to extract forest inventory parameters in a complex temperate forest. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 102999. [Google Scholar] [CrossRef]
- Chase, P.P.C.; Clarke, K.H.; Hawkes, A.J.; Jabari, S.; Jakus, J.S. Apple Iphone 13 Pro Lidar Accuracy Assessment for Engineering Applications; University of New Brunswick: Fredericton, NB, Canada, 2022. [Google Scholar]
- Åkerblom, M.; Kaitaniemi, P. Terrestrial laser scanning: A new standard of forest measuring and modelling? Ann. Bot. 2021, 128, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Danson, F.M.; Disney, M.I.; Gaulton, R.; Schaaf, C.; Strahler, A. The terrestrial laser scanning revolution in forest ecology. Interface Focus 2018, 8, 20180001. [Google Scholar] [CrossRef]
- Ko, C.; Lee, J.; Kim, D.; Kang, J. The Application of Terrestrial Light Detection and Ranging to Forest Resource Inventories for Timber Yield and Carbon Sink Estimation. Forests 2022, 13, 2087. [Google Scholar] [CrossRef]
- Pokswinski, S.; Gallagher, M.R.; Skowronski, N.S.; Loudermilk, E.L.; Hawley, C.; Wallace, D.; Everland, A.; Wallace, J.; Hiers, J.K. A simplified and affordable approach to forest monitoring using single terrestrial laser scans and transect sampling. MethodsX 2021, 8, 101484. [Google Scholar] [CrossRef]
- Brach, M.; Tracz, W.; Krok, G.; Gąsior, J. Feasibility of Low-Cost LiDAR Scanner Implementation in Forest Sampling Techniques. Forests 2023, 14, 706. [Google Scholar] [CrossRef]
- Ali, M.; Lohani, B.; Hollaus, M.; Pfeifer, N. A hybrid approach for enhanced tree volume estimation of complex trees using terrestrial LiDAR. GIScience Remote Sens. 2025, 62, 2474836. [Google Scholar] [CrossRef]
- Arkin, A.; Yusup, A.; Halik, Ü.; Abliz, A.; Ainiwaer, A.; Tian, A.; Mijiti, M. Unveiling Population Structure Dynamics of Populus euphratica Riparian Forests Along the Tarim River Using Terrestrial LiDAR. Forests 2025, 16, 368. [Google Scholar] [CrossRef]
- Seibert, A.; Enterkine, J.; Glenn, N.F.; Warren, J.; Hanson, P.J. Estimating Leaf Area Index of Peatland Conifers Using Ter-restrial Lidar and a Voxel-Based Method. In AGU Fall Meeting Abstracts; American Geophysical Union (AGU): Washington, DC, USA, 2022; p. B45C-08. [Google Scholar]
- Gejdoš, M.; Výbošťok, J.; Chudá, J.; Tomčík, D.; Lieskovský, M.; Skladan, M.; Masný, M.; Gergeľ, T. Assessment of New Techniques for Measuring Volume in Large Wood Chip Piles. Forests 2024, 15, 1747. [Google Scholar] [CrossRef]
- Chudá, J.; Výbošťok, J.; Tomaštík, J.; Chudý, F.; Tunák, D.; Skladan, M.; Tuček, J.; Mokroš, M. Prompt Mapping Tree Positions with Handheld Mobile Scanners Based on SLAM Technology. Land 2024, 13, 93. [Google Scholar] [CrossRef]
- Gollob, C.; Ritter, T.; Kraßnitzer, R.; Tockner, A.; Nothdurft, A. Measurement of Forest Inventory Parameters with Apple iPad Pro and Integrated LiDAR Technology. Remote Sens. 2021, 13, 3129. [Google Scholar] [CrossRef]
- Espósito, F. iPhone 15 Pro Rumored to Feature Improved LiDAR Scanner. 9to5Mac. Available online: https://9to5mac.com/2023/02/24/iphone-15-pro-improved-lidar-scanner/ (accessed on 10 February 2025).
