Progress in Avalanche Photodiodes for Laser Ranging
Abstract
:1. Introduction
2. Laser Ranging
2.1. Impulse Time-of-Flight Ranging Method
2.2. Time-Correlated Photon-Counting Method
2.3. Laser Ranging System
3. Avalanche Photodiode
3.1. Si-APD Research Progress and Application
3.2. InGaAs/InP APD Research Progress and Applications
3.3. Avalanche Photodiodes in Mini SLR Systems
4. Trends in Laser Ranging Avalanche Photodiode Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SLR | Satellite Laser Ranging |
DLR | Debris Laser Ranging |
LLR | Lunar Laser Ranging |
LEO | Low Earth Orbit |
GEO | Geosynchronous Orbit |
TOF | Time Of Flight |
PMT | Photomultiplier |
APD | Avalanche Photon Diode |
SPAD | Single-Photon Avalanche Diode |
SNSPD | Superconducting Nanowire Single-Photon Detector |
TCSPC | Time-Correlated Single-Photon Counting |
SAGCM | Separate Absorption Grading Charge Multiplication |
FGR | Floating Guard Ring |
DCR | Dark Count Rate |
PDE | Photon-Detection Efficiency |
FWHM | Full Width at Half Maximum |
MBE | Molecular Beam Epitaxy |
MOCVD | Metal–Organic Chemical Vapour Deposition |
FPGAs | Field-Programmable Gate Arrays |
PQAR | Passive Quenching Active Reset |
PQPR | Passive Quenching Passive Reset |
PQACR | Passive Quenching Active Clock-Driven Reset |
References
- Urschl, C.; Beutler, G.; Gurtner, W.; Hugentobler, U.; Schaer, S. Contribution of SLR tracking data to GNSS orbit determination. Adv. Space Res. 2007, 39, 1515–1523. [Google Scholar] [CrossRef]
- Tapley, B.D.; Schutz, B.E.; Eanes, R.J. Satellite Laser Ranging and its Applications. In Fundamental Astronomy and Solar System Dynamics: Invited Papers Honoring Prof. Walter Fricke on the Occasion of His 70th Birthday; Duncombe, R.L., Lieske, J.H., Seidelmann, P.K., Eds.; Springer: Dordrecht, The Netherlands, 1986; pp. 247–261. [Google Scholar] [CrossRef]
- McGarry, J.; Hoffman, E.; Degnan, J.; Cheek, J.; Clarke, C.; Diegel, I.; Donovan, H.; Horvath, J.; Marzouk, M.; Nelson, A.; et al. NASA’s satellite laser ranging systems for the twenty-first century. J. Geod. 2019, 93, 2249–2262. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Chen, Y.; Hyyppä, J.; Li, S. An overview of the laser ranging method of space laser altimeter. Infrared Phys. Technol. 2017, 86, 147–158. [Google Scholar] [CrossRef]
- Zappa, F.; Ripamonti, G.; Lacaita, A.; Cova, S.; Samori, C. Tracking capabilities of SPADs for laser ranging. In Proceedings of the Eighth International Workshop on Laser Ranging Instrumentation, Annapolis, MD, USA, 18–22 May 1992; NASA. Goddard Space Flight Center: Greenbelt, MD, USA, 1993. [Google Scholar]
- Hu, X.; Cheng, Y.; Gu, C.; Zhu, X.; Liu, H. Superconducting nanowire single-photon detectors: Recent progress. Sci. Bull. 2015, 60, 1980–1983. [Google Scholar] [CrossRef]
- Richards, P.L. Bolometers for infrared and millimeter waves. J. Appl. Phys. 1994, 76, 1–24. [Google Scholar] [CrossRef]
- Guo, N.; Gao, C.; Xue, M.; Niu, L.; Zhu, S.; Feng, L.; He, H.; Cao, Z. Ranging method based on linear frequency modulated laser. Laser Phys. 2017, 27, 065108. [Google Scholar] [CrossRef]
