Secure Indoor Water Level Monitoring with Temporal Super-Resolution and Enhanced Yolov5
Abstract
:1. Introduction
- We propose a real-time water level monitoring framework, which includes a temporal super-resolution enhancement model and an improved Yolov5 structure.
- The introduced temporal super-resolution enhancement module adeptly manages varying degrees of super-resolution images, achieving high-definition outputs through a strategy involving temporal scaling factors for resolution. The enhanced Yolov5 architecture is designed with a small-scale feature mapping branch, which subsequently collaborates with large-scale and mesoscale features through convolution operations to produce the ultimate small-scale feature mapping output, thereby ensuring the comprehensiveness of water level monitoring.
- Extensive experiments are conducted on the self-made datasets, which were collected on-site for water level monitoring. This also demonstrates the practical application significance of our method.
2. Related Work
2.1. Contact-Based (Sensors) Methods
2.2. Non-Contact-Based Methods
2.3. Image Super-Resolution Methods
3. The Proposed Method
3.1. Overview
3.2. Temporal Super-Resolution Enhancement Model
3.3. Improved Yolov5 Structure
3.4. Model Optimization
4. Experimental Results and Analysis
4.1. Datasets
4.2. Evaluation Metric
4.3. Implementation Details
4.4. Experimental Results
4.5. Ablation Studies
4.6. Water Level Monitoring for Emerging Intelligent Systems Security Applications
5. Conclusions, Limitations, and Future Work
5.1. Conclusions
5.2. Limitations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, A.D.; Pandey, P.; Feijóo, A.; Yaseen, Z.M.; Bokde, N.D. Smart water technology for efficient water resource management: A review. Energies 2020, 13, 6268. [Google Scholar] [CrossRef]
- Pan, H.; Qi, X.; Liu, M.; Liu, L. An UWB-based indoor coplanar localization and anchor placement optimization method. Neural Comput. Appl. 2022, 34, 16845–16860. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, J.; Hu, B. Analysis of operating conditions and transition process of pua mining station with artesian diversion pipeline. Hydropower Energy Sci. 2024, 5, 163–168. [Google Scholar]
- Cheng, S.; Zhao, K.; Zhang, S.; Zhang, D. Water level line detection based on U-net. J. Metrol. 2019, 40, 361–366. [Google Scholar]
- Xiao, Z.; Tao, Q.; Shen, J. Video water level detection algorithm based on SSD target detection. Mod. Comput. (Prof. Ed.) 2019, 9, 60–64. [Google Scholar]
- Miller, M.; Kisiel, A.; Cembrowska-Lech, D.; Durlik, I.; Miller, T. IoT in water quality monitoring—Are we really here? Sensors 2023, 23, 960. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, X.; Hu, Q.; Xiao, Y.; Wang, B.; Sheng, B.; Chen, C.P. Clustering Environment Aware Learning for Active Domain Adaptation. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 3891–3904. [Google Scholar] [CrossRef]
- Ranieri, C.M.; Foletto, A.V.; Garcia, R.D.; Matos, S.N.; Medina, M.M.; Marcolino, L.S.; Ueyama, J. Water level identification with laser sensors, inertial units, and machine learning. Eng. Appl. Artif. Intell. 2024, 127, 107235. [Google Scholar]
- Getu, B.N.; Attia, H.A. Automatic water level sensor and controller system. In Proceedings of the International Conference on Electronic Devices, Systems and Applications (ICEDSA), Ras Al Khaimah, United Arab Emirates, 6–8 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–4. [Google Scholar]
