A 3D Microfluidic Paper-Based Analytical Device with Smartphone-Based Colorimetric Readout for Phosphate Sensing
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Apparatus and Materials
2.3. Samples and Sample Preparation
2.4. Design and Fabrication of 3D-µPADs for the Determination of Phosphates
2.5. Reaction and Transport Mechanism in the 3D-µPAD
2.6. Experimental Procedure for the Determination of Phosphates and Data Processing
3. Results and Discussion
3.1. Design Optimization and Configuration of the 3D-µPAD for Phosphate Determination
3.2. Digitization and Image Processing Conditions
3.3. Optimization of Experimental Parameters Affecting the Formation of the Colored Product
3.4. Assessnebt of the Stability of the 3D-µPAD
3.5. Evaluation of Potential Interferences
4. Analytical Performance and Assessment of GAC Profile
Analysis of Environmental Samples
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 3D-µPAD | Tridimensional microfluidic paper-based analytical device |
| 12-MPA | Molybdophosphoric acid |
| AGREE | Analytical GREEnness calculator |
| APHA | American Public Health Association |
| CRMs | Certified reference materials |
| EG | Ethylene glycol |
| EV | Exposition value |
| LOD | Limit of detection |
| LOQ | Limit of quantification |
| ICP-OES | Inductively coupled plasma optical emission |
| ICP-MS | Inductively coupled plasma mass spectrometry |
| ISO | International Standardization Organization |
| PADs | Paper-based assays |
| PMB | Phosphomolibdenum blue |
| pTsOH | p-toluene sulfonic acid |
| RGB | Red, green, blue |
| RSD | Relative standard deviation |
| µPADs | Microfluidic paper-based analytical devices |
| UV-vis | Ultraviolet–visible |
| WB | White balance |
References
- Phansi, P.; Janthama, S.; Cerdà, V.; Nacapricha, D. Determination of Phosphorus in Water and Chemical Fertilizer Samples Using a Simple Drawing Microfluidic Paper-Based Analytical Device. Anal. Sci. 2022, 38, 1323–1332. [Google Scholar] [CrossRef]
- Yuan, Z.; Jjiang, S.; Sheng, H.; Liu, X.; Liu, X.; Zhang, Y. Human Perturbation of the Global Phosphorus Cycle: Changes and Consequences. Environ. Sci. Technol. 2018, 52, 2438–2450. [Google Scholar] [CrossRef]
- Smil, V. Phosphorus in the Environment: Natural Flows and Human Interferences. Annu. Rev. Environ. Resour. 2000, 25, 53–88. [Google Scholar] [CrossRef]
- Jayawardane, B.M.; McKelvie, I.D.; Kolev, S.D. A Paper-Based Device for Measurement of Reactive Phosphate in Water. Talanta 2012, 100, 454–460. [Google Scholar] [CrossRef] [PubMed]
- European Union. Commission Staff Working Docuemtn Evaluation of the Council Directive 91/271/EEC of 21 May 1991, Concerning Urban Waste-Water Treatment; European Union: Brussels, Belgium, 2019. [Google Scholar]
- European Union. Directive (EU) 2024/3019 of the European Parliament and of the Council of 27 November 2024 Concerning Urban Wastewater Treatment (Recast) (Text with EEA Relevance); European Union: Brussels, Belgium, 2024. [Google Scholar]
- American Public Health Association. APHA Method 4500: Standard Methods for the Examination of Water and Wastewater. In Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1992; p. 14. [Google Scholar]
- BOE-A-1976-6778 Orden de 5 de Diciembre de 1975 Por La Que Se Aprueban Como Oficiales Los Métodos de Análisis de Suelos y Aguas. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-A-1976-6778 (accessed on 23 September 2024).