- Tao, M.; Gong, X.; Hou, Y.; Li, B.; Song, J.; Chen, J.; Gao, F. Time-of-flight ranging method by measuring pulse laser phase based on field-programmable gate array digital mixing. Meas. Sci. Technol. 2020, 32, 025004. [Google Scholar] [CrossRef]
- Wang, K.; Wen, Z.; Guo, W.; Xiong, Y.; Yang, L.; Wang, P. Amplitude modulation ranging achieved by self-sweeping fiber laser in a short distance. Infrared Phys. Technol. 2023, 134, 104895. [Google Scholar] [CrossRef]
- Dequal, D.; Agnesi, C.; Sarrocco, D.; Calderaro, L.; Bianco, G. 100 kHz satellite laser ranging demonstration at Matera Laser Ranging Observatory. J. Geod. 2021, 95, 26. [Google Scholar] [CrossRef]
- Haitz, R.H. Model for the Electrical Behavior of a Microplasma. J. Appl. Phys. 1964, 35, 1370–1376. [Google Scholar] [CrossRef]
- McIntyre, R.J. Theory of Microplasma Instability in Silicon. J. Appl. Phys. 1961, 32, 983–995. [Google Scholar] [CrossRef]
- Leonard, D.; Krishnamurthy, M.; Reaves, C.M.; Denbaars, S.P.; Petroff, P.M. Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Appl. Phys. Lett. 1993, 63, 3203–3205. [Google Scholar] [CrossRef]
- Levine, B.F.; Bethea, C.G.; Hasnain, G.; Walker, J.; Malik, R.J. High-detectivity D* = 1.0 × 1010 cm √/W GaAs/AlGaAs multiquantum well lambda = 8.3 upmum infrared detector. Appl. Phys. Lett. 1988, 53, 296–298. [Google Scholar] [CrossRef]
- Phillips, J.; Kamath, K.; Bhattacharya, P. Far-infrared photoconductivity in self-organized InAs quantum dots. Appl. Phys. Lett. 1998, 72, 2020–2022. [Google Scholar] [CrossRef]
- Rowe, M.A.; Gansen, E.J.; Greene, M.; Hadfield, R.H.; Harvey, T.E.; Su, M.Y.; Nam, S.W.; Mirin, R.P.; Rosenberg, D. Single-photon detection using a quantum dot optically gated field-effect transistor with high internal quantum efficiency. Appl. Phys. Lett. 2006, 89, 253505. [Google Scholar] [CrossRef]
- Maruyama, T.; Narusawa, F.; Makoto, K.; Tanaka, M.; Saito, Y.; Nomura, A. Development of a near-infrared photon-counting system using an InGaAs avalanche photodiode. Opt. Eng. 2002, 41, 395–402. [Google Scholar] [CrossRef]
- Bowman, S.R.; Shih, Y.H.; Alley, C.O.; Cruickshank, J.M.; Harney, R.C. The use of Geiger mode avalanche photodiodes for precise laser ranging at very low light levels—An experimental evaluation. Int. Soc. Opt. Photonics 1986, 0663, 24–29. [Google Scholar]
- Prochazka, I.; Hamal, K.; Sopko, B. Recent achievements in single photon detectors and their applications. Opt. Acta Int. J. Opt. 2004, 51, 1289–1313. [Google Scholar] [CrossRef]
- Azka, I.P.; Hamal, K.; Sopko, B. Photodiode based detector package for centimeter satellite ranging. In Proceedings of the 7th International Workshop on Laser Ranging Instrumentation, Matera, Italy, 2–6 October 1989. [Google Scholar]
- Proch, I. The solid state detector technology for picosecond laser ranging. In Proceedings of the Eighth International Workshop on Laser Ranging Instrumentation, Annapolis, MD, USA, 18–22 May 1992; NASA. Goddard Space Flight Center: Greenbelt, MD, USA, 1993. [Google Scholar]
