Microneedle-Based Technologies for Long-Acting Transdermal Drug Delivery in Wearable Devices
Abstract
1. Introduction
2. Classification and Preparation of MNs
2.1. Categorized by Drug Delivery Mechanism
2.2. Categorized by Material
2.3. Preparation of Microneedles
3. MNs as a Strategy for Long-Acting Drug Delivery
3.1. PLA/PLGA MNs
3.2. PCL MNs
3.3. Silk Fibroin (SF) MNs
3.4. CS MNs
3.5. Polymeric Microparticles and Nanoparticles
3.6. Liposomes
4. The Clinical Translation Landscape of Microneedles
5. Conclusions and Future Prospects
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Larrañeta, E.; Domínguez-Robles, J. Long-acting drug delivery systems: Current landscape and future prospects. Drug Discov. Today 2025, 30, 104447. [Google Scholar] [CrossRef] [PubMed]
- Bisgaard, S.I.; Nguyen, L.Q.; Bøgh, K.L.; Keller, S.S. Dermal tissue penetration of in-plane silicon MNs evaluated in skin-simulating hydrogel, rat skin and porcine skin. Biomater. Adv. 2023, 155, 213659. [Google Scholar] [CrossRef] [PubMed]
- Rathore, G.; Singh, R.P. Transforming disease management: The clinical benefits of long-acting injectable drug delivery systems. Intell. Hosp. 2025, 1, 100001. [Google Scholar] [CrossRef]
- Reinke, A.; Whiteside, E.J.; Windus, L.; Desai, D.; Stehr, E.; Faraji Rad, Z. The advantages of MN patches compared to conventional needle-based drug delivery and biopsy devices in medicine. Biomed. Eng. Adv. 2024, 8, 100127. [Google Scholar] [CrossRef]
- Nguyen, H.X.; Tran, B.N.; Nguyen, H.T.; Nguyen, V.S.; Nguyen, C.N. Optimization of MN-mediated transdermal delivery for therapeutic agents of varying molecular weights. J. Drug Deliv. Sci. Technol. 2025, 114, 107422. [Google Scholar] [CrossRef]
- Prajapati, B.G.; Alzaghari, L.F.; Alam, P.; Fareed, M.; Kapoor, D.U. Revolutionizing neurological therapies: The role of 3D printed MNs in precision brain targeted drug delivery. J. Drug Deliv. Sci. Technol. 2025, 107, 106818. [Google Scholar] [CrossRef]
- Zhai, G.; Shao, J.; Xu, Y.; Wu, X. MN drug delivery carriers capable of achieving sustained and controlled release function. Colloids Surf. B Biointerfaces 2025, 253, 114767. [Google Scholar] [CrossRef]
- Wu, L.; Shrestha, P.; Iapichino, M.; Cai, Y.; Kim, B.; Stoeber, B. Characterization method for calculating diffusion coefficient of drug from polylactic acid (PLA) microneedles into the skin. J. Drug Deliv. Sci. Technol. 2021, 61, 102192. [Google Scholar] [CrossRef]
- Newell, B.B.; Zhan, W. Numerical simulation of transdermal delivery of drug nanocarriers using solid MNs and medicated adhesive patch. Int. J. Heat Mass Transf. 2024, 223, 125291. [Google Scholar] [CrossRef]
- van der Maaden, K.; Luttge, R.; Vos, P.J.; Bouwstra, J.; Kersten, G.; Ploemen, I. MN-based drug and vaccine delivery via nanoporous microneedle arrays. Drug Deliv. Transl. Res. 2015, 5, 397–406. [Google Scholar] [CrossRef]
- Aziz, A.Y.R.; Sahra, M.; Ramadhani, N.N.; Hamdan, M.F.; Agrabudi, A.I.; Permana, A.D. Rapidly separable-effervescent MNs containing crosslinked PVA/PVP polymers for sustained transdermal delivery of rivastigmine tartrate: A promising approach for improved treatment of Alzheimer′s disease. J. Drug Deliv. Sci. Technol. 2025, 104, 106560. [Google Scholar] [CrossRef]
- Silva, A.C.Q.; Teixeira, M.C.; Jesus, A.; Costa, P.C.; Almeida, I.F.; Dias-Pereira, P.; Correia-Sá, I.; Oliveira, H.; Silvestre, A.J.D.; Vilela, C.; et al. Carboxymethylcellulose-fucoidan dissolvable microneedle patches for minimally invasive melanoma treatment: Demonstration on a 3D bioprinted A375 cell line model. Int. J. Biol. Macromol. 2025, 319, 145320. [Google Scholar] [CrossRef]
- Lei, X.; Li, M.; Wang, C.; Cui, P.; Qiu, L.; Zhou, S.; Jiang, P.; Li, H.; Zhao, D.; Ni, X.; et al. Degradable MN patches loaded with antibacterial gelatin nanoparticles to treat staphylococcal infection-induced chronic wounds. Int. J. Biol. Macromol. 2022, 217, 55–65. [Google Scholar] [CrossRef]
- Abd-El-Azim, H.; Abbas, H.; El Sayed, N.; Mousa, M.R.; Elbardisy, H.M.; Zewail, M. Hypericin emulsomes combined with hollow MNs as a non-invasive photodynamic platform for rheumatoid arthritis treatment. Int. J. Pharm. 2024, 653, 123876. [Google Scholar] [CrossRef] [PubMed]
- Vinayakumar, K.B.; Hegde, G.M.; Nayak, M.M.; Dinesh, N.S.; Rajanna, K. Fabrication and characterization of gold coated hollow silicon MN array for drug delivery. Microelectron. Eng. 2014, 128, 12–18. [Google Scholar] [CrossRef]