- Jackson, P.E. Determination of Inorganic Ions in Drinking Water by Ion Chromatography. TrAC—Trends Anal. Chem. 2001, 20, 320–329. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, B.; Chen, Z.-Y.; Xu, L. Smartphone-Assisted Fluorescence Determination of Inorganic Phosphorus Using a Samarium Metal–Organic Framework. Inorg. Chem. 2025, 64, 953–966. [Google Scholar] [CrossRef] [PubMed]
- Berchmans, S.; Issa, T.B.; Singh, P. Determination of Inorganic Phosphate by Electroanalytical Methods: A Review. Anal. Chim. Acta 2012, 729, 7–20. [Google Scholar] [CrossRef]
- Sichler, T.C.; Becker, R.; Sauer, A.; Barjenbruch, M.; Ostermann, M.; Adam, C. Determination of the Phosphorus Content in Sewage Sludge: Comparison of Different Aqua Regia Digestion Methods and ICP-OES, ICP-MS, and Photometric Determination. Environ. Sci. Eur. 2022, 34, 99. [Google Scholar] [CrossRef]
- Capitán-Vallvey, L.F.; López-Ruiz, N.; Martínez-Olmos, A.; Erenas, M.M.; Palma, A.J. Recent Developments in Computer Vision-Based Analytical Chemistry: A Tutorial Review. Anal. Chim. Acta 2015, 899, 23–56. [Google Scholar] [CrossRef]
- Bendicho, C.; Lavilla, I.; Pena-Pereira, F.; de la Calle, I.; Romero, V. Nanomaterial-Integrated Cellulose Platforms for Optical Sensing of Trace Metals and Anionic Species in the Environment. Sensors 2021, 21, 604. [Google Scholar] [CrossRef]
- Grudpan, K.; Kolev, S.D.; Lapanantnopakhun, S.; McKelvie, I.D.; Wongwilai, W. Applications of Everyday IT and Communications Devices in Modern Analytical Chemistry: A Review. Talanta 2015, 136, 84–94. [Google Scholar] [CrossRef]
- Yang, C.; Tian, S.; Zhao, Y.; Yang, L.; Mo, L.; Lin, W. A Unique Fluorescence Metal-Organic Framework for Ultrasensitive Fluorescent and Colorimetric Bimodal Detection of Phosphate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 329, 125571. [Google Scholar] [CrossRef]
- Yu, Z.; Chu, B.; Meng, L.; Xu, N. Highly Sensitive Identification of Physiological Phosphates with Colorimetric Sensor Array Based on Multi-Functionalized MIL-101. Microchem. J. 2025, 218, 115329. [Google Scholar] [CrossRef]
- Zhao, F.; Yue, Z.; Lei, Z. Smartphone-Assisted Colorimetric Detection of Phosphate Ion Based on CeFe Bi-Metal-Organic Framework Nanozyme. J. Photochem. Photobiol. A Chem. 2026, 471, 116713. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Paper-Based Analytical Device for Instrumental-Free Detection of Thiocyanate in Saliva as a Biomarker of Tobacco Smoke Exposure. Talanta 2016, 147, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Shaghaleh, H.; Xu, X.; Wang, S. Current Progress in Production of Biopolymeric Materials Based on Cellulose, Cellulose Nanofibers, and Cellulose Derivatives. RSC Adv. 2018, 8, 825–842. [Google Scholar] [CrossRef] [PubMed]
- Bendicho, C.; Lavilla, I.; Pena-Pereira, F.; de la Calle, I.; Romero, V. Paper-Based Analytical Devices for Colorimetric and Luminescent Detection of Mercury in Waters: An Overview. Sensors 2021, 21, 7571. [Google Scholar] [CrossRef]
- Jayawardane, B.M.; Wongwilai, W.; Grudpan, K.; Kolev, S.D.; Heaven, M.W.; Nash, D.M.; McKelvie, I.D. Evaluation and Application of a Paper-Based Device for the Determination of Reactive Phosphate in Soil Solution. J. Environ. Qual. 2014, 43, 1081–1085. [Google Scholar] [CrossRef]
- Waghwani, B.; Balpande, S.; Kalambe, J. Development of Microfluidic Paper Based Analytical Device for Detection of Phosphate in Water. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 592–595. [Google Scholar]
- Racicot, J.M.; Mako, T.L.; Olivelli, A.; Levine, M. A Paper-Based Device for Ultrasensitive, Colorimetric Phosphate Detection in Seawater. Sensors 2020, 20, 2766. [Google Scholar] [CrossRef]
