High-Concentration Time-Frequency Representation and Instantaneous Frequency Estimation of Frequency-Crossing Signals
Abstract
:1. Introduction
2. Signal Model and Short-Time Fourier Transform
3. High-Concentration TF Representation Network of Frequency-Crossing Signals
4. Instantaneous Frequency Separation and Estimation Network
4.1. Determination of Number of Components
4.2. Extraction of Instantaneous Frequency
5. Network Training and Numerical Results
5.1. Data Generation
5.2. High-Concentration TF Representation Results
5.3. Instantaneous Frequency Extraction Results
5.4. Practical Application
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jurdana, V.; Vrankic, M.; Lopac, N.; Jadav, G.M. Method for automatic estimation of instantaneous frequency and group delay in time-frequency distributions with application in EEG seizure signals analysis. Sensors 2023, 23, 4680. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Ren, J.; Yang, Y.; Xiao, Z.; Yu, W.; Havyarimana, V. Object detection in large-scale remote-sensing images based on time-frequency analysis and feature optimization. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Duan, H.; Chen, G.; Yu, Y.; Du, C.; Bao, Z.; Ma, D. DyGAT-FTNet: A dynamic graph attention network for multi-sensor fault diagnosis and time-frequency data fusion. Sensors 2025, 25, 810. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Hao, G.; Yu, J.; Wang, P.; Jin, Y. A novel solution for improved performance of time-frequency concentration. Mech. Syst. Signal Process. 2023, 185, 109784. [Google Scholar]
- Li, Y.; Geng, C.; Yang, Y.; Chen, S.; Feng, K.; Beer, M. Extraction of instantaneous frequencies for signals with intersecting and intermittent trajectories. Mech. Syst. Signal Process. 2025, 223, 111835. [Google Scholar]
- Chen, T.; Chen, Q.; Zheng, Q.; Li, Z.; Zhang, Z.; Xie, L.; Su, H. Adaptive multi-scale TF-net for high-resolution time-frequency representations. Signal Process. 2024, 214, 109247. [Google Scholar] [CrossRef]
- Cohen, L. Time-Frequency Analysis; Prentice Hall PTR: New York, NY, USA, 1995. [Google Scholar]
- Jurdana, V.; Baressi Šegota, S. Convolutional neural networks for local component number estimation from time-frequency distributions of multicomponent nonstationary signals. Mathematics 2024, 12, 1661. [Google Scholar] [CrossRef]
- Mann, S.; Haykin, S. The chirplet transform: Physical considerations. IEEE Trans. Signal Process. 1995, 43, 2745–2761. [Google Scholar]
- Auger, F.; Flandrin, P. Improving the readability of time-frequency and time-scale representations by the reassignment method. IEEE Trans. Signal Process. 1995, 43, 1068–1089. [Google Scholar]
- Daubechies, I.; Lu, J.; Wu, H.T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Appl. Computat. Harmon. Anal. 2011, 30, 243–261. [Google Scholar]
- Bruni, V.; Tartaglione, M.; Vitulano, D. An iterative approach for spectrogram reassignment of frequency modulated multicomponent signals. Math. Comput. Simul. 2020, 176, 96–119. [Google Scholar] [CrossRef]
- Zhu, X.X.; Zhang, Z.; Gao, J. Three-dimension extracting transform. Signal Process. 2021, 179, 107830. [Google Scholar] [CrossRef]
- Chui, C.K.; Jiang, Q.; Li, L.; Lu, J. Time-scale-chirp_rate operator for recovery of non-stationary signal components with crossover instantaneous frequency curves. Appl. Comput. Harmon. Anal. 2021, 54, 323–344. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, H.-T. Disentangling modes with crossover instantaneous frequencies by synchrosqueezed chirplet transforms, from theory to application. Appl. Comput. Harmon. Anal. 2023, 62, 84–122. [Google Scholar] [CrossRef]
- Chen, S.; Dong, X.; Xing, G.; Peng, Z.; Zhang, W.; Meng, G. Separation of overlapped nonstationary signals by ridge path regrouping and intrinsic chirp component decomposition. IEEE Sens. J. 2017, 17, 5994–6005. [Google Scholar] [CrossRef]