- Anbazhagan, G.; Suseela, S.B. Development and evaluation of biocompatible coated MN array for controlled insulin delivery: Fabrication, characterization, in vitro, and in vivo investigations. Mater. Today Commun. 2024, 41, 110747. [Google Scholar] [CrossRef]
- Zhang, L.; Song, Q.; Yang, P.; Liu, Z. HAMA/GelMA-based hydrogel MN patch via DLP 3D bioprinting for high-efficiency ISF extraction. Int. J. Pharm. 2025, 680, 125800. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhou, L.; Han, Z.; He, L.; Yuan, J.; Zhang, J.; Zhu, Q.; Wang, S. MN system carrying Momordin Ic-loaded ROS-responsive hydrogel ameliorates psoriasis via targeted anti-inflammatory and reactive oxygen species (ROS)-scavenging mechanisms. Int. J. Pharm. 2025, 676, 125530. [Google Scholar] [CrossRef]
- Younas, A.; Dong, Z.; Hou, Z.; Asad, M.; Li, M.; Zhang, N. A chitosan/fucoidan nanoparticle-loaded pullulan MN patch for differential drug release to promote wound healing. Carbohydr. Polym. 2023, 306, 120953. [Google Scholar] [CrossRef]
- Vora, L.K.; Sabri, A.H.; Naser, Y.; Himawan, A.; Hutton, A.R.J.; Anjani, Q.K.; Volpe-Zanutto, F.; Mishra, D.; Li, M.; Rodgers, A.M.; et al. Long-acting MN formulations. Adv. Drug Deliv. Rev. 2023, 201, 115055. [Google Scholar] [CrossRef]
- Yang, F.; Wang, W.; Zhou, J.; Yu, Z.; An, M.; He, W.; Xue, Y.; Chen, F. Transdermal delivery of IBU-PLGA nanoparticles with dissolving MN array patch. J. Drug Deliv. Sci. Technol. 2024, 95, 105528. [Google Scholar] [CrossRef]
- Chen, B.Z.; He, Y.T.; Zhao, Z.Q.; Feng, Y.H.; Liang, L.; Peng, J.; Yang, C.Y.; Uyama, H.; Shahbazi, M.-A.; Guo, X.D. Strategies to develop polymeric MNs for controlled drug release. Adv. Drug Deliv. Rev. 2023, 203, 115109. [Google Scholar]
- Wang, S.; Zhang, W.; Xie, X.; Weng, J.; Deng, X.; Chen, Y.; Niu, X.; Yi, M.; Li, H.; Jin, W. Hydrogel MNs loaded with bFGF and PVP-modified iridium nanoparticles improve follicular microenvironment for androgenetic alopecia treatment. J. Drug Deliv. Sci. Technol. 2025, 112, 107235. [Google Scholar] [CrossRef]
- Yang, Y.; Deng, X.; Chen, Z.; Lin, X.; Hu, Y.; Zeng, Q.; Wang, D.; Guo, P.; Yin, G.; Wang, L. Dissolving cinnamaldehyde HA/PVA MNs for the treatment of skin diseases caused by Microsporum canis. J. Drug Deliv. Sci. Technol. 2025, 107, 106841. [Google Scholar] [CrossRef]
- Khosraviboroujeni, A.; Mirdamadian, S.Z.; Minaiyan, M.; Taheri, A. Preparation and characterization of 3D printed PLA MN arrays for prolonged transdermal drug delivery of estradiol valerate. Drug Deliv. Transl. Res. 2021, 12, 1195–1208. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Huang, Y.; Feng, X.; Zhu, C.; Yin, S.; Wang, X.; Bai, X.; Pan, X.; Wu, C. TPGS/hyaluronic acid dual-functionalized PLGA nanoparticles delivered through dissolving MNs for markedly improved chemo-photothermal combined therapy of superficial tumor. Acta Pharm. Sin. B 2021, 11, 3297–3309. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Yuan, Y.; Cao, J.; Ye, L.; Zhao, X.; Wang, G. A novel subcutaneous body fluid extraction strategy based on poly(vinyl alcohol) dual-layer hydrogel MN arrays enabling sustainable power supply of biofuel cells. Chem. Eng. J. 2025, 525, 170421. [Google Scholar] [CrossRef]
- Chellathurai, M.S.; Mahmood, S.; Sofian, Z.M.; Hilles, A.R.; Mandal, A. Self-assembled multiple layered chitosan-insulin nanoparticles-integrated into a bi-layer dissolving MN for sustained delivery. Int. J. Biol. Macromol. 2025, 319, 145560. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, S.; Yang, G.; Zhou, Z.; Gao, Y. Exploring Trehalose on the Release of Levonorgestrel from Implantable PLGA MNs. Polymers 2020, 12, 59. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Liu, J.; Liu, Z.; Wei, H.; Lin, M.; Chen, G.; Liu, Z.; He, M.; Huang, X.; Huang, S.; et al. Real-time ROS monitoring-guided tumor electrodynamic therapy using a metal MN array system. Nano Today 2025, 63, 102731. [Google Scholar] [CrossRef]
