Enabling Sensor-Integrated and Sustainable Aerospace Structures Through Additively Manufactured Aluminium Mechanisms for CubeSats
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Green-Part Manufacturing via MEX
2.3. Debinding and Sintering
2.4. Post-Sintering Characterisation
2.4.1. X-Ray Microcomputed Tomography
2.4.2. Dimensional and Shrinkage Evaluation
2.4.3. Structural Evaluation
2.4.4. Hardness and Thermo-Mechanical Testing
2.5. Case Study: Fabrication and Functional Demonstration of an Integrated Mechanism
2.5.1. Printing Methodology
2.5.2. Debinding and Sintering of the Assembly
2.5.3. Functional Verification
3. Results
3.1. Green and Sintered States
3.2. XRD-Based Analysis of Structural Changes After Sintering
3.3. Mechanical Behaviour
3.4. Dynamic Mechanical Behaviour
3.5. Case Study Analysis
3.5.1. Three-Dimensional Model
3.5.2. Slicing and Parameterisation
3.5.3. Printing of the Integrated Mechanism
3.5.4. Debinding, Sintering and Functional Verification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouzoukis, K.-P.; Moraitis, G.; Kostopoulos, V.; Lappas, V. An Overview of CubeSat Missions and Applications. Aerospace 2025, 12, 550. [Google Scholar] [CrossRef]
- Vishnuprakash, B.; De, A.; Chatterjee, S.; Roy, A.; Sen, S. Innovative Power Strategies for CubeSats: Enhancing Solar Energy Capture and Efficient Storage Solutions. Acceleron Aerosp. J. 2025, 4, 786–816. [Google Scholar] [CrossRef]
- Capovilla, G.; Cestino, E.; Reyneri, L. Modular Multifunctional Composite Structure for CubeSat Applications: Embedded Battery Prototype Modal Analysis. Aerospace 2023, 10, 1009. [Google Scholar] [CrossRef]
- Alnaqbi, S.; Darfilal, D.; Swei, S.S.M. Propulsion Technologies for CubeSats: Review. Aerospace 2024, 11, 502. [Google Scholar] [CrossRef]
- Sing, S.L.; Yeong, W.Y. Laser Powder Bed Fusion for Metal Additive Manufacturing: Perspectives on Recent Developments. Virtual Phys. Prototyp. 2020, 15, 359–370. [Google Scholar] [CrossRef]
- Blakey-Milner, B.; Gradl, P.; Snedden, G.; Brooks, M.; Pitot, J.; Lopez, E.; Leary, M.; Berto, F.; du Plessis, A. Metal Additive Manufacturing in Aerospace: A Review. Mater. Des. 2021, 209, 110008. [Google Scholar] [CrossRef]
- Boschetto, A.; Bottini, L.; Macera, L.; Vatanparast, S. Additive Manufacturing for Lightweighting Satellite Platform. Appl. Sci. 2023, 13, 2809. [Google Scholar] [CrossRef]
- Chia, A.; Prabhu, V.; Gan, A.Z.; Puah, M.; Lek, V.; Kiong, T.W.; Thow, V.S. Development of a Proof-of-Concept Space Propulsion System for Nano-Satellite Applications Using Additive Manufacturing. In Proceedings of the 4th Symposium on Space Educational Activities, Barcelona, Spain, 27–29 April 2022; Universitat Politècnica de Catalunya: Barcelona, Spain, 2022. [Google Scholar]
- Aziz, I.; Chahid, Y.; Keogh, J.; Carruthers, J.; Morris, K.; Harman, J.; McPhee, S.; Fraser, E.; Millan, L.; Bourgenot, C.; et al. Additive Manufacturing in Aluminium of a Primary Mirror for a CubeSat Application: Manufacture, Testing, and Evaluation. In Proceedings of the Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems, San Diego, CA, USA, 4–7 August 2025; Hallibert, P., Hull, T.B., Kim, D., Eds.; SPIE: Washington, DC, USA, 2025; p. 77. [Google Scholar]