- Zhang, S.; Pavel, M.; Zhang, Y.D. Crossterm-free time-frequency representation exploiting deep convolutional neural network. Signal Process. 2022, 192, 108372. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, H.; Yu, L.; Hua, G. A data-driven high-resolution time-frequency distribution. IEEE Signal Process. Lett. 2022, 29, 1512–1516. [Google Scholar] [CrossRef]
- Liu, N.; Wang, J.; Yang, Y.; Li, Z.; Gao, J. WVDNet: Time-frequency analysis via semi-supervised learning. IEEE Signal Process. Lett. 2023, 30, 55–59. [Google Scholar] [CrossRef]
- Quan, D.; Ren, F.; Wang, X.; Xing, M.; Jin, N.; Zhang, D. WVD-GAN: A Wigner-Ville distribution enhancement method based on generative adversarial network. IET Radar Sonar Navig. 2024, 18, 849–865. [Google Scholar] [CrossRef]
- Pan, P.; Zhang, Y.; Deng, Z.; Fan, S.; Huang, X. TFA-Net: A deep learning-based time-frequency analysis tool. IEEE Trans. Neural Net. Learn. Syst. 2023, 34, 9274–9286. [Google Scholar] [CrossRef]
- Zhao, D.; Shao, D.; Cui, L. CTNet: A data-driven time-frequency technique for wind turbines fault diagnosis under time-varying speeds. ISA Trans. 2024, 154, 335–351. [Google Scholar] [PubMed]
- Wang, Z.; Chen, L.; Xiao, P.; Xu, L.; Li, Z. Enhancing time-frequency resolution via deep-learning framework. IET Signal Process. 2023, e12210. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Azad, R.; Aghdam, E.; Rauland, A.; Jia, Y.; Avval, A.; Bozorgpour, A.; Karimijafarbigloo, S.; Cohen, J.; Adeli, E.; Merhof, D. Medical image segmentation review: The success of U-Net. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 16, 10076–10095. [Google Scholar]
- Xia, X.; Yu, F.; Liu, C.; Zhao, J.; Wu, T. Time-frequency image enhancement of frequency modulation signals by using fully convolutional networks. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018; pp. 1472–1476. [Google Scholar]
- Wu, X.; Hong, D.; Chanussot, J. UIU-Net: U-Net in U-Net for infrared small object detection. IEEE Trans. Imag. Process. 2023, 32, 364–376. [Google Scholar]
Layer | conv1 | conv2 | conv3 | conv4 | up1 | concatenate1 | conv5 |
---|---|---|---|---|---|---|---|
Number | 16 | 24 | 32 | 40 | 32 | 32 | 32 |
Size | 5 × 5 | 5 × 5 | 5 × 5 | 5 × 5 | 5 × 5 | 3×3 | 5 × 5 |
Layer | up2 | concatenate2 | conv6 | up3 | concatenate3 | conv7 | |
Number | 24 | 24 | 24 | 16 | 16 | 16 | |
Size | 5 × 5 | 3 × 3 | 5 × 5 | 5 × 5 | 3 × 3 | 5 × 5 |
Layer | conv2d, conv2d_3, conv2d_6 | conv2d_1, conv2d_4, conv2d_7 | conv2d_3, conv2d_5, conv2d_8 |
---|---|---|---|
Number | 8 | 10 | 16 |
Size | 5 × 5 | 5 × 5 | 5 × 5 |
Method | STFT | SST | CNN | Our |
---|---|---|---|---|
Time cost (ms) | 1.9 | 4.6 | 413/step | 361/step |
MAE | 0.959 | 0.617 | 0.409 | 0.372 |
Rényi entropy | 13.5 | 11.4 | 10.4 | 10.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhu, X.; Wang, Y.; Cai, X.; Zhang, Z. High-Concentration Time-Frequency Representation and Instantaneous Frequency Estimation of Frequency-Crossing Signals. Sensors 2025, 25, 2030. https://doi.org/10.3390/s25072030
Li H, Zhu X, Wang Y, Cai X, Zhang Z. High-Concentration Time-Frequency Representation and Instantaneous Frequency Estimation of Frequency-Crossing Signals. Sensors. 2025; 25(7):2030. https://doi.org/10.3390/s25072030
Chicago/Turabian StyleLi, Hui, Xiangxiang Zhu, Yingfei Wang, Xinpeng Cai, and Zhuosheng Zhang. 2025. "High-Concentration Time-Frequency Representation and Instantaneous Frequency Estimation of Frequency-Crossing Signals" Sensors 25, no. 7: 2030. https://doi.org/10.3390/s25072030
APA StyleLi, H., Zhu, X., Wang, Y., Cai, X., & Zhang, Z. (2025). High-Concentration Time-Frequency Representation and Instantaneous Frequency Estimation of Frequency-Crossing Signals. Sensors, 25(7), 2030. https://doi.org/10.3390/s25072030