- Gollob, C.; Ritter, T.; Nothdurft, A. Forest Inventory with Long Range and High-Speed Personal Laser Scanning (PLS) and Simultaneous Localization and Mapping (SLAM) Technology. Remote Sens. 2020, 12, 1509. [Google Scholar] [CrossRef]
- Mikita, T.; Krausková, D.; Hrůza, P.; Cibulka, M.; Patočka, Z. Forest Road Wearing Course Damage Assessment Possibilities with Different Types of Laser Scanning Methods including New iPhone LiDAR Scanning Apps. Forests 2022, 13, 1763. [Google Scholar] [CrossRef]
- Tatsumi, S.; Yamaguchi, K.; Furuya, N. ForestScanner: A mobile application for measuring and mapping trees with LiDAR-equipped iPhone and iPad. Methods Ecol. Evol. 2023, 14, 1603–1609. [Google Scholar] [CrossRef]
- Będkowski, J. Open source, open hardware hand-held mobile mapping system for large scale surveys. SoftwareX 2024, 25, 101618. [Google Scholar] [CrossRef]
- Będkowski, J. Large-Scale Simultaneous Localization and Mapping; Springer Nature: Dordrecht, The Netherlands, 2022. [Google Scholar]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Guth, P.L.; Van Niekerk, A.; Grohmann, C.H.; Muller, J.-P.; Hawker, L.; Florinsky, I.V.; Gesch, D.; Reuter, H.I.; Herrera-Cruz, V.; Riazanoff, S.; et al. Digital Elevation Models: Terminology and Definitions. Remote Sens. 2021, 13, 3581. [Google Scholar] [CrossRef]
- Kuželka, K.; Surový, P. Noise Analysis for Unbiased Tree Diameter Estimation from Personal Laser Scanning Data. Remote Sens. 2024, 16, 1261. [Google Scholar] [CrossRef]
- Borz, S.A.; Toaza, J.M.M.; Proto, A.R. Accuracy of two LiDAR-based augmented reality apps in breast height diameter measurement. Ecol. Inform. 2024, 81, 102550. [Google Scholar] [CrossRef]
- Zhou, M.; Li, C.; Li, Z. Extraction of individual tree attributes using ultra-high-density point clouds acquired by low-cost UAV-LiDAR in Eucalyptus plantations. Ann. For. Sci. 2025, 82, 1–22. [Google Scholar] [CrossRef]
- Torkan, M.; Janiszewski, M.; Uotinen, L.; Rinne, M. Method to obtain 3D point clouds of tunnels using smartphone LiDAR and comparison to photogrammetry. IOP Conf. Ser. Earth Environ. Sci. 2023, 1124, 012016. [Google Scholar] [CrossRef]
- Wang, P.; Li, R.; Bu, G.; Zhao, R. Automated low-cost terrestrial laser scanner for measuring diameters at breast height and heights of plantation trees. PLoS ONE 2019, 14, e0209888. [Google Scholar] [CrossRef]
- Balestra, M.; Cabo, C.; Murtiyoso, A.; Vitali, A.; Alvarez-Taboada, F.; Cantero-Amiano, A.; Bolaños, R.; Laino, D.; Pierdicca, R. Advancing forest inventory: A comparative study of low-cost MLS lidar device with professional laser scanners. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, XLVIII-2/W, 9–15. [Google Scholar] [CrossRef]
- Gollob, C.; Ritter, T.; Wassermann, C.; Nothdurft, A. Influence of Scanner Position and Plot Size on the Accuracy of Tree Detection and Diameter Estimation Using Terrestrial Laser Scanning on Forest Inventory Plots. Remote Sens. 2019, 11, 1602. [Google Scholar] [CrossRef]