- Nail, A.; Liu, H.; Meng, D.; Zhu, L.; Guo, X.; Li, C.; Ye, X.; Li, H. Metal-organic frameworks for MNs: Bridging the gap between nanomaterials and transdermal therapeutics. J. Drug Deliv. Sci. Technol. 2025, 114, 107444. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, W.; Gao, L.; Zhang, J.; Li, J.; Qiu, X.; Wang, F.; Huang, J.; Gong, N. Customizable glucose-responsive gelatin methacryloyl-based hydrogel MN patches for antibacterial therapy and promoted diabetic wound healing. Int. J. Biol. Macromol. 2025, 332, 148610. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, G.; Yu, W.; Liu, D.; Xu, B. MNs fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats. Mater. Sci. Eng. C 2018, 85, 18–26. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, C.; Ding, Y.; Huang, S.; Chen, S.; Huang, H.; Yang, S.; Xiao, F. Metalloproteinase-responsive gelatin/polylysine hydrogel MNs for on-demand curcumin delivery in bacteria-infected wound healing. Colloids Surf. B Biointerfaces 2025, 254, 114797. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jang, E.H.; Kim, J.H.; Park, S.; Kang, Y.; Park, S.; Lee, K.; Kim, J.H.; Youn, Y.N.; Ryu, W. Highly flexible and porous silk fibroin MN wraps for perivascular drug delivery. J. Control. Release 2021, 340, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Zhang, Y.; Shen, T.; Zeng, Q.; Zhang, W.; Zhang, X.; Liu, Q.; Zheng, H.; Lv, G. Sustained-release MN system based on PCL/PLA and cerium/zinc-doped bioactive glass for gastric ulcer repair. Mater. Chem. Phys. 2026, 348, 131584. [Google Scholar] [CrossRef]
- Ita, K. Ceramic MNs and hollow MNs for transdermal drug delivery: Two decades of research. J. Drug Deliv. Sci. Technol. 2018, 44, 314–322. [Google Scholar] [CrossRef]
- Banks, S.L.; Pinninti, R.R.; Gill, H.S.; Paudel, K.S.; Crooks, P.A.; Brogden, N.K.; Prausnitz, M.R.; Stinchcomb, A.L. Transdermal Delivery of Naltrexol and Skin Permeability Lifetime after Microneedle Treatment in Hairless Guinea Pigs. J. Pharm. Sci. 2010, 99, 3072–3080. [Google Scholar] [CrossRef]
- Dardano, P.; Caliò, A.; Di Palma, V.; Bevilacqua, M.; Di Matteo, A.; De Stefano, L. A Photolithographic Approach to Polymeric Microneedles Array Fabrication. Materials 2015, 8, 8661–8673. [Google Scholar] [CrossRef]
- Lippmann, J.M.; Geiger, E.J.; Pisano, A.P. Polymer investment molding: Method for fabricating hollow, microscale parts. Sens. Actuators A Phys. 2007, 134, 2–10. [Google Scholar] [CrossRef]
- Indermun, S.; Luttge, R.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Modi, G.; Pillay, V. Current advances in the fabrication of microneedles for transdermal delivery. J. Control. Release 2014, 185, 130–138. [Google Scholar] [CrossRef]
- Cordeiro, A.S.; Tekko, I.A.; Jomaa, M.H.; Vora, L.; McAlister, E.; Volpe-Zanutto, F.; Nethery, M.; Baine, P.T.; Mitchell, N.; McNeill, D.W.; et al. Two-Photon Polymerisation 3D Printing of Microneedle Array Templates with Versatile Designs: Application in the Development of Polymeric Drug Delivery Systems. Pharm. Res. 2020, 37, 174. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Liu, P.; Zhu, J.; Lan, J.; Li, Y.; Zhang, L.; Zhu, J.; Tao, J. Hyaluronic Acid-Based Dissolving Microneedle Patch Loaded with Methotrexate for Improved Treatment of Psoriasis. ACS Appl. Mater. Interfaces 2019, 11, 43588–43598. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Du, S.; Li, J.; Zhang, M.; Nie, H.; Zhou, X.; Li, F.; Wei, X.; Wang, J.; Liu, F.; et al. Langmuir–Blodgett-Mediated Formation of Antibacterial Microneedles for Long-Term Transdermal Drug Delivery. Adv. Mater. 2023, 35, 2303388. [Google Scholar] [CrossRef]
- Li, R.; Zhang, L.; Jiang, X.; Li, L.; Wu, S.; Yuan, X.; Cheng, H.; Jiang, X.; Gou, M. 3D-printed microneedle arrays for drug delivery. J. Control. Release 2022, 350, 933–948. [Google Scholar] [CrossRef]
- Ingrole, R.S.J.; Gill, H.S. Microneedle Coating Methods: A Review with a Perspective. J. Pharmacol. Exp. Ther. 2019, 370, 555–569. [Google Scholar] [CrossRef] [PubMed]
- Tarbox, T.N.; Watts, A.B.; Cui, Z.; Williams, R.O. An update on coating/manufacturing techniques of microneedles. Drug Deliv. Transl. Res. 2017, 8, 1828–1843. [Google Scholar] [CrossRef]
- Vora, L.K.; Moffatt, K.; Tekko, I.A.; Paredes, A.J.; Volpe-Zanutto, F.; Mishra, D.; Peng, K.; Raj Singh Thakur, R.; Donnelly, R.F. MN array systems for long-acting drug delivery. Eur. J. Pharm. Biopharm. 2021, 159, 44–76. [Google Scholar] [CrossRef]
- Kapoor, D.N.; Bhatia, A.; Kaur, R.; Sharma, R.; Kaur, G.; Dhawan, S. PLGA: A unique polymer for drug delivery. Ther. Deliv. 2015, 6, 41–58. [Google Scholar] [CrossRef]
