Joint Design of Hybrid Beamforming and Phase Shifts for IRS-Assisted Multi-User mmWave Systems
Abstract
1. Introduction
2. System Model and Problem Formulation
2.1. System Model
2.2. Channel Model
2.3. Problem Formulation
3. Algorithm Design
3.1. ZF-Based CEO Algorithm Design
| Algorithm 1 Proposed ZF-based CEO algorithm for solving (8). |
|
3.2. Hybrid Beamforming Design
3.3. Comparison of Computational Complexity
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chowdhury, M.Z.; Shahjalal, M.; Ahmed, S.; Jang, Y.M. 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions. IEEE Open J. Commun. Soc. 2020, 1, 957–975. [Google Scholar] [CrossRef]
- Busari, S.A.; Huq, K.M.S.; Mumtaz, S.; Dai, L.; Rodriguez, J. Millimeter-wave massive MIMO communication for future wireless systems: A survey. IEEE Commun. Surv. Tutor. 2018, 20, 836–869. [Google Scholar] [CrossRef]
- Ghosh, A.; Thomas, T.A.; Cudak, M.C.; Ratasuk, R.; Moorut, P.; Vook, F.W.; Rappaport, T.S.; MacCartney, G.R.; Sun, S.; Nie, S. Millimeter-Wave Enhanced Local Area Systems: A High-Data-Rate Approach for Future Wireless Networks. IEEE J. Sel. Areas Commun. 2014, 32, 1152–1163. [Google Scholar] [CrossRef]
- Rangan, S.; Rappaport, T.S.; Erkip, E. Millimeter-wave cellular wireless networks: Potentials and challenges. Proc. IEEE 2014, 102, 366–385. [Google Scholar] [CrossRef]
- Pan, C.; Ren, H.; Wang, K.; Kolb, J.F.; Elkashlan, M.; Chen, M.; Di Renzo, M.; Hao, Y.; Wang, J.; Lee Swindlehurst, A.; et al. Reconfigurable Intelligent Surfaces for 6G Systems: Principles, Applications, and Research Directions. IEEE Commun. Mag. 2021, 59, 14–20. [Google Scholar] [CrossRef]
- Chen, X.; Tan, J.; Kang, L.; Tang, F.; Zhao, M.; Kato, N. Frequency Selective Surface Toward 6G Communication Systems: A Contemporary Survey. IEEE Commun. Surv. Tutor. 2024, 26, 1635–1675. [Google Scholar] [CrossRef]
- Basar, E.; Alexandropoulos, G.C.; Liu, Y.; Wu, Q.; Jin, S.; Yuen, C.; Dobre, O.A.; Schober, R. Reconfigurable intelligent surfaces for 6G: Emerging applications and open challenges. IEEE Veh. Technol. Mag. 2024, 19, 27–47. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef]
- Yu, X.; Xu, D.; Schober, R. Optimal Beamforming for MISO Communications via Intelligent Reflecting Surfaces. In Proceedings of the 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, GA, USA, 26–29 May 2020; pp. 1–5. [Google Scholar]
- Ying, K.; Gao, Z.; Lyu, S.; Wu, Y.; Wang, H.; Alouini, M.-S. GMD-Based Hybrid Beamforming for Large Reconfigurable Intelligent Surface Assisted Millimeter-Wave Massive MIMO. IEEE Access 2020, 8, 19530–19539. [Google Scholar] [CrossRef]
- Hong, S.H.; Park, J.; Kim, S.-J.; Choi, J. Hybrid beamforming for intelligent reflecting surface aided millimeter wave MIMO systems. IEEE Trans. Wirel. Commun. 2022, 21, 7343–7357. [Google Scholar] [CrossRef]
- Wang, P.; Fang, J.; Dai, L.; Li, H. Joint Transceiver and Large Intelligent Surface Design for Massive MIMO mmWave Systems. IEEE Trans. Wirel. Commun. 2021, 20, 1052–1064. [Google Scholar] [CrossRef]
- Pradhan, C.; Li, A.; Song, L.; Vucetic, B.; Li, Y. Hybrid Precoding Design for Reconfigurable Intelligent Surface Aided mmWave Communication Systems. IEEE Wirel. Commun. Lett. 2020, 9, 1041–1045. [Google Scholar] [CrossRef]
- Guo, H.; Liang, Y.-C.; Chen, J.; Larsson, E.G. Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks. IEEE Trans. Wirel. Commun. 2020, 19, 3064–3076. [Google Scholar] [CrossRef]
