Multi-Objective Optimization Method for High-Efficiency and Low-Consumption Wire Rope Greasing Process
Abstract
:1. Introduction
2. Establishment of the Greasing Process Parameter Optimization Model
2.1. Determination of Optimization Variables
2.2. Determination of Optimization Objectives
2.2.1. Greasing Process Time Objective Function
2.2.2. Grease Consumption Objective Function
2.3. Optimization Model
3. Model Solution Based on Improved Genetic Algorithm
3.1. Multi-Objective Function Transformation
3.2. Improved Genetic Algorithm for Greasing Process Optimization
3.2.1. Population Size and Encoding Selection
3.2.2. Fitness Function with Adaptive Penalty Term
3.2.3. Genetic Algorithm Operations
3.2.4. Algorithm Steps
4. Case Study
4.1. Experimental Conditions
4.2. Optimization Results
4.3. Optimization Result Analysis
4.4. Experimental Implementation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
D | Drive wheel diameter (mm) |
d | Greasing thickness (mm) |
Dp | Diameter after greasing (mm) |
Dw | Diameter of wire rope (mm) |
dmin | Minimum allowable greasing thickness (mm) |
dmax | Maximum allowable greasing thickness (mm) |
Fc | Traction force (N) |
GT | Friction coefficient |
h | Allowable wear thickness (mm) |
KT | Correction coefficient |
L | Grease flow rate (L/min) |
L0 | Grease outlet flow (L) |
Lmin | Minimum allowable flow rate (L/min) |
Lmax | Maximum allowable flow rate (L/min) |
Lw | Greasing length (m) |
Mp | Grease consumption (L) |
Mo | Grease consumed for coating the surface of the wire rope (L) |
Mc | Additional grease consumption due to load conditions (min) |
m, n, u | Wear-related coefficients |
nmin | Minimum motor speed (r/min) |
nmax | Maximum motor speed (r/min) |
Pmax | Maximum power of the greasing device (Kw) |
p | Contact pressure (Mpa) |
Smin | Minimum greasing distance (mm) |
Smax | Maximum greasing distance (mm) |
T | Greaser service life (min) |
Tp | Greasing process time (min) |
t0 | Auxiliary process time (min) |
t1 | Greasing time (min) |
t2 | Greaser replacement time (min) |
v | Greasing speed (m/min) |
wi | Weight coefficient |
φ | Power efficiency coefficient |
References
- Zhou, P.; Zhou, G.; Han, L.; Yan, X.; Wang, H.; He, Z. Failure analysis for hoisting wire ropes with local accumulated broken wire damage on the surface. J. Mech. Sci. Technol. 2023, 37, 3459–3468. [Google Scholar]
- Palanisamy, S.K.; Krishnaswamy, M. Optimization of torsion and wear characteristics on reinforced steel wire rope. Mech. Based Des. Struct. Mach. 2024, 52, 752–772. [Google Scholar]
- Guerra-Fuentes, L.; Torres-López, M.; Hernandez-Rodriguez, M.A.L.; Garcia-Sanchez, E. Failure analysis of steel wire rope used in overhead crane system. Eng. Fail. Anal. 2020, 118, 104893. [Google Scholar] [CrossRef]
- Peng, Y.; Chang, X.; Sun, S.; Zhu, Z.-C.; Gong, X.-S.; Zou, S.-Y.; Xu, W.-X.; Mi, Z.-T. The friction and wear properties of steel wire rope sliding against itself under impact load. Wear 2018, 400, 194–206. [Google Scholar]
- Dyson, C.J.; Chittenden, R.J.; Priest, M.; Fox, M.F.; Hopkins, W.A. Representative tribometer testing of wire rope fretting contacts: The effect of lubrication on fretting wear. Tribol. Trans. 2020, 63, 557–574. [Google Scholar]
- Huang, K.; Peng, Y.; Dong, Y.; Chang, X.; Zhou, Z.; Lu, H.; Tang, W.; Wang, G.; Zhang, Q. Friction and wear behavior of multiple steel wires with different corrosion extents under different lubrication conditions. Wear 2023, 524, 204889. [Google Scholar]
