CMOS-Based Implantable Multi-Ion Image Sensor for Mg2+ Measurement in the Brain
Abstract
:Highlights
- An implantable multi-ion image sensor equipped with magnesium-(Mg2+) and calcium-(Ca2+)-sensitive membranes was successfully fabricated.
- Selective Mg2+ measurement and multi-imaging of Mg2+ and Ca2+ were demonstrated.
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Implantable Ion Image Sensor
2.3. Proposal of a Multi-Ion Image Sensor
2.4. Sensor Fabrication
2.5. Evaluation of the Ion Response Characteristics in Each Sensitive Region
2.6. Simultaneous Measurement of the Mg2+ and Ca2+ Response
3. Results and Discussion
3.1. Evaluation Results of Ion Response Characteristics in Each Sensing Region
3.2. Demonstration Results of Selective Multi-Ion Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- D’Adamo, M.C.; Liantonio, A.; Conte, E.; Pessia, M.; Imbrici, P. Ion channels involvement in neurodevelopmental disorders. Neuroscience 2020, 440, 337–359. [Google Scholar] [CrossRef] [PubMed]
- Teleanu, R.I.; Niculescu, A.-G.; Roza, E.; Vladâcenco, O.; Grumezescu, A.M.; Teleanu, D.M. Neurotransmitters-Key factors in neurological and neurodegenerative disorders of the central nervous system. Int. J. Mol. Sci. 2022, 23, 5954. [Google Scholar] [CrossRef] [PubMed]
- Akyuz, E.; Polat, A.K.; Eroglu, E.; Kullu, I.; Angelopoulou, E.; Paudel, Y.N. Revisiting the role of neurotransmitters in epilepsy: An updated review. Life Sci. 2021, 265, 118826. [Google Scholar] [CrossRef]
- Andersen, J.V.; Schousboe, A.; Verkhratsky, A. Astrocyte energy and neurotransmitter metabolism in Alzheimer’s disease: Integration of the glutamate/GABA-glutamine cycle. Prog. Neurobiol. 2022, 217, 102331. [Google Scholar] [CrossRef]
- Xu, P.; Cui, D.; Jin, M.; Sun, L. Magnesium ions and dementia. J. Neurorestoratology 2024, 12, 100094. [Google Scholar] [CrossRef]
- Wilmott, L.A.; Thompson, L.T. Sex- and dose-dependent effects of post-trial calcium channel blockade by magnesium chloride on memory for inhibitory avoidance conditioning. Behav. Brain Res. 2013, 257, 49–53. [Google Scholar] [CrossRef]
- Lamhot, V.B.; Khatib, N.; Ginsberg, Y.; Anunu, R.; Richter-Levin, G.; Weiner, Z.; Ross, M.G.; Divon, M.Y.; Hallak, M.; Beloosesky, R. Magnesium sulfate prevents maternal inflammation–induced impairment of learning ability and memory in rat offspring. Am. J. Obstet. Gynecol. 2015, 213, 851.e1–851.e8. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, Q.; Chen, Z.; Wu, W.; Zhu, Q.; Lu, Y. In vitro and in vivo correlation for lipid-based formulations: Current status and future perspectives. Acta Pharm. Sin. B 2021, 11, 2469–2487. [Google Scholar] [CrossRef]
- Mollentze, J.; Durandt, C.; Pepper, M.S. An in vitro and in vivo comparison of osteogenic differentiation of human mesenchymal stromal/stem cells. Stem Cells Int. 2021, 2021, 9919361. [Google Scholar] [CrossRef]
- Lindenburg, L.; Vinkenborg, J.; Oortwijn, J.; Aper, J.A.; Merkx, M. MagFRET: The first genetically encoded fluorescent Mg2+ sensor. PLoS ONE 2013, 8, e82009. [Google Scholar] [CrossRef]
- Barker, P.; Butterworth, E.; Boska, M.; Nelson, J.; Welch, K.M.A. Magnesium and pH imaging of the human brain at 3.0 tesla. Magn. Reson. Med. 1999, 41, 400–406. [Google Scholar] [CrossRef]
- Baniwal, S.; Chandra, S.; Panwar, A.; Singh, A.K. Poly(vinyl chloride)-based macrocyclic membrane sensors for magnesium. Talanta 1999, 50, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Prasad, R.; Kumar, A. Magnesium-tetrazaporphyrin incorporated PVC matrix as a new material for fabrication of Mg2+ selective potentiometric sensor. Talanta 2004, 63, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Sharma, K.; Kumar, A. Mg(Ⅱ) selective PVC membrane electrode based on methyl phenyl semicarbazone as an ionophore. J. Chem. 2012, 2013, 189464. [Google Scholar] [CrossRef]