- Gyawali, A.; Aalto, M.; Peuhkurinen, J.; Villikka, M.; Ranta, T. Comparison of Individual Tree Height Estimated from LiDAR and Digital Aerial Photogrammetry in Young Forests. Sustainability 2022, 14, 3720. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J.; Dong, P.; Chen, Y.; Liu, Z. Estimating Individual Tree Height and Diameter at Breast Height (DBH) from Terrestrial Laser Scanning (TLS) Data at Plot Level. Forests 2018, 9, 398. [Google Scholar] [CrossRef]
- Srinivasan, S.; Popescu, S.C.; Eriksson, M.; Sheridan, R.D.; Ku, N.-W. Terrestrial Laser Scanning as an Effective Tool to Retrieve Tree Level Height, Crown Width, and Stem Diameter. Remote Sens. 2015, 7, 1877–1896. [Google Scholar] [CrossRef]
- Tao, S.; Labrière, N.; Calders, K.; Fischer, F.J.; Rau, E.-P.; Plaisance, L.; Chave, J. Mapping tropical forest trees across large areas with lightweight cost-effective terrestrial laser scanning. Ann. For. Sci. 2021, 78, 1–13. [Google Scholar] [CrossRef]
- Tsuchiya, B.; Mochizuki, H.; Hoshikawa, T.; Suzuki, S. Error estimation of trunk diameter and tree height measured with a backpack LiDAR system in Japanese plantation forests. Landsc. Ecol. Eng. 2023, 19, 169–177. [Google Scholar] [CrossRef]
- Yan, X.; Chai, G.; Han, X.; Lei, L.; Wang, G.; Jia, X.; Zhang, X. SA-Pmnet: Utilizing Close-Range Photogrammetry Combined with Image Enhancement and Self-Attention Mechanisms for 3D Reconstruction of Forests. Remote Sens. 2024, 16, 416. [Google Scholar] [CrossRef]
- Apostol, B.; Chivulescu, S.; Ciceu, A.; Petrila, M.; Pascu, I.-S.; Apostol, E.N.; Leca, S.; Lorent, A.; Tanase, M.; Badea, O. Data collection methods for forest inventory: A comparison between an integrated conventional equipment and terrestrial laser scanning. Ann. For. Res. 2018, 61, 189–202. [Google Scholar] [CrossRef]
- Ko, C.; Lee, S.; Yim, J.; Kim, D.; Kang, J. Comparison of Forest Inventory Methods at Plot-Level between a Backpack Personal Laser Scanning (BPLS) and Conventional Equipment in Jeju Island, South Korea. Forests 2021, 12, 308. [Google Scholar] [CrossRef]




















| Laser Wavelength | 905 nm |
| Number of returns | 3 |
| Detection Range | 190 m @ 10% reflectivity |
| (@ 100 klx) | 230 m @ 20% reflectivity |
| 320 m @ 80% reflectivity | |
| Detection Range | 190 m @ 10% reflectivity |
| (@ 0 klx) | 260 m @ 20% reflectivity |
| 450 m @ 80% reflectivity | |
| FOV | Non-repetitve scanning pattern |
| 70.4° (Horizontal) × 77.2° (Vertical) | |
| Repetitve line scanning | |
| 70.4° (Horizontal) × 4.5° (Vertical) | |
| Range Precision | 2 cm |
| (1σ @ 20 m) | |
| Angular Precision | <0.05º |
| (1σ) |
| ID |
Reference
Diameter | iPhone | LCA-TLS | Riegl | Stonex | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Detec. | Est. | Diff. | Detec | Est. | Diff. | Detec | Est. | Diff. | Detec | Est. | Diff. | ||