- Peng, Y.; Huang, K.; Ma, C.; Zhu, Z.; Chang, X.; Lu, H.; Zhang, Q.; Xu, C. Friction and wear of multiple steel wires in a wire rope. Friction 2023, 11, 763–784. [Google Scholar]
- Liu, D.; Zheng, S.; He, Y. Effect of friction on the mechanical behavior of wire rope with hierarchical helical structures. Math. Mech. Solids 2019, 24, 2154–2180. [Google Scholar]
- Kumar, K.; Goyal, D.; Banwait, S.S. Effect of key parameters on fretting behavior of wire rope: A review. Arch. Comput. Methods Eng. 2020, 27, 549–561. [Google Scholar]
- Zhang, Y.; Zhang, Q.; Peng, Y.; Wang, C.; Chang, X.; Chen, G. Preparation and tribological properties of lanthanum stearate modified lubricating oil for wire rope in a mine hoist. Materials 2021, 14, 5821. [Google Scholar] [CrossRef]
- Wang, W.; Yang, H.; Chen, Y.; Huang, X.; Cao, J.; Zhang, W. Motion Analysis of Wire Rope Maintenance Device. Actuators 2023, 12, 392. [Google Scholar] [CrossRef]
- Halim, M.; Chandra, H.; Pratiwi, D.K.; Zahir, M. Sustainable development of lubricator to optimization process of lubrication in wire rope sling. J. Phys. Conf. Ser. 2019, 1198, 042005. [Google Scholar] [CrossRef]
- Xia, Y.; Deng, L.; Chen, X.; Jia, C.; Yang, Z.; Zhu, J.; Zhang, X.; Wang, P.; Li, D. Parametric modeling and finite element analysis of triangular strand wire rope. Eng. Struct. 2024, 314, 118398. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, X.; Zhang, C.; Zhang, J. Theory and Implementation of No-Joint Wire Rope Spatial Geometry Modeling. Math. Probl. Eng. 2019, 2019, 8760578. [Google Scholar] [CrossRef]
- Fang, G.; Cheng, J. Design and implementation of a wire rope climbing robot for sluices. Machines 2022, 10, 1000. [Google Scholar] [CrossRef]
- Burks, A.R.; Punch, W.F. An analysis of the genetic marker diversity algorithm for genetic programming. Genet. Program. Evolvable Mach. 2017, 18, 213–245. [Google Scholar] [CrossRef]
- Chen, Z.; Fei-Xiang, X.; De-Qiang, C. A multi-objective optimization method for hydraulically interconnected suspension system. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2024, 238, 1234–1248. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, H.; Ye, H.; Hu, J.; Hu, M.; Zhang, X. A Multi-Objective Local Optimization Method for Imaging Optical Systems. Photonics 2023, 10, 1218. [Google Scholar] [CrossRef]
- Shang, Y.; Shen, J.; Wei, W.; Zheng, B. Optimization of ball mill cylinder structure based on response surface optimization module and multi-objective genetic algorithm. J. Mech. Sci. Technol. 2024, 38, 3631–3640. [Google Scholar] [CrossRef]
- Chen, X.; Li, C.; Tang, Y.; Li, L.; Li, H. Energy efficient cutting parameter optimization. Front. Mech. Eng. 2021, 16, 221–248. [Google Scholar] [CrossRef]
- Queiroz, A.C.; Vieira, A.; Bernardino, H. Solving multi-agent pickup and delivery problems using multi-objective optimization. J. Intell. Robot. Syst. 2023, 109, 26. [Google Scholar]
- Eichfelder, G.; Rocktäschel, S. Solving set-valued optimization problems using a multi-objective approach. Optimization 2023, 72, 789–820. [Google Scholar]
- Ahmad, F. Robust neutrosophic programming approach for solving intuitionistic fuzzy multi-objective optimization problems. Complex Intell. Syst. 2021, 7, 1935–1954. [Google Scholar]