- Richardson, S.; Iles, A.; Rotchell, J.M.; Charlson, T.; Hanson, A.; Lorch, M.; Pamme, N. Citizen-Led Sampling to Monitor Phosphate Levels in Freshwater Environments Using a Simple Paper Microfluidic Device. PLoS ONE 2021, 16, e0260102. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, V.; Philip, L. Stable Paper-Based Colorimetric Sensor for Selective Detection of Phosphate Ion in Aqueous Phase. Microchem. J. 2021, 171, 106809. [Google Scholar] [CrossRef]
- Heidari-Bafroui, H.; Charbaji, A.; Anagnostopoulos, C.; Faghri, M. A Colorimetric Dip Strip Assay for Detection of Low Concentrations of Phosphate in Seawater. Sensors 2021, 21, 3125. [Google Scholar] [CrossRef] [PubMed]
- Heidari-Bafroui, H.; Ribeiro, B.; Charbaji, A.; Anagnostopoulos, C.; Faghri, M. Portable Infrared Lightbox for Improving the Detection Limits of Paper-Based Phosphate Devices. Measurement 2021, 173, 108607. [Google Scholar] [CrossRef]
- Thongkam, T.; Hemavibool, K. A Simple Epoxy Resin Screen-Printed Paper-Based Analytical Device for Detection of Phosphate in Soil. Anal. Methods 2022, 14, 1069–1076. [Google Scholar] [CrossRef]
- Kiwfo, K.; Woi, P.M.; Seanjum, C.; Grudpan, K. New Designs of Paper Based Analytical Devices (PADs) for Completing Replication Analysis of a Sample within a Single Run by Employing Smartphone. Talanta 2022, 236, 122848. [Google Scholar] [CrossRef]
- Aryal, P.; Hefner, C.E.; Martinez, B.; Brack, E.; Henry, C.S. Citizen-Based Water Quality Monitoring: Field Testing a User-Friendly Sensor for Phosphate Detection in Global Surface Waters. Anal. Chem. 2024, 96, 18369. [Google Scholar] [CrossRef]
- Mettakoonpitak, J.; Hatsakhun, P.; Sirasunthorn, N. Alcohol Ink-Modified Microfluidic Paper-Based Analytical Devices for Enhanced White Detection in Simultaneous Determination of Multiple Water Quality Indicators. Microchim. Acta 2024, 191, 680. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Gómez, P.; Priem, N.; Richardson, S.; Pamme, N. A Paper-Based Analytical Device for the on-Site Multiplexed Monitoring of Soil Nutrients Extracted with a Cafetière. Sens. Actuators B Chem. 2025, 424, 136881. [Google Scholar] [CrossRef]
- Danchana, K.; Namba, H.; Kaneta, T. Using a Microfluidic Paper-Based Analytical Device and Solid-Phase Extraction to Determine Phosphate Concentration. Talanta 2025, 295, 128303. [Google Scholar] [CrossRef]
- Ngamprasertsuk, S.; Duenchay, P.; Dungchai, W. A Simple and Cost-Effective Distance-Based Paper Analytical Device for Phosphate Ion Determination. Anal. Sci. 2025, 41, 1365–1372. [Google Scholar] [CrossRef] [PubMed]
- Aregay, G.G.; Ali, J.; Shahzad, A.; Ifthikar, J.; Oyekunle, D.T.; Chen, Z. Application of Layered Double Hydroxide Enriched with Electron Rich Sulfide Moieties (S2O42−) for Efficient and Selective Removal of Vanadium (V) from Diverse Aqueous Medium. Sci. Total Environ. 2021, 792, 148543. [Google Scholar] [CrossRef] [PubMed]
- Thamilarasi, M.J.V.; Anilkumar, P.; Theivarasu, C.; Sureshkumar, M.V. Removal of Vanadium from Wastewater Using Surface-Modified Lignocellulosic Material. Environ. Sci. Pollut. Res. 2018, 25, 26182–26191. [Google Scholar] [CrossRef]
- Placer, L.; Lavilla, I.; Pena-Pereira, F.; Bendicho, C. A 3D Microfluidic Paper-Based Analytical Device with Smartphone-Assisted Colorimetric Detection for Iodine Speciation in Seaweed Samples. Sens. Actuators B Chem. 2023, 377, 133109. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- McKelvie, I.D.; Peat, D.M.W.; Worsfold, P.J. Analytical Perspective. Techniques for the Quantification and Speciation of Phosphorus in Natural Waters. Anal. Proc. Incl. Anal. Commun. 1995, 32, 437–445. [Google Scholar] [CrossRef]
- Catalan-Carrio, R.; Akyazi, T.; Basabe-Desmonts, L.; Benito-Lopez, F. Predicting Dimensions in Microfluidic Paper Based Analytical Devices. Sensors 2021, 21, 101. [Google Scholar] [CrossRef]