- Salam, A. Internet of things for water sustainability. In Internet of Things for Sustainable Community Development: Wireless Communications, Sensing, and Systems; Springer International Publishing: Cham, Switzerland, 2024; pp. 113–145. [Google Scholar]
- Zhang, D.; Jackson, W.; Dobie, G.; Macleod, C.; Gachagan, A. Innovative non-invasive ultrasound method for whisky cask liquid level measurement. Measurement 2024, 228, 114345. [Google Scholar]
- Malik, S.B.; Mejia-Centeno, K.V.; Martínez-Alanis, P.R.; Cabot, A.; Güell, F.; Annanouch, F.E.; Llobet, E. Synergistic effect of CeO2 nanoparticles and WO3 nanowires in gas sensing applications. Sens. Actuators B Chem. 2024, 400, 134879. [Google Scholar]
- Farsiu, S.; Robinson, M.D.; Elad, M.; Milanfar, P. Fast and robust multiframe super resolution. IEEE Trans. Image Process. 2004, 13, 1327–1344. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, M.; Yang, C.; Kang, J.; Suo, X.; Meng, W.; Li, Z.; Mao, L.; Sheng, B.; Qi, J. Soccer match broadcast video analysis method based on detection and tracking. Comput. Animat. Virtual Worlds 2024, 35, e2259. [Google Scholar] [CrossRef]
- Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Brisco, B.; Motagh, M. Wetland water level monitoring using interferometric synthetic aperture radar (InSAR): A review. Can. J. Remote Sens. 2018, 44, 247–262. [Google Scholar]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; Kwon, Y.; Michael, K.; Fang, J.; Wong, C.; Yifu, Z.; Montes, D.; et al. ultralytics/yolov5: v6.2—YOLOv5 classification models, Apple M1, reproducibility, ClearML and Deci.ai integrations. Zenodo 2022. [Google Scholar] [CrossRef]
- Rosolem, J.B.; Dini, D.C.; Penze, R.S.; Floridia, C.; Leonardi, A.A.; Loichate, M.D.; Durelli, A.S. Fiber optic bending sensor for water level monitoring: Development and field test: A review. IEEE Sens. J. 2013, 13, 4113–4120. [Google Scholar]
- Wang, Y.; Long, D.; Li, X. High-temporal-resolution monitoring of reservoir water storage of the Lancang-Mekong River. Remote Sens. Environ. 2023, 292, 113575. [Google Scholar]
- Tandon, A.; Kant, K. A novel positioning technique for 3d underwater sensor network. Int. J. Comput. Sci. Mob. Comput. 2013, 2, 9–17. [Google Scholar]
- Xu, J.; Xia, M.; Ferreira, V.G.; Wang, D.; Liu, C. Estimating and assessing monthly water level changes of reservoirs and lakes in Jiangsu Province using Sentinel-3 radar altimetry data. Remote Sens. 2024, 16, 808. [Google Scholar] [CrossRef]
- Wang, L.; Chen, M.; Meng, K.; Wen, J.; Zhou, P. Research on water level identification method based on deep learning algorithm. Water Resour. Informatiz. 2020, 39–43, 56. [Google Scholar]
- Li, J.; Zheng, W.; Lu, C. An accurate leakage localization method for water supply network based on deep learning network. Water Resour. Manag. 2022, 36, 2309–2325. [Google Scholar]
- Li, Z.; Pang, X.; Jiang, Y.; Wang, Y. RealFuVSR: Feature Enhanced Real-World Video Super-Resolution. Virtual Real. Intell. Hardw. 2023, 5, 523–537. [Google Scholar]
- Zhu, J.; Zhang, Q.; Fei, L.; Cai, R.; Xie, Y.; Sheng, B.; Yang, X. FFFN: Frame-by-frame feedback fusion network for video super-resolution. IEEE Trans. Multimed. 2022, 25, 6821–6835. [Google Scholar]
- Xiao, J.; Li, S.; Lin, T.; Zhu, J.; Yuan, X.; Feng, D.D.; Sheng, B. Multi-Label Chest X-Ray Image Classification with Single Positive Labels. IEEE Trans. Med. Imaging 2024, 43, 4404–4418. [Google Scholar] [CrossRef]