- Dreiss, C.A. Hydrogel design strategies for drug delivery. Curr. Opin. Colloid Interface Sci. 2020, 48, 1–17. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 2016, 1, 10–29. [Google Scholar] [CrossRef]
- Perinelli, D.R.; Cespi, M.; Bonacucina, G.; Palmieri, G.F. PEGylated polylactide (PLA) and poly (lactic-co-glycolic acid) (PLGA) copolymers for the design of drug delivery systems. J. Pharm. Investig. 2019, 49, 443–458. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, S.; Cai, Y.; Yang, H.; Dong, X.; Yang, B.; Zhong, J. Integration of finite element simulations with 3D printing technology for personalized Chitin/PLA MN-based drug delivery systems in thoracic keloid treatment. Int. J. Biol. Macromol. 2025, 315, 144487. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.; Choi, K.; Kim, H.; Park, Y.; Yoon, J.; Kim, J.H.; Ryu, S. Polylactic Acid and Polycaprolactone Blended Cosmetic MN for Transdermal Hispidin Delivery System. Appl. Sci. 2021, 11, 2774. [Google Scholar] [CrossRef]
- Abu Ershaid, J.M.; Abudoleh, S.M.; Lafi, D.N.; Dahshan, N.A. Formulation and Characterization of PLGA Minocycline MNs for Enhanced Skin Deposition and Antibacterial Activity in Acne Treatment. Polymers 2025, 17, 2912. [Google Scholar] [CrossRef]
- Kang, S.; Song, J.E.; Jun, S.-H.; Park, S.-G.; Kang, N.-G. Sugar-Triggered Burst Drug Releasing Poly-Lactic Acid (PLA) MNs and Its Fabrication Based on Solvent-Casting Approach. Pharmaceutics 2022, 14, 1758. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, N.; Karve, T.; Kipping, T.; Banga, A.K. Fabrication of Poly Lactic-co-Glycolic Acid MNs for Sustained Delivery of Lipophilic Peptide-Carfilzomib. Mol. Pharm. 2024, 21, 5192–5204. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Lu, H.; Chen, Y.; Zeng, H.; Hu, P. Visualization of the degradation of long-acting MNs and correlation of drug release in vivo based on FRET mechanism. Acta Biomater. 2024, 190, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.; Sharma, P.K.; McCann, T.; Bloomekatz, J.; Repka, M.A.; Murthy, S.N. Fabrication and development of controlled release PLGA MNs for macromolecular delivery using FITC-Dextran as model molecule. J. Drug Deliv. Sci. Technol. 2022, 68, 102712. [Google Scholar] [CrossRef]
- Pawley, D.C.; Goncalves, S.; Bas, E.; Dikici, E.; Deo, S.K.; Daunert, S.; Telischi, F. Dexamethasone (DXM)-Coated Poly(lactic-co-glycolic acid) (PLGA) MNs as an Improved Drug Delivery System for Intracochlear Biodegradable Devices. Adv. Ther. 2021, 4, 2100155. [Google Scholar] [CrossRef]
- Panda, A.; Shettar, A.; Sharma, P.K.; Repka, M.A.; Murthy, S.N. Development of lysozyme loaded MNs for dermal applications. Int. J. Pharm. 2021, 593, 120104. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Vora, L.K.; Domínguez-Robles, J.; Naser, Y.A.; Li, M.; Larrañeta, E.; Donnelly, R.F. Hydrogel-forming microneedles for rapid and efficient skin deposition of controlled release tip-implants. Mater. Sci. Eng. C 2021, 127, 112226. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-L.; Chang, C.-C.; Lin, Y.-C.; Chen, M.-C. Double-layered PLGA/HA MN systems as a long-acting formulation of polyphenols for effective and long-term management of atopic dermatitis. Biomater. Sci. 2023, 11, 4995–5011. [Google Scholar] [PubMed]
- Malikmammadov, E.; Tanir, T.E.; Kiziltay, A.; Hasirci, V.; Hasirci, N. PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed. 2018, 29, 863–893. [Google Scholar] [CrossRef]
- Wang, R.; Wang, H.; Jiang, G.; Sun, Y.; Liu, T.; Nie, L.; Shavandi, A.; Yunusov, K.E.; Aharodnikau, U.E.; Solomevich, S.O. Transdermal delivery of allopurinol to acute hyperuricemic mice via polymer MNs for the regulation of serum uric acid levels. Biomater. Sci. 2023, 11, 1704–1713. [Google Scholar] [CrossRef]
- Permana, A.D.; Aziz, A.Y.R.; Ilyas, N.R.A.; Putri, A.P.D.; Domìnguez-Robles, J.; Asri, R.M.; Habibie; Amir, M.N.; Fauziah, N.; Chabib, L.; et al. Development of three-layer microneedle system for controlled and sustained release of Levonorgestrel: A pioneering approach to long-term contraceptive delivery. Int. J. Pharm. 2025, 669, 125085. [Google Scholar] [CrossRef]
- Ilyas, N.R.A.; Putri, A.P.D.; Pratama, F.A.; Abdullah, D.A.P.; Azzahra, K.S.; Permana, A.D. Implantable trilayer microneedle transdermal delivery system to enhance bioavailability and brain delivery of rivastigmine for Alzheimer treatment: A proof-of-concept study. Eur. J. Pharm. Biopharm. 2024, 201, 114382. [Google Scholar] [CrossRef]