- Nagul, E.A.; McKelvie, I.D.; Worsfold, P.; Kolev, S.D. The Molybdenum Blue Reaction for the Determination of Orthophosphate Revisited: Opening the Black Box. Anal. Chim. Acta 2015, 890, 60–82. [Google Scholar] [CrossRef]
- El-Shamy, H.K.; Iskander, M.F. Studies on Some Heteropoly Blues—I the Reduction of 12-Molybdophosphoric Acid with Stannous Chloride. J. Inorg. Nucl. Chem. 1973, 35, 1227–1237. [Google Scholar] [CrossRef]
- Going, J.E.; Eisenreich, S.J. Spectrophotometric Studies of Reduced Molybdoantimonylphosphoric Acid. Anal. Chim. Acta 1974, 70, 95–106. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Villar-Blanco, L.; Lavilla, I.; Bendicho, C. Test for Arsenic Speciation in Waters Based on a Paper-Based Analytical Device with Scanometric Detection. Anal. Chim. Acta 2018, 1011, 1–10. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Velázquez, A.; Lavilla, I.; Bendicho, C. A Paper-Based Colorimetric Assay with Non-Instrumental Detection for Determination of Boron in Water Samples. Talanta 2020, 208, 120365. [Google Scholar] [CrossRef]
- Kappi, F.A.; Tsogas, G.Z.; Christodouleas, D.C.; Giokas, D.L. Calibrant-Loaded Paper-Based Analytical Devices for Standard Addition Quantitative Assays. Senso. Actuators B Chem. 2017, 253, 860–867. [Google Scholar] [CrossRef]
- Chaplan, C.A.; Mitchell, H.T.; Martinez, A.W. Paper-Based Standard Addition Assays. Anal. Methods 2014, 6, 1296–1300. [Google Scholar] [CrossRef]
- Li, C.-J.; Anastas, P.T. Green Chemistry: Present and Future. Chem. Soc. Rev. 2012, 41, 1413–1414. [Google Scholar] [CrossRef] [PubMed]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef] [PubMed]








| Sample | Spiked Concentration (mg P/L) | Obtained Concentration (mg P/L) (n = 3) a | RSD (%) | Recovery (%) | tcal b |
|---|---|---|---|---|---|
| Mineral water | 0 | <LOD | - | - | - |
| 5 | 5.3 ± 0.5 | 9.4 | 106 ± 10 | 1.04 | |
| Seawater | 0 | <LOD | - | - | - |
| 5 | 5.0 ± 0.3 | 6.0 | 100 ± 7 | 0.00 | |
| River water | 0 | <LOD | - | - | - |
| 5 | 5.1 ± 0.3 | 5.9 | 102 ± 6 | 0.58 | |
| Synthetic wastewater I | 195.94 | 195.0 ± 19.5 c | 10.0 | 99.5 ± 10 | 0.08 |
| Synthetic wastewater II | 97.28 | 93.9 ± 3.3 c | 3.5 | 96.5 ± 3.4 | 1.77 |
| Sample | Assigned or Certified Concentration (mg P/kg) | Obtained Concentration (mg P/L) (n = 4) a | RSD (%) | Recovery (%) | tcal b |
|---|---|---|---|---|---|
| Agricultural soil 1 NaHCO3 extractable-P | 62 ± 15 a | 66 ± 5 | 6.9 | 107 ± 7 | 1.7 |
| Agricultural soil 2 NaHCO3 extractable-P | 48 ± 16 a | 49 ± 4 | 7.4 | 102 ± 8 | 1.8 |
| CRM 029 Soil Total P | 21,000 ± 3000 c | 19,729 ± 243 | 1.2 | 94 ± 1 2.1 | 2.1 |
| BCR 684 sediment NaOH- extractable-P | 550 ± 21 c | 541 ± 35 | 6.5 | 98 ± 6 1.9 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Graña-Dosantos, J.M.; Pena-Pereira, F.; Bendicho, C.; de la Calle, I. A 3D Microfluidic Paper-Based Analytical Device with Smartphone-Based Colorimetric Readout for Phosphate Sensing. Sensors 2026, 26, 335. https://doi.org/10.3390/s26010335
Graña-Dosantos JM, Pena-Pereira F, Bendicho C, de la Calle I. A 3D Microfluidic Paper-Based Analytical Device with Smartphone-Based Colorimetric Readout for Phosphate Sensing. Sensors. 2026; 26(1):335. https://doi.org/10.3390/s26010335
Chicago/Turabian StyleGraña-Dosantos, Jose Manuel, Francisco Pena-Pereira, Carlos Bendicho, and Inmaculada de la Calle. 2026. "A 3D Microfluidic Paper-Based Analytical Device with Smartphone-Based Colorimetric Readout for Phosphate Sensing" Sensors 26, no. 1: 335. https://doi.org/10.3390/s26010335
APA StyleGraña-Dosantos, J. M., Pena-Pereira, F., Bendicho, C., & de la Calle, I. (2026). A 3D Microfluidic Paper-Based Analytical Device with Smartphone-Based Colorimetric Readout for Phosphate Sensing. Sensors, 26(1), 335. https://doi.org/10.3390/s26010335

