Simulation Research and Analysis of Wavelength Modulation Off-Axis Integrated Cavity Output Spectrum Measurement System
Abstract
:1. Introduction
2. Modeling Methodology
3. Results and Discussion
3.1. Model Verification
3.2. Simulation of Off-Axis Integrating Cavity Under Standard Conditions
3.3. Impact of Mode-Matching on the WMS-OA-ICOS System
3.4. Influence of Cavity Length on WMS-OA-ICOS System
3.5. Impact of Modulation Coefficient on the Performance of WMS-OA-ICOS Systems
3.6. Impact of Laser Source Linewidth on the Performance of WMS-OA-ICOS Systems
4. Summary
- (1)
- In the WMS-OA-ICOS system, the degree of mode-matching between the laser source beam waist and the cavity waist significantly impacts the SNR of the 2f absorption signal. Hence, in practical system design, it is crucial to avoid large deviations between the beam waist of the incident laser and the cavity waist.
- (2)
- When the cavity length deviates from the standard value by millimeter-scale errors, the SNR of the 2f signal is minimally affected. Since the manufacturing and assembly of the cavity generally meet such tolerance requirements, this factor does not require primary consideration in practical applications.
- (3)
- The maximum SNR of the 2f signal is achieved at a modulation index of 2.2.
- (4)
- As the laser linewidth increases, the 2f signal amplitude gradually decreases. However, the increase in linewidth effectively suppresses cavity mode noise in the signal. Therefore, appropriately broadening the laser linewidth can serve as an effective strategy for mitigating cavity mode noise in the WMS-OA-ICOS system.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, Z.; Liu, J.; Xu, Y.; Pang, F.; Wang, Y.; Qin, L.; Liu, Y.; Zhao, Y.-Y.S.; Wei, G.; Xu, M.; et al. The search for life signatures on Mars by the Tianwen-3 Mars sample return mission. Natl. Sci. Rev. 2024, 11, nwae313. [Google Scholar] [CrossRef]
- Edwards, J.K.; Solsona, B.; Ntainjua, E.; Carley, A.F.; Herzing, A.A.; Kiely, C.J.; Hutchings, G.J. Strong release of methane on mars in northern summer 2003. Science 2009, 323, 1037–1041. [Google Scholar] [CrossRef]
- Horita, J.; Berndt, M.E. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 1999, 285, 1055–1057. [Google Scholar] [CrossRef]
- Ueno, Y.; Yamada, K.; Yoshida, N.; Maruyama, S.; Isozaki, Y. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 2006, 440, 516–519. [Google Scholar] [CrossRef]
- Lefevre, F.; Forget, F. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 2009, 460, 720–723. [Google Scholar] [CrossRef]
- Villanueva, G.; Mumma, M.; Novak, R.; Radeva, Y.; Käufl, H.; Smette, A.; Tokunaga, A.; Khayat, A.; Encrenaz, T.; Hartogh, P. A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy. Icarus 2013, 223, 11–27. [Google Scholar] [CrossRef]
- Liuzzi, G.; Villanueva, G.L.; Mumma, M.J.; Smith, M.D.; Daerden, F.; Ristic, B.; Thomas, I.; Vandaele, A.C.; Patel, M.R.; Lopez-Moreno, J.-J.; et al. Methane on Mars: New insights into the sensitivity of CH4 with the NOMAD/ExoMars spectrometer through its first in-flight calibration. Icarus 2019, 321, 671–690. [Google Scholar] [CrossRef]
- Webster, C.R.; Mahaffy, P.R.; Atreya, S.K.; Flesch, G.J.; Mischna, M.A.; Meslin, P.-Y.; Farley, K.A.; Conrad, P.G.; Christensen, L.E.; Pavlov, A.A.; et al. Mars methane detection and variability at Gale crater. Science 2015, 347, 415–417. [Google Scholar] [CrossRef]
- Xia, J.; Feng, C.; Zhu, F.; Ye, S.; Zhang, S.; Kolomenskii, A.; Wang, Q.; Dong, J.; Wang, Z.; Jin, W.; et al. A sensitive methane sensor of a ppt detection level using a mid-infrared interband cascade laser and a long-path multipass cell. Sens. Actuators B Chem. 2021, 334, 129641. [Google Scholar] [CrossRef]
- Hua, Y.; Zhang, L.; Zhou, Y.; Yu, L.; Zheng, K.; Song, F.; Liu, M.; Yang, Y.; Zheng, C.; Wang, Y. Near-Infrared Off-Axis integrated cavity output spectroscopic sensor system for ammonia leakage measurement in cold store using embedded Multi-Core processor. Infrared Phys. Technol. 2024, 137, 105150. [Google Scholar] [CrossRef]
- Malara, P.; Witinski, M.F.; Capasso, F.; Anderson, J.G.; De Natale, P. Sensitivity enhancement of off-axis ICOS using wavelength modulation. Appl. Phys. B Lasers Opt. 2012, 108, 353–359. [Google Scholar] [CrossRef]
- Yuan, Z.; Huang, Y.; Zhao, Q.; Zhang, L.; Lu, X.; Huang, J.; Qi, G.; Luo, T.; Cao, Z. Dual-path coupling V-shaped structure off-axis integrated cavity output spectroscopy (V-OA-ICOS) for water vapor stable isotope detection at 3.66 μm. Sens. Actuators B Chem. 2024, 410, 135676. [Google Scholar] [CrossRef]