| ID01 | 11.10 | yes | 10.30 | −0.80 | yes | 11.40 | 0.30 | yes | 11.50 | 0.40 | yes | 11.90 | 0.80 |
| ID02 | 16.00 | yes | 16.70 | 0.70 | yes | 16.80 | 0.80 | yes | 16.50 | 0.50 | yes | 16.80 | 0.80 |
| ID03 | 16.00 | yes | 16.90 | 0.90 | yes | 16.40 | 0.40 | yes | 16.80 | 0.80 | yes | 16.70 | 0.70 |
| ID04 | 16.00 | yes | 16.30 | 0.30 | yes | 16.80 | 0.80 | yes | 16.40 | 0.40 | yes | 16.90 | 0.90 |
| ID05 | 16.00 | yes | 16.20 | 0.20 | yes | 16.30 | 0.30 | yes | 16.70 | 0.70 | yes | 17.00 | 1.00 |
| ID06 | 16.00 | yes | 16.70 | 0.70 | yes | 16.50 | 0.50 | yes | 16.80 | 0.80 | yes | 16.90 | 0.90 |
| ID07 | 16.00 | yes | 16.80 | 0.80 | yes | 16.60 | 0.60 | yes | 16.75 | 0.75 | yes | 16.80 | 0.80 |
| ID08 | 25.30 | yes | 27.40 | 2.10 | yes | 26.40 | 1.10 | yes | 25.80 | 0.50 | yes | 26.20 | 0.90 |
| ID09 | 25.30 | yes | 28.30 | 3.00 | yes | 26.60 | 1.30 | yes | 26.00 | 0.70 | yes | 26.40 | 1.10 |
| ID10 | 50.50 | yes | 54.31 | 3.81 | yes | 52.70 | 2.20 | yes | 51.10 | 0.60 | yes | 53.10 | 2.60 |
| ID11 | 2.60 | no | 0 | −2.60 * | yes | 4.80 | 2.20 | yes | 3.15 | 0.55 | yes | 5.20 | 2.60 |
| ID12 | 2.60 | no | 0 | −2.60 * | yes | 4.40 | 1.80 | yes | 3.08 | 0.48 | yes | 4.90 | 2.30 |
| RMSE (cm) | 1.76 | 1.23 | 0.62 | 1.47 | |||||||||
| Bias (cm) | 1.17 | 1.03 | 0.60 | 1.28 | |||||||||
| ID |
Ref.
Height | iPhone | LCA-TLS | Riegl | Stonex | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Detec. | Est. | Diff. | Detec. | Est. | Diff. | Detec | Est. | Diff. | Detec. | Est. | Diff. | ||
| ID01 | 145.00 | yes | 152.00 | 7.00 | yes | 149.00 | 4.00 | yes | 148.00 | 3.00 | yes | 151.00 | 6.00 |
| ID02 | 100.00 | yes | 102.00 | 2.00 | yes | 105.00 | 5.00 | yes | 101.00 | 1.00 | yes | 108.00 | 8.00 |
| ID03 | 100.00 | yes | 108.00 | 8.00 | yes | 104.00 | 4.00 | yes | 100.80 | 0.80 | yes | 102.00 | 2.00 |
| ID04 | 100.00 | yes | 105.00 | 5.00 | yes | 100.80 | 0.80 | yes | 102.00 | 2.00 | yes | 102.00 | 2.00 |
| ID05 | 100.00 | yes | 101.00 | 1.00 | yes | 102.00 | 2.00 | yes | 104.00 | 4.00 | yes | 104.00 | 4.00 |
| ID06 | 100.00 | yes | 102.40 | 2.40 | yes | 103.00 | 3.00 | yes | 102.00 | 2.00 | yes | 105.40 | 5.40 |
| ID07 | 100.00 | yes | 105.00 | 5.00 | yes | 104.00 | 4.00 | yes | 102.50 | 2.50 | yes | 103.00 | 3.00 |
| ID08 | 180.00 | no | 0 | −180 * | yes | 183.00 | 3.00 | yes | 182.00 | 2.00 | yes | 185.00 | 5.00 |
| ID09 | 158.00 | no | 0 | −158 * | yes | 161.00 | 3.00 | yes | 159.00 | 1.00 | yes | 164.00 | 6.00 |
| ID10 | 216.00 | yes | 186.00 | −30.00 | yes | 224.00 | 8.00 | yes | 218.00 | 2.00 | yes | 227.00 | 11.00 |
| ID11 | 290.00 | yes | 224.00 | −66.00 | yes | 301.00 | 11.00 | yes | 292.00 | 2.00 | yes | 305.00 | 15.00 |
| ID12 | 290.00 | yes | 195.00 | −95.00 | yes | 296.00 | 6.00 | yes | 294.00 | 4.00 | yes | 299.00 | 9.00 |
| RMSE (cm) | 38.02 | 5.21 | 2.41 | 7.36 | |||||||||
| Bias (cm) | −16.06 | 4.48 | 2.19 | 6.37 | |||||||||