- Ko, P.-T.; Lee, I.C.; Chen, M.-C.; Tsai, S.-W. Polymer microneedles fabricated from PCL and PCL/PEG blends for transdermal delivery of hydrophilic compounds. J. Taiwan Inst. Chem. Eng. 2015, 51, 1–8. [Google Scholar] [CrossRef]
- Bader, N.; Abu Ammar, A. Incorporating surfactants into PCL microneedles for sustained release of a hydrophilic model drug. Int. J. Pharm. 2024, 652, 123826. [Google Scholar] [CrossRef]
- Szabó, A.; De Decker, I.; Semey, S.; Claes, K.E.Y.; Blondeel, P.; Monstrey, S.; Dorpe, J.V.; Van Vlierberghe, S. Photo-crosslinkable polyester MNs as sustained drug release systems toward hypertrophic scar treatment. Drug Deliv. 2024, 31, 2305818. [Google Scholar] [CrossRef]
- Sahoo, J.K.; Hasturk, O.; Falcucci, T.; Kaplan, D.L. Silk chemistry and biomedical material designs. Nat. Rev. Chem. 2023, 7, 302–318. [Google Scholar] [CrossRef]
- Hua, J.; Huang, R.; Yu, M.; You, R.; Wang, L.; Yan, S.; Huang, Y.; Zhang, Q. High-performance silk fibroin/hyaluronic acid interpenetrating network hydrogel MNs for diabetes management. Int. J. Biol. Macromol. 2025, 298, 140357. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, Y.; Jiang, F.; Cao, J.; Kundu, S.C.; Lu, S. Combined Silk Fibroin microneedles for Insulin Delivery. ACS Biomater. Sci. Eng. 2020, 6, 3422–3429. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guan, P.; Tan, R.; Shi, Z.; Li, Q.; Lu, B.; Hu, E.; Ding, W.; Wang, W.; Cheng, B.; et al. Fiber-Reinforced Silk MN Patches for Improved Tissue Adhesion in Treating Diabetic Wound Infections. Adv. Fiber Mater. 2024, 6, 1596–1615. [Google Scholar] [CrossRef]
- Jang, E.H.; Ryu, J.-y.; Kim, J.-H.; Lee, J.; Ryu, W.; Youn, Y.-N. Effect of sequential release of sirolimus and rosuvastatin using silk fibroin MN to prevent intimal hyperplasia. Biomed. Pharmacother. 2023, 168, 115702. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Sun, Y.; Han, M.; Chen, D.; Wang, A.; Sun, K. Silk fibroin double-layer microneedles for the encapsulation and controlled release of triptorelin. Int. J. Pharm. 2022, 613, 121433. [Google Scholar] [CrossRef]
- Lin, Z.; Li, Y.; Meng, G.; Hu, X.; Zeng, Z.; Zhao, B.; Lin, N.; Liu, X.Y. Reinforcement of Silk microneedle Patches for Accurate Transdermal Delivery. Biomacromolecules 2021, 22, 5319–5326. [Google Scholar] [CrossRef]
- Cao, J.; Liu, Y.; Qi, Z.; Tao, X.; Kundu, S.C.; Lu, S. Sustained release of insulin from silk microneedles. J. Drug Deliv. Sci. Technol. 2022, 74, 103611. [Google Scholar] [CrossRef]
- Yan, X.; Jiang, R.; Tang, Q.; Tan, Q.; Cooper, M.; Wang, Y. Targeting local glucocorticoid metabolism with a silk fibroin microneedle for more effective hypertrophic scar repair. Int. J. Biol. Macromol. 2025, 319, 145753. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Q.; Wang, X.; Gao, N.; Li, X.; Chen, H.; Mei, L.; Zeng, X. Actively separated microneedle patch for sustained-release of growth hormone to treat growth hormone deficiency. Acta Pharm. Sin. B 2023, 13, 344–358. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, M.; Zhao, L.; Kuang, D.; Kundu, S.C.; Lu, S. Insulin-Loaded Silk Fibroin MNs as Sustained Release System. ACS Biomater. Sci. Eng. 2019, 5, 1887–1894. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Shao, H.; Yan, Z.; Wang, Y.; Lu, S. Silk fibroin MNs loaded with melatonin for circadian rhythm regulation. Int. J. Biol. Macromol. 2025, 301, 140500. [Google Scholar] [CrossRef]
- Ge, W.; Gao, Y.; Zeng, Y.; Yu, Y.; Xie, X.; Liu, L. Silk Fibroin MNs Loaded with Lipopolysaccharide-Pretreated Bone Marrow Mesenchymal Stem Cell-Derived Exosomes for Oral Ulcer Treatment. ACS Appl. Mater. Interfaces 2024, 16, 37486–37496. [Google Scholar] [CrossRef] [PubMed]
- Stinson, J.A.; Raja, W.K.; Lee, S.; Kim, H.B.; Diwan, I.; Tutunjian, S.; Panilaitis, B.; Omenetto, F.G.; Tzipori, S.; Kaplan, D.L. Silk Fibroin MNs for Transdermal Vaccine Delivery. ACS Biomater. Sci. Eng. 2017, 3, 360–369. [Google Scholar] [CrossRef]
- Guan, G.; Zhang, Q.; Jiang, Z.; Liu, J.; Wan, J.; Jin, P.; Lv, Q. Multifunctional Silk Fibroin Methacryloyl MN for Diabetic Wound Healing. Small 2022, 18, 2203064. [Google Scholar] [CrossRef]