- Kirchner, G.; Koidl, F.; Blazej, J.; Hamal, K.; Prochazka, I. Time-walk-compensated SPAD: Multiple-photon versus single-photon operation. In Proceedings of the Aerospace Remote Sensing, London, UK, 22 December 1997. [Google Scholar]
- Kirchner, G.; Koidl, F. Compensation of SPAD time-walk effects. J. Opt. A Pure Appl. Opt. 1999, 1, 163. [Google Scholar] [CrossRef]
- Kirchner, G.; Koidl, F.; Azka, I.P.; Hamal, K. SPAD time Walk Compensation and Return Energy Dependent Ranging. In Proceedings of the 11th International Workshop on Laser Ranging, Deggendorf, Germany, 21–25 September 1998. [Google Scholar]
- Prochazka, I.; Kral, L.; Hamal, K.; Sopko, B. Photon counting timing uniformity–unique feature of the silicon avalanche photodiodes K14. J. Mod. Opt. 2007, 54, 141–149. [Google Scholar] [CrossRef]
- Vojtěch, M.; Ivan, P.; Josef, B. Twenty Years of Rad-Hard K14 SPAD in Space Projects. Sensors 2015, 15, 18178–18196. [Google Scholar] [CrossRef]
- Prochazka, I.; Kodet, J.; Eckl, J.; Blazej, J. Note: Large active area solid state photon counter with 20 ps timing resolution and 60 fs detection delay stability. Rev. Sci. Instrum. 2017, 88, 106105. [Google Scholar] [CrossRef]
- Prochazka, I.; Blazej, J.; Flekova, T.; Kodet, J. Silicon Based Photon Counting Detector Providing Femtosecond Detection Delay Stability; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2020. [Google Scholar]
- Prochazka, I.; Bimbovar, R.; Blazej, J.; Kodet, J. Recent progress in SPAD detectors for SLR and laser time transfer. In Proceedings of the 22nd ILRS Workshop: Reconnecting the ILRS Community, Guadalajara, Spain, 7–11 November 2022. [Google Scholar]
- Giudice, A.; Simmerle, G.; Veronese, D.; Biasi, R.; Maccagnani, P. High-detection efficiency and picosecond timing compact detector modules with red-enhanced SPADs. In Advanced Photon Counting Techniques VI; SPIE: Bellingham, WA, USA, 2012. [Google Scholar]
- Zhang, H.-Y.; Wang, L.-L.; Wu, C.-Y.; Wang, Y.-R.; Yang, L.; Pan, H.-F.; Liu, Q.-L.; Guo, X.; Tang, K.; Zhang, Z.-P.; et al. Avalanche photodiode single-photon detector with high time stability. Acta Phys. Sin. 2020, 69, 20191875. [Google Scholar] [CrossRef]
- Pearsall, T.P.; Dipda, E.; Papuchon, M.; Roullet, G. A High Performance Avalanche Photodiode at 1.0–1.7 μm, Compatible with InP/GaxIn1—xAsyP1—y Integrated Optics Technology. In Proceedings of the Integrated and Guided Wave Optics, Salt Lake City, UT, USA, 16–18 January 1978; Optica Publishing Group: Washington, DC, USA, 1978; p. MC2. [Google Scholar] [CrossRef]
- Nishida, K.; Taguchi, K.; Matsumoto, Y. InGaAsP heterostructure avalanche photodiodes with high avalanche gain. Appl. Phys. Lett. 1979, 35, 251–253. [Google Scholar] [CrossRef]
- Ma, C.; Deen, M.; Tarof, L. Multiplication in separate absorption, grading, charge, and multiplication InP-InGaAs avalanche photodiodes. IEEE J. Quantum Electron. 1995, 31, 2078–2089. [Google Scholar] [CrossRef]
- Kao, Y.; Wolley, E. High-voltage planar p-n junctions. Proc. IEEE 1967, 55, 1409–1414. [Google Scholar] [CrossRef]
- Levine, B.F.; Bethea, C.G.; Campbell, J.C. Room-temperature 1.3-μm optical time domain reflectometer using a photon counting InGaAs/InP avalanche detector. Appl. Phys. Lett. 1985, 46, 333–335. [Google Scholar] [CrossRef]