- Presciutti, A.; Gebennini, E.; Liberti, F.; Nanni, F.; Bragaglia, M. Comparative Life Cycle Assessment of SLS and MFFF Additive Manufacturing Techniques for the Production of a Metal Specimen. Materials 2023, 17, 78. [Google Scholar] [CrossRef]
- Jansa, J.; Volodarskaja, A.; Hlinka, J.; Zárybnická, L.; Polzer, S.; Kraus, M.; Hajnyš, J.; Schwarz, D.; Pagáč, M. Corrosion and Material Properties of 316L Stainless Steel Produced by Material Extrusion Technology. J. Manuf. Process 2023, 88, 232–245. [Google Scholar] [CrossRef]
- Bankapalli, N.K.; Gupta, V.; Saxena, P.; Bajpai, A.; Lahoda, C.; Polte, J. Filament Fabrication and Subsequent Additive Manufacturing, Debinding, and Sintering for Extrusion-Based Metal Additive Manufacturing and Their Applications: A Review. Compos. B Eng. 2023, 264, 110915. [Google Scholar] [CrossRef]
- Jacob, J.; Pejak Simunec, D.; Kandjani, A.E.Z.; Trinchi, A.; Sola, A. A Review of Fused Filament Fabrication of Metal Parts (Metal FFF): Current Developments and Future Challenges. Technologies 2024, 12, 267. [Google Scholar] [CrossRef]
- Alves, B.; Sousa, R.; Coelho, R.; Oliveira, G.; Cacho, L.; Gatões, D.; Teixeira, R.; Freitas Rodrigues, P. Integration of Shape Memory Alloy Actuators into Sintered Aluminum Structures via Material Extrusion for Aerospace Applications. Actuators 2025, 14, 305. [Google Scholar] [CrossRef]
- Mathesius, M.B.; Kozak, E.; Scott-Emuakpor, O.; Siddiqui, S.F. Investigating the Viability of Material Extrusion Additive Manufacturing of Inconel 718 for Fatigue Driven Applications. In Proceedings of the AIAA SCITECH 2025 Forum, Orlando, FL, USA, 6–10 January 2025; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2025. [Google Scholar]
- Parsompech, N.; Suwanpreecha, C.; Noraphaiphipaksa, N.; Hararak, B.; Songkuea, S.; Schuschnigg, S.; Kukla, C.; Kanchanomai, C.; Manonukul, A. Supportless Lattice Structure of 316L Stainless Steel Fabricated by Material Extrusion Additive Manufacturing: Effect of Relative Density on Physical, Microstructural and Mechanical Behaviour. Mater. Sci. Eng. A 2024, 915, 147270. [Google Scholar] [CrossRef]
- Altıparmak, S.C.; Yardley, V.A.; Shi, Z.; Lin, J. Extrusion-Based Additive Manufacturing Technologies: State of the Art and Future Perspectives. J. Manuf. Process 2022, 83, 607–636. [Google Scholar] [CrossRef]
- Cappelletti, C.; Battistini, S.; Malphrus, B.K. (Eds.) Cubesat Handbook; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 9780128178843. [Google Scholar]
- Yadav, P.; Rigo, O.; Arvieu, C.; Lacoste, E. Microstructural and Mechanical Aspects of AlSi7Mg0.6 Alloy Related to Scanning Strategies in L-PBF. Int. J. Adv. Manuf. Technol. 2022, 120, 6205–6223. [Google Scholar] [CrossRef]
- Tonelli, L.; Liverani, E.; Di Egidio, G.; Fortunato, A.; Morri, A.; Ceschini, L. On the Role of Microstructure and Defects in the Room and High-Temperature Tensile Behavior of the PBF-LB A357 (AlSi7Mg) Alloy in As-Built and Peak-Aged Conditions. Materials 2023, 16, 2721. [Google Scholar] [CrossRef]
- Ferro, P.; Fabrizi, A.; Elsayed, H.; Savio, G. Multi-Material Additive Manufacturing: Creating IN718-AISI 316L Bimetallic Parts by 3D Printing, Debinding, and Sintering. Sustainability 2023, 15, 11911. [Google Scholar] [CrossRef]
- Echsel, M.; Springer, P.; Hümbert, S. Production and Planned In-Orbit Qualification of a Function-Integrated, Additive Manufactured Satellite Sandwich Structure with Embedded Automotive Electronics. CEAS Space J. 2021, 13, 111–118. [Google Scholar] [CrossRef]