- Dror, M.; Bergs, E.A.; Rhodes, R.K. Potassium ion-selective electrodes based on valinomycin/PVC overlayered solid substrates. Sens. Actuators 1987, 11, 23–26. [Google Scholar] [CrossRef]
- Zhao, L.; Jiang, Y.; Wei, H.; Jiang, Y.; Ma, W.; Zheng, W.; Cao, A.; Mao, L. In vivo measurement of calcium ion with solid-state ion-selective electrode by using shelled hollow carbon nanospheres as a transducing layer. Anal. Chem. 2019, 91, 4421–4428. [Google Scholar] [CrossRef]
- Badr, I.; Gouda, M.; Abdel-Sattar, R.; Sayour, H. Reduction of thrombogenicity of PVC-based sodium selective membrane electrodes using heparin-modified chitosan. Carbohydr. Polym. 2014, 99, 783–790. [Google Scholar] [CrossRef]
- Nanasaki, S.; Horiuchi, H.; Inada, H.; Nakamura, Y.; Dasai, F.; Iwata, T.; Takahashi, K.; Nabekura, J.; Sawada, K. Development of novel pH image sensor for in-vivo apprication. In Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2017), Kaohsiung, Taiwan, 18–22 June 2017; pp. 43–46. [Google Scholar] [CrossRef]
- Horiuchi, H.; Agetsuma, M.; Ishida, J.; Nakamura, Y.; Lawrence Cheung, D.; Nanasaki, S.; Kimura, Y.; Iwata, T.; Takahashi, K.; Sawada, K.; et al. CMOS-based bio-image sensor spatially resolves neural activity-dependent proton dynamics in the living brain. Nat. Commun. 2020, 11, 712. [Google Scholar] [CrossRef]
- Sakamoto, K.; Madokoro, M.; Horiuchi, H.; Ishida, J.; Horio, T.; Kimura, Y.; Hizawa, T.; Choi, Y.-J.; Takahashi, K.; Noda, T.; et al. Needle-type 5 µm pixel pitch pH-image sensor and imaging of proton emissions in the cerebral cortex. In Proceedings of the 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2021), Orlando, FL, USA, 20–24 June 2021; pp. 271–274. [Google Scholar]
- Doi, H.; Horio, T.; Shigetomi, E.; Parajuli, B.; Shinozaki, Y.; Noda, T.; Takahashi, K.; Hattori, T.; Koizumi, S.; Sawada, K. Label-free real-time imaging of extracellular Ca2+ uptake in the hippocampal slice using Ca-PVC membrane based on charge-transfer-type potentiometric sensor arrays. IEEE Sens. J. 2019, 2019, 1–3. [Google Scholar]
- Okubo, S.; Ozeki, Y.; Yamada, T.; Saito, K.; Ishihara, N.; Yanagida, Y.; Mayanagi, G.; Washio, J.; Takahashi, N. Facile fabrication of all-solid-state ion-selective electrodes by laminating and drop-casting for multi-sensing. Electrochemistry 2022, 90, 77001. [Google Scholar] [CrossRef]
- Slutsky, I.; Abumaria, N.; Wu, L.J.; Huang, C.; Zhang, L.; Li, B.; Zhao, X.; Govindarajan, A.; Zhao, M.G.; Zhuo, M.; et al. Enhancement of learning and memory by elevating brain magnesium. Neuron 2010, 65, 165–177. [Google Scholar] [CrossRef]
Process | 0.35 µm CMOS |
Sensor size | 9.88 × 1.10 mm2 |
Sensor thickness | 100 µm |
Sensing area | 1124 × 180 µm2 |
Pixel pitch | 5.65 × 4.39 µm2 |
Pixel array | 256 × 32 |
Frame rate | 14.1 fps |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, Y.; Doi, H.; Kimura, Y.; Horio, T.; Choi, Y.-J.; Takahashi, K.; Noda, T.; Sawada, K. CMOS-Based Implantable Multi-Ion Image Sensor for Mg2+ Measurement in the Brain. Sensors 2025, 25, 2595. https://doi.org/10.3390/s25082595
Nakamura Y, Doi H, Kimura Y, Horio T, Choi Y-J, Takahashi K, Noda T, Sawada K. CMOS-Based Implantable Multi-Ion Image Sensor for Mg2+ Measurement in the Brain. Sensors. 2025; 25(8):2595. https://doi.org/10.3390/s25082595
Chicago/Turabian StyleNakamura, Yuto, Hideo Doi, Yasuyuki Kimura, Tomoko Horio, Yong-Joon Choi, Kazuhiro Takahashi, Toshihiko Noda, and Kazuaki Sawada. 2025. "CMOS-Based Implantable Multi-Ion Image Sensor for Mg2+ Measurement in the Brain" Sensors 25, no. 8: 2595. https://doi.org/10.3390/s25082595
APA StyleNakamura, Y., Doi, H., Kimura, Y., Horio, T., Choi, Y.-J., Takahashi, K., Noda, T., & Sawada, K. (2025). CMOS-Based Implantable Multi-Ion Image Sensor for Mg2+ Measurement in the Brain. Sensors, 25(8), 2595. https://doi.org/10.3390/s25082595