- Singh, A.; Beg, I.; Kumar, S. Analytic hierarchy process for hesitant probabilistic fuzzy linguistic set with applications to multi-criteria group decision-making method. Int. J. Fuzzy Syst. 2020, 22, 1596–1606. [Google Scholar]
- Zhang, C.; Zhao, Y.; Lu, J.; Li, T.; Zhang, X. Analytic hierarchy process-based fuzzy post mining method for operation anomaly detection of building energy systems. Energy Build. 2021, 252, 111426. [Google Scholar]
- Wang, Z.; Yu, Y.; Chen, Y.; Liao, W.; Li, C.; Hu, K.; Tan, Z.; Lu, X. Expert Experience–Embedded Evaluation and Decision-Making Method for Intelligent Design of Shear Wall Structures. J. Comput. Civ. Eng. 2025, 39, 04024051. [Google Scholar]
- Cavallaro, C.; Cutello, V.; Pavone, M.; Zito, F. Machine Learning and Genetic Algorithms: A case study on image reconstruction. Knowl. Based Syst. 2024, 284, 111194. [Google Scholar]
Base Oil | Thickener | Dropping Point (°C) | Worked Penetration (0.1 mm) | Adhesion (L/min) | Preheating Temperature (°C) |
Synthetic hydrocarbon | Metal soap | 78 | 355 | High | 50 |
nmin (r/min) | nmax (r/min) | Lmin (L/min) | Lmax (L/min) | Pmax (kW) | D (mm) | Fc (N) |
---|---|---|---|---|---|---|
10 | 125 | 0 | 10 | 1 | 152.4 | 750 |
m | n | u | w1 | w2 | KT | Φ |
---|---|---|---|---|---|---|
1/3 | 1/2 | −1 | 0.5 | 0.5 | 0.6 | 0.6 |
Lw (m) | DW (mm) | d (mm) | T0 (min) | T2 (min) | p (Mpa) | GT (mm3/N.m) | h (mm) |
---|---|---|---|---|---|---|---|
20 | 36.5 | 0.5 | 1 | 0.5 | 2 | 103 | 0.2 |
Scenario | 1 | 2 | 3 |
---|---|---|---|
TP | 1.95 | 2.33 | 2.15 |
MP | 2.23 | 1.65 | 1.92 |
t1 | 0.56 | 0.74 | 0.65 |
v | 35.71 | 27.03 | 30.77 |
Lw | 20 | 20 | 20 |
d | 0.59 | 0.51 | 0.56 |
L | 3.98 | 2.23 | 2.95 |
L0 | 1.85 | 0.62 | 1.12 |
Scenario Weight | 1 (1,0) | 2 (0.9,0.1) | 3 (0.8,0.2) | 4 (0.7,0.3) | 5 (0.6,0.4) | 6 (0.5,0.5) | 7 (0.4,0.6) | 8 (0.3,0.7) | 9 (0.2,0.8) | 10 (0.1,0.9) | 11 (0,1) |
---|---|---|---|---|---|---|---|---|---|---|---|
TP | 1.95 | 2.03 | 2.06 | 2.10 | 2.12 | 2.15 | 2.18 | 2.23 | 2.28 | 2.31 | 2.33 |
MP | 2.23 | 2.15 | 2.08 | 2.03 | 1.98 | 1.92 | 1.85 | 1.78 | 1.74 | 1.69 | 1.65 |
t1 | 0.56 | 0.57 | 0.59 | 0.62 | 0.64 | 0.65 | 0.67 | 0.68 | 0.71 | 0.72 | 0.74 |
v | 35.71 | 35.09 | 33.90 | 32.26 | 31.25 | 30.77 | 29.85 | 29.41 | 28.17 | 27.78 | 27.03 |
Lw | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
d | 0.59 | 0.59 | 0.58 | 0.57 | 0.56 | 0.56 | 0.55 | 0.55 | 0.53 | 0.51 | 0.51 |
L | 3.98 | 3.77 | 3.53 | 3.28 | 3.10 | 2.95 | 2.76 | 2.62 | 2.45 | 2.35 | 2.23 |
L0 | 1.85 | 1.67 | 1.49 | 1.34 | 1.22 | 1.12 | 0.97 | 0.85 | 0.76 | 0.68 | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, F.; Wang, Y.; Gong, R.; Tang, B. Multi-Objective Optimization Method for High-Efficiency and Low-Consumption Wire Rope Greasing Process. Sensors 2025, 25, 2053. https://doi.org/10.3390/s25072053
Zhou F, Wang Y, Gong R, Tang B. Multi-Objective Optimization Method for High-Efficiency and Low-Consumption Wire Rope Greasing Process. Sensors. 2025; 25(7):2053. https://doi.org/10.3390/s25072053
Chicago/Turabian StyleZhou, Fan, Yuemin Wang, Ruqing Gong, and Binghui Tang. 2025. "Multi-Objective Optimization Method for High-Efficiency and Low-Consumption Wire Rope Greasing Process" Sensors 25, no. 7: 2053. https://doi.org/10.3390/s25072053
APA StyleZhou, F., Wang, Y., Gong, R., & Tang, B. (2025). Multi-Objective Optimization Method for High-Efficiency and Low-Consumption Wire Rope Greasing Process. Sensors, 25(7), 2053. https://doi.org/10.3390/s25072053