- Xue, Q.; Wei, R.; Li, Z.; Liu, Y.; Xu, Y.; Chen, Q. Beamforming Design for Cooperative Double-RIS Aided mmWave MU-MIMO Communications. IEEE Trans. Green Commun. Netw. 2025, 9, 645–657. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Beamforming Optimization for Wireless Network Aided by Intelligent Reflecting Surface With Discrete Phase Shifts. IEEE Trans. Commun. 2020, 68, 1838–1851. [Google Scholar] [CrossRef]
- Yan, W.; Sun, G.; Hao, W.; Zhu, Z.; Chu, Z.; Xiao, P. Machine Learning-Based Beamforming Design for Millimeter Wave IRS Communications With Discrete Phase Shifters. IEEE Wirel. Commun. Lett. 2022, 11, 2467–2471. [Google Scholar] [CrossRef]
- Li, R.; Guo, B.; Tao, M.; Liu, Y.-F.; Yu, W. Joint Design of Hybrid Beamforming and Reflection Coefficients in RIS-Aided mmWave MIMO Systems. IEEE Trans. Commun. 2022, 70, 2404–2416. [Google Scholar] [CrossRef]
- Chen, J.-C. Joint Transceiver and Intelligent Reflecting Surface Design for mmWave Massive MIMO Systems. IEEE Syst. J. 2023, 17, 792–803. [Google Scholar] [CrossRef]
- Wei, X.; Shen, D.; Dai, L. Channel estimation for RIS assisted wireless communications—Part II: An improved solution based on doublestructured sparsity. IEEE Commun. Lett. 2021, 25, 1403–1407. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, W. Low complexity hybrid precoder design for millimeter wave MIMO systems. IEEE Commun. Lett. 2019, 23, 1259–1262. [Google Scholar] [CrossRef]
- Rubinstein, R.Y.; Kroese, D.P. The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Costa, A.; Jones, O.D.; Kroese, D. Convergence properties of the cross-entropy method for discrete optimization. Oper. Res. Lett. 2007, 35, 573–580. [Google Scholar] [CrossRef]
- Wu, Z.; Kolonko, M. Asymptotic properties of a generalized cross entropy optimization algorithm. IEEE Trans. Evol. Comput. 2014, 18, 658–673. [Google Scholar] [CrossRef]
- Wu, Z.; Kolonko, M.; Möhring, R.H. Stochastic runtime analysis of the cross-entropy algorithm. IEEE Trans. Evol. Comput. 2017, 21, 616–628. [Google Scholar] [CrossRef]
- Mir, T.; Siddiqi, M.Z.; Mir, U.; Mackenzie, R.; Hao, M. Machine Learning Inspired Hybrid Precoding for Wideband Millimeter-Wave Massive MIMO Systems. IEEE Access 2019, 7, 62852–62864. [Google Scholar] [CrossRef]





| Algorithm | Dominant Complexity (per Iteration) | Runtime (s) |
|---|---|---|
| ZF-CEO | 1.26 | |
| SR | 1.32 | |
| CDM | 1.38 |
| Parameters | Assumption |
|---|---|
| BS location (, , ) | (2 m, 0, 10 m) |
| IRS location (, , ) | (0, 148 m, 10 m) |
| Number of users | |
| Number of antennas | |
| Number of reflecting elements | |
| Number of propagation paths | |
| Azimuth AoA/AoD | |
| Elevation AoA | |
| Transmit power | dBm |
| Noise power | dBm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, R.; Wang, Y. Joint Design of Hybrid Beamforming and Phase Shifts for IRS-Assisted Multi-User mmWave Systems. Sensors 2026, 26, 274. https://doi.org/10.3390/s26010274
Zhang R, Wang Y. Joint Design of Hybrid Beamforming and Phase Shifts for IRS-Assisted Multi-User mmWave Systems. Sensors. 2026; 26(1):274. https://doi.org/10.3390/s26010274
Chicago/Turabian StyleZhang, Ran, and Ye Wang. 2026. "Joint Design of Hybrid Beamforming and Phase Shifts for IRS-Assisted Multi-User mmWave Systems" Sensors 26, no. 1: 274. https://doi.org/10.3390/s26010274
APA StyleZhang, R., & Wang, Y. (2026). Joint Design of Hybrid Beamforming and Phase Shifts for IRS-Assisted Multi-User mmWave Systems. Sensors, 26(1), 274. https://doi.org/10.3390/s26010274