- Jia, T.; Geng, Y.; Shao, H.; Tan, G.; Zhang, X.; Kundu, S.C.; Lu, S. Silk fibroin hollow MN system for sustained transdermal administration of liraglutide: Development and characterization. Int. J. Biol. Macromol. 2025, 322, 146884. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Gong, L.; Slezak, P.; He, S.; Lu, F.; Yu, K.; Xie, J.; Geng, Z.; Hu, E.; Zhou, Z.; et al. Magnetic-navigable silk fibroin MNs for oral drug delivery: Ensuring long-lasting helicobacter pylori eradication and rapid hemostasis in the stomach. Int. J. Biol. Macromol. 2024, 275, 133584. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, G.; Yuan, J.; Jing, S.; Wang, X.; Yang, F.; Liu, Y.; Ding, Y.; Li, G.; Xie, G.; et al. A Smart Silk-Based MN for Cancer Stem Cell Synergistic Immunity/Hydrogen Therapy. Adv. Funct. Mater. 2022, 32, 2206406. [Google Scholar] [CrossRef]
- Aranaz, I.; Alcantara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Heras Caballero, A.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef]
- Mali, N.; Wavikar, P.; Vavia, P. Serratiopeptidase loaded chitosan nanoparticles by polyelectrolyte complexation: In vitro and in vivo evaluation. AAPS PharmSciTech 2015, 16, 59–66. [Google Scholar] [CrossRef]
- Chandrasekharan, A.; Hwang, Y.J.; Seong, K.-Y.; Park, S.; Kim, S.; Yang, S.Y. Acid-Treated Water-Soluble Chitosan Suitable for MN-Assisted Intracutaneous Drug Delivery. Pharmaceutics 2019, 11, 209. [Google Scholar] [CrossRef]
- Dai, P.; Ge, X.; Sun, C.; Jiang, H.; Zuo, W.; Wu, P.; Liu, C.; Deng, S.; Yang, J.; Dai, J.; et al. A Novel Methacryloyl Chitosan Hydrogel MNs Patch with Sustainable Drug Release Property for Effective Treatment of Psoriasis. Macromol. Biosci. 2023, 23, 2300194. [Google Scholar] [CrossRef]
- Wei, H.; Liu, S.; Tong, Z.; Chen, T.; Yang, M.; Guo, Y.; Sun, H.; Wu, Y.; Chu, Y.; Fan, L. Hydrogel-based MNs of chitosan derivatives for drug delivery. React. Funct. Polym. 2022, 172, 105200. [Google Scholar] [CrossRef]
- Chen, M.-C.; Lai, K.-Y.; Ling, M.-H.; Lin, C.-W. Enhancing immunogenicity of antigens through sustained intradermal delivery using chitosan MNs with a patch-dissolvable design. Acta Biomater. 2018, 65, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.-H.; Chen, M.-C.; Wan, S.-W. Sodium Hyaluronate/Chitosan Composite MNs as a Single-Dose Intradermal Immunization System. Biomacromolecules 2018, 19, 2278–2285. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Z.; Khan, M.I.; Siddique, M.I.; Sarwar, H.S.; Shahnaz, G.; Hussain, S.Z.; Bukhari, N.I.; Hussain, I.; Sohail, M.F. Fabrication and Characterization of Thiolated Chitosan MN Patch for Transdermal Delivery of Tacrolimus. AAPS PharmSciTech 2020, 21, 68. [Google Scholar] [CrossRef]
- Zhong, H.; Chen, Z.; Huang, J.; Yu, X.; Wang, C.; Zheng, Y.; Peng, M.; Yuan, Z. Spray-drying-engineered CS/HA-bilayer MNs enable sequential drug release for wound healing. J. Mater. Chem. B 2025, 13, 4819–4829. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, H.; Wang, L.; Hu, J.; Feng, J.; Shen, D.; Hong, Y.; Liu, J.; Chen, D. MNs with Two-Stage Glucose-Sensitive Controlled Release for Long-Term Insulin Delivery. ACS Biomater. Sci. Eng. 2023, 9, 2534–2544. [Google Scholar] [CrossRef]
- Ozturk, K.; Kaplan, M.; Calis, S. Effects of nanoparticle size, shape, and zeta potential on drug delivery. Int. J. Pharm. 2024, 666, 124799. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Zhu, D.; Soto, J.; Hu, S.; Fang, J.; Huang, J.; Zhang, X.; Li, J.; Li, Y.; Tasoudis, P.; et al. Immunomodulatory MN patch for cardiac repair in rodent and porcine models of myocardial infarction. Cell Biomater. 2025, 1, 100152. [Google Scholar] [CrossRef] [PubMed]
- de Groot, A.M.; Du, G.; Mönkäre, J.; Platteel, A.C.M.; Broere, F.; Bouwstra, J.A.; Sijts, A.J.A.M. Hollow microneedle-mediated intradermal delivery of model vaccine antigen-loaded PLGA nanoparticles elicits protective T cell-mediated immunity to an intracellular bacterium. J. Control. Release 2017, 266, 27–35. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, S.; Liu, H.; Yang, G.; Zhou, Z.; Gao, Y. Double-layered core-shell microneedle patch integrated with microparticles for long-acting treatment of osteoporosis. J. Control. Release 2025, 384, 113898. [Google Scholar] [CrossRef]
- Xu, B.; Liu, H.; Yang, G.; Zhang, S.; Zhou, Z.; Gao, Y. Novel double-layered PLGA microparticles-dissolving MN (MPs-DMN) system for peptide drugs sustained release by transdermal delivery. Int. J. Pharm. 2025, 670, 125128. [Google Scholar] [CrossRef] [PubMed]
