A High-Regularity Porous SERS Substrate Prepared by Two-Step Mild and Hard Anodization for Sorbic Acid Detection
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Z.; Ma, C.; Gu, J.; Wu, Y.; Zhu, C.; Li, L.; Gao, H.; Yin, W.; Wang, Z.; Zhang, Y.; et al. SERS detection of benzoic acid in milk by using Ag-COF SERS substrate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 267, 120534. [Google Scholar] [CrossRef] [PubMed]
- Adomavičiūtė-Grabusovė, S.; Ramanavičius, S.; Popov, A.; Šablinskas, V.; Gogotsi, O.; Ramanavičius, A. Selective enhancement of SERS spectral bands of salicylic acid adsorbate on 2D Ti3C2Tx-based MXene film. Chemosensors 2021, 9, 223. [Google Scholar] [CrossRef]
- Yu, C.W.; Tsen, C.M.; Chen, S.Y.; Yang, Z.T.; Jen, Y.J. Rapid detection of benzoic, sorbic, and dehydroacetic acids in processed foods using surface-enhanced Raman scattering spectroscopy. J. Food Compos. Anal. 2024, 136, 106740. [Google Scholar] [CrossRef]
- Hussain, A.; Pu, H.; Sun, D.W. SERS detection of sodium thiocyanate and benzoic acid preservatives in liquid milk using cysteamine functionalized core-shelled nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 229, 117994. [Google Scholar] [CrossRef]
- Amirpour, M.; Arman, A.; Yolmeh, A.; Akbari Azam, M.; Moradi-Khatoonabadi, Z. Sodium benzoate and potassium sorbate preservatives in food stuffs in Iran. Food Addit. Contam. Part B 2015, 8, 142–148. [Google Scholar] [CrossRef]
- Sirhan, A.Y. Optimization and validation of an HPLC-UV method for determination of benzoic acid and sorbic acid in yogurt and dried-yogurt products using a design of experiment. Indones. J. Chem. 2018, 18, 522–530. [Google Scholar] [CrossRef]
- Liu, C.; Xu, D.; Dong, X.; Huang, Q. A review: Research progress of SERS-based sensors for agricultural applications. Trends Food Sci. Technol. 2022, 128, 90–101. [Google Scholar] [CrossRef]
- Beeram, R.; Vepa, K.R.; Soma, V.R. Recent trends in SERS-based plasmonic sensors for disease diagnostics, biomolecules detection, and machine learning techniques. Biosensors 2023, 13, 328. [Google Scholar] [CrossRef]
- Mahanty, S.; Majumder, S.; Paul, R.; Boroujerdi, R.; Valsami-Jones, E.; Laforsch, C. A review on nanomaterial-based SERS substrates for sustainable agriculture. Sci. Total Environ. 2024, 950, 174252. [Google Scholar] [CrossRef]
- Yavuz, E.; Sakir, M.; Onses, M.S.; Salem, S.; Yilmaz, E. Advancements in reusable SERS substrates for trace analysis applications. Talanta 2024, 279, 126640. [Google Scholar] [CrossRef]
- Lin, D.Y.; Yu, C.Y.; Ku, C.A.; Chung, C.K. Design, fabrication, and applications of SERS substrates for food safety detection. Micromachines 2023, 14, 1343. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.X.; Huang, H.B.; Shi, J.L.; Liang, A.H.; Jiang, Z.L. A new gold nanoflower sol SERS method for trace iodine ion based on catalytic amplification. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 255, 119738. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, S.H.; Du, X.Y.; Sun, J.J. Plasmonic Ag nanocube enhanced SERS biosensor for sensitive detection of oral cancer DNA based on nicking endonuclease signal amplification and heated electrode. Sens. Actuators B Chem. 2021, 338, 129854. [Google Scholar] [CrossRef]
- Han, H.W.; Joe, A.; Jang, E.S. Reduced cytotoxicity of CTAB-templated silica layer on gold nanorod using fluorescence dyes and its application in cancer theranostics. J. Ind. Eng. Chem. 2021, 96, 202–212. [Google Scholar] [CrossRef]
- Jin, X.; Zhu, Q.Y.; Feng, L.; Li, X.; Zhu, H.Y.; Miao, H.Y.; Zeng, Z.F.; Wang, Y.D.; Li, Y.; Wang, L.K.; et al. Light-Trapping SERS Substrate with Regular Bioinspired Arrays for Detecting Trace Dyes. ACS Appl. Mater. Interfaces 2021, 13, 11535–11542. [Google Scholar] [CrossRef]
- Zhao, L.; Deng, C.; Xue, S.; Liu, H.; Hao, L.; Zhu, M. Multifunctional g-C3N4/Ag NPs intercalated GO composite membrane for SERS detection and photocatalytic degradation of paraoxon-ethyl. Chem. Eng. J. 2020, 402, 126223. [Google Scholar] [CrossRef]