- Lacaita, A.; Francese, P.A.; Zappa, F.; Cova, S. Single-photon detection beyond 1 μm: Performance of commercially available germanium photodiodes. Appl. Opt. 1994, 33, 6902–6918. [Google Scholar] [CrossRef]
- McIntosh, K.A.; Donnelly, J.P.; Oakley, D.C.; Napoleone, A.; Calawa, S.D.; Mahoney, L.J.; Molvar, K.M.; Duerr, E.K.; Groves, S.H.; Shaver, D.C. InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm. Appl. Phys. Lett. 2002, 81, 2505–2507. [Google Scholar] [CrossRef]
- Donnelly, J.; Duerr, E.; Mcintosh, K.; Dauler, E.; Oakley, D.; Groves, S.; Vineis, C.; Mahoney, L.; Molvar, K.; Hopman, P.; et al. Design Considerations for 1.06-mum InGaAsP–InP Geiger-Mode Avalanche Photodiodes. IEEE J. Quantum Electron. 2006, 42, 797–809. [Google Scholar] [CrossRef]
- Itzler, M.A.; Jiang, X.; Ben-Michael, R.; Slomkowski, K.; Krainak, M.A.; Wu, S.; Sun, X. InGaAsP/InP single photon avalanche photodetectors for 1.06 μm free-running photon counting. In Proceedings of the 2007 Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, USA, 6–11 May 2007; pp. 1–2. [Google Scholar] [CrossRef]
- Jiang, X.; Itzler, M.A.; Ben-Michael, R.; Slomkowski, K. InGaAsP–InP Avalanche Photodiodes for Single Photon Detection. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 895–905. [Google Scholar] [CrossRef]
- Verghese, S.; Donnelly, J.P.; Duerr, E.K.; McIntosh, K.A.; Chapman, D.C.; Vineis, C.J.; Smith, G.M.; Funk, J.E.; Jensen, K.E.; Hopman, P.I.; et al. Arrays of InP-based Avalanche Photodiodes for Photon Counting. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 870–886. [Google Scholar] [CrossRef]
- Ramirez, D.A.; Hayat, M.M.; Itzler, M.A. Dependence of the Performance of Single Photon Avalanche Diodes on the Multiplication Region Width. IEEE J. Quantum Electron. 2008, 44, 1188–1195. [Google Scholar] [CrossRef]
- Itzler, M.A.; Jiang, X.; Entwistle, M.; Slomkowski, K.; Tosi, A.; Acerbi, F.; Zappa, F.; Cova, S. Advances in InGaAsP-based avalanche diode single photon detectors. J. Mod. Opt. 2011, 58, 174–200. [Google Scholar] [CrossRef]
- Jiang, X.; Itzler, M.A.; Ben-Michael, R.; Slomkowski, K.; Sun, X. Afterpulsing Effects in Free-Running InGaAsP Single-Photon Avalanche Diodes. IEEE J. Quantum Electron. 2008, 44, 3–11. [Google Scholar] [CrossRef]
- Buller, G.S.; Krichel, N.J.; McCarthy, A.; Gemmell, N.R.; Tanner, M.G.; Natarajan, C.M.; Ren, X.; Hadfield, R.H. Kilometer range depth imaging using time-correlated single-photon counting. In Infrared Sensors, Devices, and Applications; and Single Photon Imaging II; SPIE: Bellingham, WA, USA, 2011; Volume 8155, pp. 457–464. [Google Scholar]
- Xue, L.; Zhang, L.; Zhang, S.; Li, M.; Kang, L.; Chen, J.; Wu, P. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064nm wavelength. Opt. Lett. 2016, 41, 3848. [Google Scholar] [CrossRef] [PubMed]
- Pawlikowska, A.M.; Halimi, A.; Lamb, R.A.; Buller, G.S. Single-photon three-dimensional imaging at up to 10 kilometers range. Opt. Express 2017, 25, 11919. [Google Scholar] [CrossRef]