| DBH | Device | ||||
|---|---|---|---|---|---|
| TLS Riegl | HMLS Stonex | LCA-TLS | SLD iPhone | ||
| R2 | 0.973 | 0.944 | 0.943 | 0.920 | |
| RMSE | (cm) | 0.754 | 1.317 | 1.503 | 2.007 |
| rRMSE | (%) | 2.943 | 5.144 | 5.872 | 7.840 |
| Bias | (cm) | 0.470 | 1.012 | 1.241 | 1.739 |
| rBias | (%) | 1.835 | 3.952 | 4.847 | 6.790 |
| Referencemax | (cm) | 39.500 | |||
| Referencemin | (cm) | 17.300 | |||
| Estimatedmax | (cm) | 40.201 | 40.790 | 41.700 | 43.157 |
| Estimatedmin | (cm) | 17.988 | 18.860 | 17.950 | 19.553 |
| Errormax | (cm) | 1.662 | 3.146 | 3.442 | 4.110 |
| Errormin | (cm) | −1.353 | −1.366 | −0.985 | −1.008 |
| N | (tree) | 151 | 151 | 151 | 151 |
| TDR | (%) | 100 | 100 | 100 | 100 |
| TH | Device | |||
|---|---|---|---|---|
| Riegl | Stonex | LCA-TLS | ||
| R2 | 0.956 | 0.927 | 0.902 | |
| RMSE | (m) | 0.290 | 0.468 | 0.992 |
| rRMSE | (%) | 1.847 | 2.977 | 6.316 |
| Bias | (m) | 0.122 | 0.323 | −0.912 |
| rBias | (%) | 0.776 | 2.058 | −5.805 |
| Referencemax | (m) | 17.694 | ||
| Referencemin | (m) | 11.425 | ||
| Estimatedmax | (m) | 17.805 | 17.960 | 16.250 |
| Estimatedmin | (m) | 11.860 | 11.570 | 10.750 |
| Errormax | (m) | 0.650 | 1.026 | −0.112 |
| Errormin | (m) | −0.558 | −0.574 | −1.819 |
| N | (tree) | 151 | 151 | 151 |
| Device | Data Collection (Approx.) | Post-Processing (Approx.) | Price (Approx.) |
User
Friendliness (1–5 Points) * | Accuracy (RMSE) | |
|---|---|---|---|---|---|---|
| DBH (cm) | TH (m) | |||||
| TLS Riegl VZ-1000 | 21 min | 26 min | €90,000 to €130,000 | 2.1 | 0.754 | 0.290 |
| HMLS Stonex X120GO | 5 min | 20 min | €30,000 to €35,000 | 2.6 | 1.317 | 0.468 |
| LCA-TLS | 40 min | 49 min | €2050 | 2.4 | 1.503 | 0.992 |
| SLD iPhone 15 Pro Max | 8 min | no | €850 to €1200 | 3.2 | 2.007 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Výbošťok, J.; Chudá, J.; Tomčík, D.; Gretsch, D.; Tomaštík, J.; Pełka, M.; Bedkowski, J.; Skladan, M.; Mokroš, M. An Open and Novel Low-Cost Terrestrial Laser Scanner Prototype for Forest Monitoring. Sensors 2026, 26, 63. https://doi.org/10.3390/s26010063
Výbošťok J, Chudá J, Tomčík D, Gretsch D, Tomaštík J, Pełka M, Bedkowski J, Skladan M, Mokroš M. An Open and Novel Low-Cost Terrestrial Laser Scanner Prototype for Forest Monitoring. Sensors. 2026; 26(1):63. https://doi.org/10.3390/s26010063
Chicago/Turabian StyleVýbošťok, Jozef, Juliána Chudá, Daniel Tomčík, Dominik Gretsch, Julián Tomaštík, Michał Pełka, Janusz Bedkowski, Michal Skladan, and Martin Mokroš. 2026. "An Open and Novel Low-Cost Terrestrial Laser Scanner Prototype for Forest Monitoring" Sensors 26, no. 1: 63. https://doi.org/10.3390/s26010063
APA StyleVýbošťok, J., Chudá, J., Tomčík, D., Gretsch, D., Tomaštík, J., Pełka, M., Bedkowski, J., Skladan, M., & Mokroš, M. (2026). An Open and Novel Low-Cost Terrestrial Laser Scanner Prototype for Forest Monitoring. Sensors, 26(1), 63. https://doi.org/10.3390/s26010063