- Shen, B.; Li, L.; Hu, X.; Guo, S.; Huang, J.; Liang, Z. Point cloud upsampling generative adversarial network based on residual multi-scale off-set attention. Virtual Real. Intell. Hardw. 2023, 5, 81–91. [Google Scholar]
- Ye, J.; Meng, X.; Guo, D.; Shang, C.; Mao, H.; Yang, X. Neural foveated super-resolution for real-time VR rendering. Comput. Animat. Virtual Worlds 2024, 35, e2287. [Google Scholar]
- Xu, T.; Yang, J.; Qin, Y.; Sheng, B.; Wu, E. Fast Approximation to Large-Kernel Edge-Preserving Filters by Recursive Reconstruction from Image Pyramids. In Proceedings of the Pacific Graphics 2024, Huangshan, China, 13–16 October 2024. [Google Scholar]
- Casanova-Chafer, J.; Blanch, X.; Moreno, A.; Garcia-Aboal, R.; Atienzar, P.; Llobet, E.; Feliz, M. Graphene based Mo6 cluster hybrid for detecting simulant nerve agent DMMP. Sens. Bio-Sens. Res. 2024, 43, 100603. [Google Scholar]
- Xiao, Z.; Chen, Y.; Zhou, X.; He, M.; Liu, L.; Yu, F.; Jiang, M. Human action recognition in immersive virtual reality based on multi-scale spatio-temporal attention network. Comput. Animat. Virtual Worlds 2024, 35, e2293. [Google Scholar]
- Sheng, B.; Li, P.; Ali, R.; Chen, C.P. Improving video temporal consistency via broad learning system. IEEE Trans. Cybern. 2021, 52, 6662–6675. [Google Scholar] [CrossRef] [PubMed]
- Bell-Kligler, S.; Shocher, A.; Irani, M. Blind super-resolution kernel estimation using an internal engine. Adv. Neural Inf. Process. Syst. 2019, 32, 284–293. [Google Scholar]
- Fang, A.; Wang, Y.; Yin, X.; Wang, P.; Li, Z.; Liu, Z. DetSegNet:A high-precision water level detection network based on detection and segmentation. J. Hohai Univ. (Nat. Sci. Ed.) 2024, 52, 28–34. [Google Scholar]
- Zheng, E. Research on Edge Detection Technique Based on Anisotropic Gaussian Kernel. Master’s Thesis, Suzhou University, Suzhou, China, 2022. [Google Scholar]
- Li, Z.; Mao, R.; Wang, X.; Wang, G.; An, G. Water level line detection algorithm based on improved PIDNet. Comput. Eng. 2024, 50, 102–112. [Google Scholar]
- Gao, S.; Liu, X.; Zeng, B.; Xu, S.; Li, Y.; Luo, X.; Liu, J.; Zhen, X.; Zhang, B. Implicit diffusion models for continuous super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 10021–10030. [Google Scholar]
- Sheng, B.; Li, P.; Fang, X.; Tan, P.; Wu, E. Depth-aware motion deblurring using loopy belief propagation. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 955–969. [Google Scholar] [CrossRef]
- Lin, J.; Shen, J.; Yang, X.; Fu, H.; Zhang, Q.; Li, P.; Sheng, B.; Wang, L.; Zhu, L. Learning Motion-guided Multi-scale Memory Features for Video Shadow Detection. IEEE Trans. Circuits Syst. Video Technol. 2024, 34, 12288–12300. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, X.; Li, T.; Lin, S.; Sheng, B.; Liu, R.; Dai, R. GAMNet: A gated attention mechanism network for grading myopic traction maculopathy in OCT images. Vis. Comput. 2024, 41, 1097–1108. [Google Scholar] [CrossRef]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [Google Scholar]
- Chen, Z.; Li, Y.; Dai, L.; Li, P.; Zhu, L.; Sheng, B. Multiple Level of Details Neural Implicit Surface Representation for Unconstrained Viewpoint Rendering. In Proceedings of the 2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Orlando, FL, USA, 16–21 March 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 847–848. [Google Scholar]
- Liu, X.; Hu, J.; Wang, H.; Zhang, Z.; Lu, X.; Sheng, C.; Song, S.; Nie, J. Gaussian-IoU loss: Better learning for bounding box regression on PCB component detection. Expert Syst. Appl. 2022, 190, 116178. [Google Scholar] [CrossRef]