- Permana, A.D.; Ramadhan Aziz, A.Y.; Sam, A.; Djabir, Y.Y.; Arsyad, M.A.; Harahap, Y.; Munir, M.; Saputri, W.D.; Fajarwati, R.; Darmawan, N. Development of hyaluronic acid-based MNs for improved brain delivery of rivastigmine nanoparticles via mystacial pad region. J. Drug Deliv. Sci. Technol. 2023, 90, 105183. [Google Scholar] [CrossRef]
- Nguyen, H.X.; Kipping, T.; Banga, A.K. Enhancement of Transdermal Drug Delivery: Integrating MNs with Biodegradable Microparticles. Mol. Pharm. 2025, 22, 984–1009. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Chen, Y.; He, X.; Yang, F.; Han, R.; Yang, C.; Li, W.; Qian, Z. Near-infrared responsive 5-fluorouracil and indocyanine green loaded MPEG-PCL nanoparticle integrated with dissolvable microneedle for skin cancer therapy. Bioact. Mater. 2020, 5, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Yavuz, B.; Chambre, L.; Harrington, K.; Kluge, J.; Valenti, L.; Kaplan, D.L. Silk Fibroin MN Patches for the Sustained Release of Levonorgestrel. ACS Appl. Bio Mater. 2020, 3, 5375–5382. [Google Scholar] [CrossRef]
- Li, Y.; Gong, J.-Y.; Wang, P.; Fu, H.; Yousef, F.; Xie, R.; Wang, W.; Liu, Z.; Pan, D.-W.; Ju, X.-J.; et al. Dissolving MN system containing Ag nanoparticle-decorated silk fibroin microspheres and antibiotics for synergistic therapy of bacterial biofilm infection. J. Colloid Interface Sci. 2024, 661, 123–138. [Google Scholar] [CrossRef]
- Yang, L.; Gao, Y.; Liu, Q.; Li, W.; Li, Z.; Zhang, D.; Xie, R.; Zheng, Y.; Chen, H.; Zeng, X. A Bacterial Responsive microneedle Dressing with Hydrogel Backing Layer for Chronic Wound Treatment. Small 2023, 20, 2307104. [Google Scholar] [CrossRef]
- Hu, H.; Ruan, H.; Ruan, S.; Pei, L.; Jing, Q.; Wu, T.; Hou, X.; Xu, H.; Wang, Y.; Feng, N.; et al. Acid-responsive PEGylated branching PLGA nanoparticles integrated into dissolving microneedles enhance local treatment of arthritis. Chem. Eng. J. 2022, 431, 134196. [Google Scholar] [CrossRef]
- Zheng, Z.; Shen, S.; Shi, H.; Yao, P.; Zhu, Z.; Zhang, C.; Zhang, S.; Hu, X.; Xu, R.X. Rational engineering of dual Drug-Formulated multifunctional MNs to accelerate in vivo cutaneous infection treatment. Chem. Eng. J. 2024, 496, 154076. [Google Scholar] [CrossRef]
- Zheng, B.; Ge, M.; Zhang, J.; Zhu, T.; Yi, Y.; Rong, H. Biomembrane delivers neurotrophic factor for spinal cord injury recovery through MN patch. Chem. Eng. J. 2025, 520, 166198. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Z.; Lu, S.; Zhao, P.; Wang, X.; Jia, F.; Chang, H. Microsphere-integrated hydrogel MN patch for sustained methotrexate delivery in the long-term management of atopic dermatitis. Eur. Polym. J. 2025, 229, 113877. [Google Scholar] [CrossRef]
- Yang, G.; Kang, H.; Zhu, Y.; Wu, H.; Zhang, M.; Zeng, X.; Peng, Y.; Wan, W.; Yi, Y. Bacteria microenvironment-responsive missile microneedles modulate immunity and penetrate biofilm for diabetic wound therapy. Bioact. Mater. 2026, 55, 426–445. [Google Scholar] [CrossRef]
- Basak, S.; Das, T.K. Liposome-Based Drug Delivery Systems: From Laboratory Research to Industrial Production—Instruments and Challenges. ChemEngineering 2025, 9, 56. [Google Scholar] [CrossRef]
- Alqarni, M.H.; Imran, M.; Foudah, A.I.; Hasmi, S.; Aodah, A.H.; Alam, A. Dissolving MN Transdermal Patch Loaded with Nanoliposomes of Enicostemma littorale for the Management of Type II Diabetes. ACS Omega 2025, 10, 26468–26477. [Google Scholar] [CrossRef]
- Qiu, Y.; Gao, Y.; Hu, K.; Li, F. Enhancement of skin permeation of docetaxel: A novel approach combining MN and elastic liposomes. J. Control. Release 2008, 129, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Hao, B.; Ju, D.; Liu, M.; Zhao, H.; Du, Z.; Xia, J. Pharmacokinetic and pharmacodynamic study of triptolide-loaded liposome hydrogel patch under MNs on rats with collagen-induced arthritis. Acta Pharm. Sin. B 2015, 5, 569–576. [Google Scholar] [CrossRef]
- Zhou, P.; Chen, C.; Yue, X.; Zhang, J.; Huang, C.; Zhao, S.; Wu, A.; Li, X.; Qu, Y.; Zhang, C. Strategy for osteoarthritis therapy: Improved the delivery of triptolide using liposome-loaded dissolving MN arrays. Int. J. Pharm. 2021, 609, 121211. [Google Scholar] [CrossRef]