- Li, Z.P.; Ye, J.T.; Huang, X.; Jiang, P.Y.; Cao, Y.; Hong, Y.; Yu, C.; Zhang, J.; Zhang, Q.; Peng, C.Z.; et al. Single-photon imaging over 200 km. Optica 2021, 8, 344–349. [Google Scholar] [CrossRef]
- Shen, G.; Zheng, T.; Li, Z.; Yang, L.; Wu, G. Self-gating single-photon time-of-flight depth imaging with multiple repetition rates. Opt. Lasers Eng. 2022, 151, 106908. [Google Scholar] [CrossRef]
- Bimbová, R.; Procházka, I.; Kodet, J.; Blažej, J. Photon counting detectors based on InGaAs/InP for space objects laser ranging. IEEE J. Sel. Top. Quantum Electron. 2021, 28, 3802605. [Google Scholar] [CrossRef]
- Miao, Y.; Lin, H.; Li, B.; Dong, T.; He, C.; Du, J.; Zhao, X.; Zhou, Z.; Su, J.; Wang, H.; et al. Review of Ge (GeSn) and InGaAs avalanche diodes operating in the SWIR spectral region. Nanomaterials 2023, 13, 606. [Google Scholar] [CrossRef] [PubMed]
- Vines, P.; Kuzmenko, K.; Kirdoda, J.; Dumas, D.C.; Mirza, M.M.; Millar, R.W.; Paul, D.J.; Buller, G.S. High performance planar germanium-on-silicon single-photon avalanche diode detectors. Nat. Commun. 2019, 10, 1086. [Google Scholar] [CrossRef] [PubMed]
- Hampf, D.; Niebler, F.; Meyer, T.; Riede, W. The miniSLR: A low-budget, high-performance satellite laser ranging ground station. J. Geod. 2024, 98, 8. [Google Scholar] [CrossRef]
- Ren, X.; Fan, Y.; Shi, Y.; Yuan, Z.; Huang, Y.; Zhang, W. Hybrid Integration of Single-Photon Avalanche Diode Array and Silicon Photonic Chip. Acta Opt. Sin. (Online) 2024, 1, 0104001. [Google Scholar]
- Huang, H.H.; Liu, C.H.; Huang, T.Y.; Lin, S.D.; Lee, C.Y. Self-restoring and low-jitter circuits for high timing-resolution SPAD sensing applications. In Proceedings of the 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 21–25 May 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–5. [Google Scholar]
Target Satellite | Laser Type and Wavelength (nm) | Detector Type and Applicable Wavelength (nm) | Mean Time of Light (s) | Perigee Altitude (km) | Zenith Angle (°) | Return Photon Number |
---|---|---|---|---|---|---|
ajisai | Nd-Yag@1064 | CSPAD@532 | 0.017116485598 | 1479 | 54.82660396144291 | 118.9024 |
lageos-2 | Nd-Yag@1064 | CSPAD@532 | 0.041059333398 | 5617 | 24.21489660834258 | 3.5909 |
etalon-2 | Nd-Yag@1064 | CSPAD@532 | 0.132175862032 | 19097 | 15.58953384198299 | 0.033438 |
beidou3m-1 | Nd-Yag@1064 | CSPAD@532 | 0.147367634768 | 21519 | 13.22384987727686 | 0.021639 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; An, N.; Han, X.; Nuñez, N.E.; Jin, L.; Liu, C. Progress in Avalanche Photodiodes for Laser Ranging. Sensors 2025, 25, 2802. https://doi.org/10.3390/s25092802
Liu Z, An N, Han X, Nuñez NE, Jin L, Liu C. Progress in Avalanche Photodiodes for Laser Ranging. Sensors. 2025; 25(9):2802. https://doi.org/10.3390/s25092802
Chicago/Turabian StyleLiu, Zhenxing, Ning An, Xingwei Han, Natalia Edith Nuñez, Liang Jin, and Chengzhi Liu. 2025. "Progress in Avalanche Photodiodes for Laser Ranging" Sensors 25, no. 9: 2802. https://doi.org/10.3390/s25092802
APA StyleLiu, Z., An, N., Han, X., Nuñez, N. E., Jin, L., & Liu, C. (2025). Progress in Avalanche Photodiodes for Laser Ranging. Sensors, 25(9), 2802. https://doi.org/10.3390/s25092802