- He, L.; Wang, P.; Yang, J.; Fan, K.; Zhang, H.; Zhang, L.; Jiang, M.; Chen, X.; Chen, Z.; Chen, M.; et al. Smart Lattice Structures with Self-Sensing Functionalities via Hybrid Additive Manufacturing Technology. Micromachines 2023, 15, 2. [Google Scholar] [CrossRef]
- Quattrocchi, A.; Montanini, R. Development and Verification of Self-Sensing Structures Printed in Additive Manufacturing: A Preliminary Study. Acta IMEKO 2023, 12, 1–7. [Google Scholar] [CrossRef]
- Trinchi, A.; Sola, A. Embedding Function within Additively Manufactured Parts: Materials Challenges and Opportunities. Adv. Eng. Mater. 2023, 25, 2300395. [Google Scholar] [CrossRef]
- Alves, B.; Gatões, D.; Soares, P.; Rodrigues, L.; Vieira, M.T. Material Extrusion: Shaping and Sintering Optimization Through µ-Tomography. In Proceedings of the Euro PM2023 Proceedings, Lisbon, Portugal, 1–4 October 2023; EPMA: Houston, TX, USA, 2023. [Google Scholar]
- Cacho, L.M.; Neto, M.A.; Neto, D.M.; Vieira, M.T. Coupling μ-Computed Tomography and Multi-Scale Modelling to Assess the Mechanical Performance of Material Extrusion Metal Components. J. Mater. Res. Technol. 2024, 30, 3238–3250. [Google Scholar] [CrossRef]
- Singh, P.; Balla, V.K.; Atre, S.V.; German, R.M.; Kate, K.H. Factors Affecting Properties of Ti-6Al-4V Alloy Additive Manufactured by Metal Fused Filament Fabrication. Powder Technol. 2021, 386, 9–19. [Google Scholar] [CrossRef]
- Sakib-Uz-Zaman, C.; Khondoker, M.A.H. A Review on Extrusion Additive Manufacturing of Pure Copper. Metals 2023, 13, 859. [Google Scholar] [CrossRef]
- Karade, S.R.; Siddhartha, S.; Gupta, N.K.; Karunakaran, K.P.; Ganesan, G.; Zeidler, H. Hybridization in Metal Wire Additive Manufacturing: A Case Study of an Impeller. Metals 2025, 15, 71. [Google Scholar] [CrossRef]
- Nyamuchiwa, K.; Palad, R.; Panlican, J.; Tian, Y.; Aranas, C. Recent Progress in Hybrid Additive Manufacturing of Metallic Materials. Appl. Sci. 2023, 13, 8383. [Google Scholar] [CrossRef]
- Singh, G.; Missiaen, J.-M.; Bouvard, D.; Chaix, J.-M. Copper Additive Manufacturing Using MIM Feedstock: Adjustment of Printing, Debinding, and Sintering Parameters for Processing Dense and Defectless Parts. Int. J. Adv. Manuf. Technol. 2021, 115, 449–462. [Google Scholar] [CrossRef]
- Rosnitschek, T.; Stierle, C.; Orgeldinger, C.; Seynstahl, A.; Alber-Laukant, B.; Tremmel, S. Dimensional Accuracy and Mechanical Characterization of Inconel 625 Components in Atomic Diffusion Additive Manufacturing. Appl. Mech. 2024, 5, 376–390. [Google Scholar] [CrossRef]
- Mondolfo, L.F. Aluminum–Magnesium, Aluminum–Manganese Alloys. In Aluminum Alloys; Elsevier: Amsterdam, The Netherlands, 1976; pp. 806–841. [Google Scholar]
- Mohamed, A.M.A.; Samuel, E.; Zedan, Y.; Samuel, A.M.; Doty, H.W.; Samuel, F.H. Intermetallics Formation during Solidification of Al-Si-Cu-Mg Cast Alloys. Materials 2022, 15, 1335. [Google Scholar] [CrossRef]
- Ghasemi, A.; Fereiduni, E.; Balbaa, M.; Jadhav, S.D.; Elbestawi, M.; Habibi, S. Influence of Alloying Elements on Laser Powder Bed Fusion Processability of Aluminum: A New Insight into the Oxidation Tendency. Addit. Manuf. 2021, 46, 102145. [Google Scholar] [CrossRef]