- Celik, Y.; Kurt, A. Three dimensional porous Expanded Graphite/Silver Nanoparticles nanocomposite platform as a SERS substrate. Appl. Surf. Sci. 2021, 568, 150946. [Google Scholar] [CrossRef]
- Dan, Y.Q.; Zhong, C.Q.; Zhu, H.W.; Wang, J. Highly ordered Au-decorated Ag nanorod arrays as an ultrasensitive and reusable substrate for surface enhanced Raman scattering. Colloids Surf. A Physicochem. Eng. Asp. 2019, 560, 360–365. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, L.; Wu, Y.; Chen, Y.; Yan, J.; Zhu, W.; Tan, X.; Wang, Q. Fabrication of sea urchin-like Au@ SiO2 nanoparticles SERS substrate for the determination of malachite green in tilapia. Vib. Spectrosc. 2022, 118, 103319. [Google Scholar] [CrossRef]
- Cheng, Y.; Ding, Y.; Chen, J.; Xu, W.; Wang, W.; Xu, S. Au nanoparticles decorated covalent organic framework composite for SERS analyses of malachite green and thiram residues in foods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 281, 121644. [Google Scholar] [CrossRef]
- Li, J.; Yan, H.; Tan, X.; Lu, Z.; Han, H. Cauliflower-inspired 3D SERS substrate for multiple mycotoxins detection. Anal. Chem. 2019, 91, 3885–3892. [Google Scholar] [CrossRef] [PubMed]
- Celik, M.; Altuntas, S.; Buyukserin, F. Fabrication of nanocrater-decorated anodic aluminum oxide membranes as substrates for reproducibly enhanced SERS signals. Sens. Actuators B Chem. 2018, 255, 2871–2877. [Google Scholar] [CrossRef]
- Yu, C.Y.; Chung, C.K. Facile nanofabrication and simultaneous color-and-Raman hybrid mechanism of economic SERS substrate with tunable structure color for high enhancement factor. Appl. Surf. Sci. 2025, 681, 161563. [Google Scholar] [CrossRef]
- Rahim, A.; Ma, L.; Saleem, M.; Lyu, B.; Shafi, M.; You, Y.; Li, M.; Zhang, X.; Liu, M. V-Shaped Heterostructure Nanocavities Array with CM and EM Coupled Enhancement for Ultra-Sensitive SERS Substrate. Adv. Sci. 2024, 11, 2409838. [Google Scholar] [CrossRef]
- Li, K.; Tang, X.; Liu, G.; Mi, J.; Du, J.; Huang, W.; Zuo, Z.; Lu, Y. An efficient double template strategy to construct large-area and highly ordered silver “urchin-like” arrays for sensitive SERS analysis. Appl. Surf. Sci. 2021, 570, 151069. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, N.; Li, H.; Wang, M.; Hao, X.; Sun, M.; Li, X.; Yang, Z.; Yu, H.; Tian, C.; et al. 3D flexible SERS substrates integrated with a portable Raman analyzer and wireless communication for point-of-care application. ACS Appl. Mater. Interfaces 2022, 214, 51253–51264. [Google Scholar] [CrossRef]
- Shao, X.; Zhao, Q.; Xia, J.; Xie, M.; Li, Q.; Tang, Y.; Gu, X.; Ning, X.; Geng, S.; Fu, J.; et al. Ag-modified CuO cavity arrays as a SERS-electrochemical dual signal platform for thiram detection. Talanta 2024, 274, 125989. [Google Scholar] [CrossRef]
- Xu, G.; Dong, R.; Gu, D.; Tian, H.; Xiong, L.; Wang, Z.; Wang, W.; Shao, Y.; Li, W.; Li, G.; et al. Selenium vacancies and synergistic effect of near-and far-field-enabled ultrasensitive surface-enhanced raman-scattering-active substrates for malaria detection. J. Phys. Chem. Lett. 2022, 13, 1453–1463. [Google Scholar] [CrossRef]
- Ku, C.A.; Yu, C.Y.; Hung, C.W.; Chung, C.K. Advances in the fabrication of nanoporous anodic aluminum oxide and its applications to sensors: A review. Nanomaterials 2023, 13, 2853. [Google Scholar] [CrossRef]
- Wu, Z.; Sha, M.; Ji, D.; Zhao, H.; Li, L.; Lei, Y. Ordered anodic aluminum oxide-based nanostructures for surface-enhanced Raman scattering: A review. ACS Appl. Nano Mater. 2024, 7, 11–31. [Google Scholar] [CrossRef]
- Sammi, H.; Nair, R.V.; Sardana, N. Recent advances in nanoporous AAO based substrates for surface-enhanced raman scattering. Mater. Today Proc. 2021, 41, 843–850. [Google Scholar] [CrossRef]