- Peyré, G. The numerical tours of signal processing-advanced computational signal and image processing. IEEE Comput. Sci. Eng. 2011, 13, 94–97. [Google Scholar] [CrossRef]
- Hu, L.; Wang, X.; Wang, S. Decentralized underwater target detection and localization. IEEE Sens. J. 2020, 21, 2385–2399. [Google Scholar] [CrossRef]
- Rawat, S.S.; Verma, S.K.; Kumar, Y. Review on recent development in infrared small target detection algorithms. Procedia Comput. Sci. 2020, 167, 2496–2505. [Google Scholar] [CrossRef]
- Sun, C.; Wei, Y.; Wang, W.; Wu, Z.; Li, Y. Water level inversion detection method for water level Images without a scale in complex environments. Water 2024, 16, 1176. [Google Scholar] [CrossRef]
- Sun, C.; Wei, Y.; Wang, W.; Wu, Z.; Li, Y. Intelligent water level recognition method based on two-stage deep learning. China Flood Control. Drought Relief 2023, 33, 13–20. [Google Scholar]
- Ding, X.; Geng, Y. Analysis of water level detection algorithm with joint contextual attention mechanism. Beijing Water 2024, 2, 66–72. [Google Scholar]
- Li, X.; Sun, C.; Wei, Y.; Yuan, Y.; Wu, Z.; Li, Y. An intelligent detection method of water level in bad scenes by fusing Transformer and residual channel attention. J. Electron. Meas. Instrum. 2023, 37, 59–69. [Google Scholar]
- Zhang, R.; Zhang, G.; Xie, Z.; Liu, M. Research on water level detection method of water gauge under small area guidance. J. Yunnan Univ. (Nat. Sci. Ed.) 2023, 45, 598–610. [Google Scholar]
Scenes | Q/S | w/o SR | Yolov5 | w/SR | Imp. Yolov5 | SR+Imp. Yolov5 |
---|---|---|---|---|---|---|
Daytime | 1800 | 90.5 | 93.1 | 97.1 | 96.7 | 98.6 |
Nighttime | 2000 | 89.2 | 92.6 | 96.4 | 95.5 | 98.4 |
Mist | 1000 | 88.5 | 92.1 | 95.9 | 97.7 | 97.7 |
Wet Edges | 200 | 88.7 | 91.2 | 96.5 | 97.8 | 98.2 |
Average | 89.2 | 92.2 | 96.5 | 97.0 | 98.2 |
Model | Scene | |||
---|---|---|---|---|
Daytime | Nighttime | Mist | Wet Edges | |
DetSegNet+SR [1] | 96.2 | 95.1 | 94.2 | 95.2 |
PIDNet+SR [35] | 92.1 | 92.3 | 93.2 | 93.1 |
ASFF+SR [48] | 97.4 | 96.2 | 95.1 | 95.5 |
CAM-UNet+SR [49] | 97.3 | 97.3 | 94.1 | 93.2 |
TRCAM-UNet+SR [50] | 96.2 | 95.4 | 91.9 | 92.3 |
DeepLabv3+SR [51] | 94.2 | 92.1 | 94.3 | 91.7 |
Ours | 98.6 | 98.4 | 97.7 | 98.2 |
Scene | ||||
---|---|---|---|---|
Daytime | Nighttime | Mist | Wet Edges | |
0.15 | 91.2 | 90.1 | 96.2 | 92.2 |
0.35 | 92.2 | 91.1 | 91.2 | 89.1 |
0.55 | 98.6 | 98.4 | 97.7 | 98.2 |
0.75 | 96.5 | 93.2 | 93.0 | 91.2 |
0.95 | 86.2 | 85.2 | 82.4 | 93.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Huang, Z.; Yan, Y.; Zhang, P.; Wang, B.; Shen, H.; Yuan, Z. Secure Indoor Water Level Monitoring with Temporal Super-Resolution and Enhanced Yolov5. Sensors 2025, 25, 2835. https://doi.org/10.3390/s25092835
Guo S, Huang Z, Yan Y, Zhang P, Wang B, Shen H, Yuan Z. Secure Indoor Water Level Monitoring with Temporal Super-Resolution and Enhanced Yolov5. Sensors. 2025; 25(9):2835. https://doi.org/10.3390/s25092835
Chicago/Turabian StyleGuo, Sui, Zhijia Huang, Yuming Yan, Peng Zhang, Benhong Wang, Houming Shen, and Zhe Yuan. 2025. "Secure Indoor Water Level Monitoring with Temporal Super-Resolution and Enhanced Yolov5" Sensors 25, no. 9: 2835. https://doi.org/10.3390/s25092835
APA StyleGuo, S., Huang, Z., Yan, Y., Zhang, P., Wang, B., Shen, H., & Yuan, Z. (2025). Secure Indoor Water Level Monitoring with Temporal Super-Resolution and Enhanced Yolov5. Sensors, 25(9), 2835. https://doi.org/10.3390/s25092835