- Ngo, M.-N.; Nguyen-Ba, T.; Dewaele, D.; Cazier, F.; Zhao, W.; Nähle, L.; Chen, W. Wavelength modulation enhanced off-axis integrated cavity output spectroscopy for OH radical measurement at 2.8 μm. Sens. Actuators A Phys. 2023, 362, 114654. [Google Scholar] [CrossRef]
- Malara, P.; Maddaloni, P.; Gagliardi, G.; De Natale, P. Combining a difference-frequency source with an off-axis high-finesse cavity for trace-gas monitoring around 3 μm. Opt. Express 2006, 14, 1304–1313. [Google Scholar] [CrossRef]
- Herriott, D.; Kogelnik, H.; Kompfner, R. Off-axis paths in spherical mirror interferometers. Appl. Opt. 1964, 3, 523–526. [Google Scholar] [CrossRef]
- Romanini, D. Modelling the excitation field of an optical resonator. Appl. Phys. B Lasers Opt. 2014, 115, 517–531. [Google Scholar] [CrossRef]
- Kasyutich, V.L.; Sigrist, M.W. Optimisation of laser linewidth and cavity alignment in off-axis cavity-enhanced absorption spectroscopy. Infrared Phys. Technol. 2015, 71, 179–186. [Google Scholar] [CrossRef]
- Shen, G.; Chao, X.; Sun, K. Modeling the optical field in off-axis integrated-cavity-output spectroscopy using the decentered Gaussian beam model. Appl. Opt. 2018, 57, 2947–2954. [Google Scholar] [CrossRef]
- Zheng, K.; Zheng, C.; Zhang, H.; Guan, G.; Zhang, Y.; Wang, Y.; Tittel, F.K. A novel gas sensing scheme using near-infrared multi-input multi-output off-axis integrated cavity output spectroscopy (MIMO-OA-ICOS). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 256, 119745. [Google Scholar] [CrossRef]
- Wang, F.; Wu, J.; Liang, R.; Wang, Q.; Wei, Y.; Cheng, Y.; Li, Q.; Cao, D.; Xue, Q. Ultra-Stable temperature controller-based laser wavelength locking for improvement in WMS methane detection. Sensors 2023, 23, 5107. [Google Scholar] [CrossRef]
- Tian, X.; Cao, Y.; Chen, J.; Liu, K.; Wang, G.; Tan, T.; Mei, J.; Chen, W.; Gao, X. Dual-gassensor of CH4/C2H6 based on wavelength modulation spectroscopy coupled to a home-made compact dense-pattern multipass cell. Sensors 2019, 19, 820. [Google Scholar] [CrossRef]
- Lehmann, K.K.; Romanini, D. The superposition principle and cavity ring-down spectroscopy. J. Chem. Phys. 1996, 105, 10263–10277. [Google Scholar] [CrossRef]
- Siegman, A.E. Physical Properties of Gaussian Beams. In Laser; University Science Books: Herndon, VA, USA, 1986; pp. 663–697. [Google Scholar]
- Al-Rashed, A.-A.R.; Saleh, B.E.A. Decentered gaussian beams. Appl. Opt. 1995, 34, 6819–6825. [Google Scholar] [CrossRef]
- Siegman, A.E. Complex paraxial wave optics. In Laser; University Science Books: Herndon, VA, USA, 1986; pp. 777–814. [Google Scholar]
- Arndt, R. Analytical line shapes for lorentzian signals broadened by modulation. J. Appl. Phys. 1965, 36, 2522–2524. [Google Scholar] [CrossRef]
- Zhu, G.; Zhu, H.; Yang, C.; Gui, W. Parameter optimization of a short open optical path’s oxygen concentration detection system based on WMS. Chin. J. Electron. 2017, 26, 797–802. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Cavity length | 58.46 cm | Center wavelength of laser | 5682 nm |
Incident coordinates | (3.24 mm, 5.05 mm) | Power and wavelength conversion coefficient of laser | 100 mW/cm−1 |
incident angle | (−0.636°, 0) | Sawtooth modulation frequency | 1 Hz |
Waist size | 0.907 mm | Sinewave modulation frequency | 1 kHz |
Girdle position | Cavity center | Laser linewidth | 30 MHz |
Curvature radius | 1000 mm | Modulation depth | 2.2 |
Cavity pressure and environment temperature | 5 kPa, 25 °C | Detector photoelectric conversion coefficient | 5 × 104 V/W |
Reflectivity of mirrors | 0.995 | Detector detection efficiency | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.; Zhang, X.; Chen, X.; Liu, W.; Han, Y.; Zhong, Y.; Zhao, D.; Fang, Z.; Pan, L.; Wang, F.; et al. Simulation Research and Analysis of Wavelength Modulation Off-Axis Integrated Cavity Output Spectrum Measurement System. Sensors 2025, 25, 2478. https://doi.org/10.3390/s25082478
Wu T, Zhang X, Chen X, Liu W, Han Y, Zhong Y, Zhao D, Fang Z, Pan L, Wang F, et al. Simulation Research and Analysis of Wavelength Modulation Off-Axis Integrated Cavity Output Spectrum Measurement System. Sensors. 2025; 25(8):2478. https://doi.org/10.3390/s25082478
Chicago/Turabian StyleWu, Tao, Xiao Zhang, Xiao Chen, Wangwang Liu, Yan Han, Yubin Zhong, Dan Zhao, Zhen Fang, Linxin Pan, Feiyang Wang, and et al. 2025. "Simulation Research and Analysis of Wavelength Modulation Off-Axis Integrated Cavity Output Spectrum Measurement System" Sensors 25, no. 8: 2478. https://doi.org/10.3390/s25082478
APA StyleWu, T., Zhang, X., Chen, X., Liu, W., Han, Y., Zhong, Y., Zhao, D., Fang, Z., Pan, L., Wang, F., & Xu, H. (2025). Simulation Research and Analysis of Wavelength Modulation Off-Axis Integrated Cavity Output Spectrum Measurement System. Sensors, 25(8), 2478. https://doi.org/10.3390/s25082478