- Hun, C.W.; Chiu, Y.J.; Luo, Z.; Chen, C.; Chen, S. A new technique for batch production of tubular anodic aluminum oxide films for filtering applications. Appl. Sci. 2018, 8, 1055. [Google Scholar] [CrossRef]
- Kim, K.B.; Kim, B.C.; Ha, S.J.; Cho, M.W. Effect of pre-treatment polishing on fabrication of anodic aluminum oxide using commercial aluminum alloy. J. Mech. Sci. Technol. 2017, 31, 4387–4393. [Google Scholar] [CrossRef]
- Kumeria, T.; Losic, D. Controlling interferometric properties of nanoporous anodic aluminium oxide. Nanoscale Res. Lett. 2012, 7, 88–98. [Google Scholar] [CrossRef]
- Wang, D.A.; Zhang, L.B.; Lee, W.; Knez, M.; Liu, L.F. Novel Three-Dimensional Nanoporous Alumina as a Template for Hierarchical TiO2 Nanotube Arrays. Small 2013, 9, 1025–1029. [Google Scholar] [CrossRef]
- Santos, A.; Balderrama, V.S.; Alba, M.; Formentin, P.; Ferre-Borrull, J.; Pallares, J.; Marsal, L.F. Nanoporous Anodic Alumina Barcodes: Toward Smart Optical Biosensors. Adv. Mater. 2012, 24, 1050–1054. [Google Scholar] [CrossRef]
- Qiu, T.; Zhang, W.; Lang, X.; Zhou, Y.; Cui, T.; Chu, P.K. Controlled Assembly of Highly Raman-Enhancing Silver Nanocap Arrays Templated by Porous Anodic Alumina Membranes. Small 2009, 5, 2333–2337. [Google Scholar] [CrossRef]
- Yu, C.Y.; Chung, C.K. Novel irregular pore peripheral plasmonic mechanism of nanocomposite metal-nanoporous AAO using new facile one-step anodization and pore widening for high SERS enhancement. Appl. Surf. Sci. 2022, 580, 152252. [Google Scholar] [CrossRef]
- Gu, P.; Yang, H.; Li, D.; Zhu, H.; Chen, J.; Zhang, Z.; Yan, Z.; Tang, C.; Liu, F.; Chen, Z. High-Q and intense lattice plasmon resonance in hexagonal nonclose packed thin silver nanoshells array. J. Phys. Chem. C 2024, 128, 6431–6437. [Google Scholar] [CrossRef]
- Wang, R.; You, D.; Li, Z.; Xia, C.; Wang, X.; Qin, F.; Xu, C. Unlocking plasmonic nanolaser performance via exciton-plasmon interaction dynamics. Chin. Phys. B 2025, 34. [Google Scholar] [CrossRef]
- Gao, J.; Wang, X.; Chen, Y.; Zhao, D.; Qi, Y.; Yang, H. Triple Fano resonances induced by a square-elliptical cavity coupled with an MIM waveguide for high-sensitivity gas refractive index sensing. J. Opt. Soc. Am. B 2025, 42, 742–748. [Google Scholar] [CrossRef]
- Kuo, E.H.; Ku, C.A.; Chang, C.Y.; Wu, Z.E.; Chung, C.K. Fast-grown anodic aluminum oxide with high regularity using hybrid-pulse mixed mild-and-hard anodization at room temperature. Mater. Lett. 2026, 405, 139801. [Google Scholar] [CrossRef]
- Chung, C.K.; Ku, C.A.; Wu, Z.E. A high-and-rapid-response capacitive humidity sensor of nanoporous anodic alumina by one-step anodizing commercial 1050 aluminum alloy and its enhancement mechanism. Sens. Actuators B Chem. 2021, 343, 130156. [Google Scholar] [CrossRef]
- Luo, Y.; Jing, Q.; Li, C.; Liang, A.; Wen, G.; He, X.; Jiang, Z. Simple and sensitive SERS quantitative analysis of sorbic acid in highly active gold nanosol substrate. Sens. Actuators B Chem. 2018, 255, 3187–3193. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ku, C.-A.; Chiu, C.-H.; Yu, C.-Y.; Yang, C.-Y.; Chung, C.-K. A High-Regularity Porous SERS Substrate Prepared by Two-Step Mild and Hard Anodization for Sorbic Acid Detection. Sensors 2026, 26, 156. https://doi.org/10.3390/s26010156
Ku C-A, Chiu C-H, Yu C-Y, Yang C-Y, Chung C-K. A High-Regularity Porous SERS Substrate Prepared by Two-Step Mild and Hard Anodization for Sorbic Acid Detection. Sensors. 2026; 26(1):156. https://doi.org/10.3390/s26010156
Chicago/Turabian StyleKu, Chin-An, Cheng-Hao Chiu, Chung-Yu Yu, Chuan-Yi Yang, and Chen-Kuei Chung. 2026. "A High-Regularity Porous SERS Substrate Prepared by Two-Step Mild and Hard Anodization for Sorbic Acid Detection" Sensors 26, no. 1: 156. https://doi.org/10.3390/s26010156
APA StyleKu, C.-A., Chiu, C.-H., Yu, C.-Y., Yang, C.-Y., & Chung, C.-K. (2026). A High-Regularity Porous SERS Substrate Prepared by Two-Step Mild and Hard Anodization for Sorbic Acid Detection. Sensors, 26(1), 156. https://doi.org/10.3390/s26010156