- Guo, Y.W.; Wei, W.; Shi, W.; Xue, D.; Zhou, X.R.; Wen, S.P.; Wu, X.L.; Gao, K.Y.; Huang, H.; Nie, Z.R. Selective Laser Melting of Er Modified AlSi7Mg Alloy: Effect of Processing Parameters on Forming Quality, Microstructure and Mechanical Properties. Mater. Sci. Eng. A 2022, 842, 143085. [Google Scholar] [CrossRef]
- Ding, H.; Zeng, C.; Raush, J.; Momeni, K.; Guo, S. Developing Fused Deposition Modeling Additive Manufacturing Processing Strategies for Aluminum Alloy 7075: Sample Preparation and Metallographic Characterization. Materials 2022, 15, 1340. [Google Scholar] [CrossRef]
- Oliveira, R.; Pereira, Y.; Hoisler, E.; Gonçalves, D.A.C.; Le Sénèchal, N.V.; Melo, E.A.O.; Teixeira, R.; Rodrigues, P.F.; Neto, P.I.; da Silva, J.V.L.; et al. Production of Cylindrical Specimens Based on the Ni-Ti System by Selective Laser Melting from Elementary Powders. J. Mater. Eng. Perform. 2021, 30, 5477–5490. [Google Scholar] [CrossRef]
- Benafan, O.; Notardonato, W.U.; Meneghelli, B.J.; Vaidyanathan, R. Design and Development of a Shape Memory Alloy Activated Heat Pipe-Based Thermal Switch. Smart Mater. Struct. 2013, 22, 105017. [Google Scholar] [CrossRef]
- Grau, S.; Diez Lopez, J.M.; Roychowdhury, D.; Chachowski, J.; Stoll, E. Design Automation of Embedded Air Coils for CubeSat Attitude Control. In Proceedings of the Small Satellites Systems and Services Symposium (4S 2024), Palma de Mallorca, Spain, 27–31 May 2024; Petrozzi-Ilstad, M., Ed.; SPIE: Washington, DC, USA, 2025; p. 145. [Google Scholar]
- Rockberger, D.; Abramovich, H. Piezoelectric Assisted Smart Satellite Structure (PEASSS): An Innovative Low Cost Nano-Satellite. In Active and Passive Smart Structures and Integrated Systems 2014; Liao, W.-H., Ed.; SPIE: Washington, DC, USA, 2014; p. 905714. [Google Scholar]










| Specimen | 3D Model | Green State | Sintered State | Shrinkage (%) | Standard Deviation (%) |
|---|---|---|---|---|---|
| X (mm) | 20.0 | 19.9 | 18.5 | 7.1 | 0.2 |
| Y (mm) | 15.0 | 15.0 | 13.8 | 7.8 | 0.2 |
| Z (mm) | 3.0 | 3.0 | 2.5 | 17.9 | 0.1 |
| Vol. (mm3) | 900.0 | 891.5 | 627.0 | 29.6 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Alves, B.; Sousa, R.; Coelho, R.; Gatões, D.; Cacho, L.; Branco, R.; Santos, V.M.; Freitas Rodrigues, P. Enabling Sensor-Integrated and Sustainable Aerospace Structures Through Additively Manufactured Aluminium Mechanisms for CubeSats. Sensors 2026, 26, 281. https://doi.org/10.3390/s26010281
Alves B, Sousa R, Coelho R, Gatões D, Cacho L, Branco R, Santos VM, Freitas Rodrigues P. Enabling Sensor-Integrated and Sustainable Aerospace Structures Through Additively Manufactured Aluminium Mechanisms for CubeSats. Sensors. 2026; 26(1):281. https://doi.org/10.3390/s26010281
Chicago/Turabian StyleAlves, Bernardo, Rafael Sousa, Ricardo Coelho, Daniel Gatões, Luís Cacho, Ricardo Branco, Vítor Miguel Santos, and Patrícia Freitas Rodrigues. 2026. "Enabling Sensor-Integrated and Sustainable Aerospace Structures Through Additively Manufactured Aluminium Mechanisms for CubeSats" Sensors 26, no. 1: 281. https://doi.org/10.3390/s26010281
APA StyleAlves, B., Sousa, R., Coelho, R., Gatões, D., Cacho, L., Branco, R., Santos, V. M., & Freitas Rodrigues, P. (2026). Enabling Sensor-Integrated and Sustainable Aerospace Structures Through Additively Manufactured Aluminium Mechanisms for CubeSats. Sensors, 26(1), 281. https://doi.org/10.3390/s26010281