- Xie, J.; Zhu, X.; Wang, M.; Liu, C.; Ling, G.; Zhang, P. Dissolving MN-mediated transdermal delivery of flurbiprofen axetil-loaded pH-responsive liposomes for arthritis treatment. Chem. Eng. J. 2024, 482, 148840. [Google Scholar] [CrossRef]
- Lei, D.; Xin, J.; Qin, F.; Lan, H.; Liu, J.; Wang, S.; Wang, J.; Zeng, W.; Yao, C. Soluble hyaluronic acid MN arrays mediated RGD-modified liposome delivery for pain relief during photodynamic therapy by blocking TRPV1. Int. J. Biol. Macromol. 2024, 282, 136952. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Shi, W.; Tian, Y.; Liu, Y.; Guo, P.; Yang, Q.; Xiong, S.; Tuo, W.; Yi, X.; Zhao, J.; et al. Microneedles loaded with biphasic-delivery liposomes modulate skin oxidation/immunity dual-axis for psoriasis therapy. Mater. Today Bio 2025, 35, 102396. [Google Scholar] [CrossRef]
- Ramalheiro, A.; Paris, J.L.; Silva, B.F.B.; Pires, L.R. Rapidly dissolving microneedles for the delivery of cubosome-like liquid crystalline nanoparticles with sustained release of rapamycin. Int. J. Pharm. 2020, 591, 119942. [Google Scholar] [CrossRef]
- Qu, F.; Sun, Y.; Bi, D.; Peng, S.; Li, M.; Liu, H.; Zhang, L.; Tao, J.; Liu, Y.; Zhu, J. Regulating Size and Charge of Liposomes in MNs to Enhance Intracellular Drug Delivery Efficiency in Skin for Psoriasis Therapy. Adv. Healthc. Mater. 2023, 12, 2302314. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Gou, K.; Yue, X.; Zhao, S.; Zeng, R.; Qu, Y.; Zhang, C. A novel hyaluronic acid-based dissolving microneedle patch loaded with ginsenoside Rg3 liposome for effectively alleviate psoriasis. Mater. Des. 2022, 224, 111363. [Google Scholar] [CrossRef]
- Wang, N.; Zhen, Y.; Jin, Y.; Wang, X.; Li, N.; Jiang, S.; Wang, T. Combining different types of multifunctional liposomes loaded with ammonium bicarbonate to fabricate microneedle arrays as a vaginal mucosal vaccine adjuvant-dual delivery system (VADDS). J. Control. Release 2017, 246, 12–29. [Google Scholar] [CrossRef] [PubMed]
- Quinn, H.L.; Kearney, M.-C.; Courtenay, A.J.; McCrudden, M.T.; Donnelly, R.F. The role of microneedles for drug and vaccine delivery. Expert Opin. Drug Deliv. 2014, 11, 1769–1780. [Google Scholar] [CrossRef]
- Laurent, P.E.; Bonnet, S.; Alchas, P.; Regolini, P.; Mikszta, J.A.; Pettis, R.; Harvey, N.G. Evaluation of the clinical performance of a new intradermal vaccine administration technique and associated delivery system. Vaccine 2007, 25, 8833–8842. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Dave, K.; Venuganti, V.V.K. Microneedles in the clinic. J. Control. Release 2017, 260, 164–182. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, Z.Q.; Liang, L.; Jing, L.Y.; Wang, J.; Dai, Y.; Chen, B.Z.; Guo, X.D. Toward a solid microneedle patch for rapid and enhanced local analgesic action. Drug Deliv. Transl. Res. 2024, 14, 1810–1819. [Google Scholar] [CrossRef]
- Sharifi, M.; Shahnazari, M.; Razzaghi, S.; Vafai, K. A review of natural and synthetic polymers in transdermal drug delivery as soluble microneedles. J. Drug Deliv. Sci. Technol. 2026, 115, 107841. [Google Scholar]
- Creighton, R.L.; Woodrow, K.A. Microneedle-Mediated Vaccine Delivery to the Oral Mucosa. Adv. Healthc. Mater. 2019, 8, 1801180. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, R.F. Clinical Translation and Industrial Development of Microneedle-based Products. In Microneedles for Drug and Vaccine Delivery and Patient Monitoring; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 307–322. [Google Scholar]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Luo, J.; Dai, Y.; Cheng, X.; Wang, Z.; Zhu, Z. Microneedle-Based Technologies for Long-Acting Transdermal Drug Delivery in Wearable Devices. Sensors 2026, 26, 239. https://doi.org/10.3390/s26010239
Luo J, Dai Y, Cheng X, Wang Z, Zhu Z. Microneedle-Based Technologies for Long-Acting Transdermal Drug Delivery in Wearable Devices. Sensors. 2026; 26(1):239. https://doi.org/10.3390/s26010239
Chicago/Turabian StyleLuo, Jiaxin, Yinqi Dai, Xin Cheng, Zifeng Wang, and Zhigang Zhu. 2026. "Microneedle-Based Technologies for Long-Acting Transdermal Drug Delivery in Wearable Devices" Sensors 26, no. 1: 239. https://doi.org/10.3390/s26010239
APA StyleLuo, J., Dai, Y., Cheng, X., Wang, Z., & Zhu, Z. (2026). Microneedle-Based Technologies for Long-Acting Transdermal Drug Delivery in Wearable Devices. Sensors, 26(1), 239. https://doi.org/10.3390/s26010239

