Graphene and Its Derivatives for Electrochemical Sensing
Abstract
:1. Introduction
2. Graphene and Its Derivatives Preparation
2.1. Graphene
2.2. Graphene Oxide
2.3. Reduced Graphene Oxide
2.4. Green Synthesis of Graphene and Its Derivatives
3. Graphene and Its Derivatives for Electrochemical Sensing
3.1. Electrochemical Sensor
3.2. Photoelectrochemical Sensor
3.3. Electrochemiluminescence Sensor
4. Summary and Challenges
Funding
Conflicts of Interest
References
- Chen, C.; Xie, L. Graphene and Graphdiyne. In Carbon Catalysis; CRC Press: Boca Raton, FL, USA, 2024; pp. 149–214. [Google Scholar]
- Naseer, M.N.; Ikram, M.; Zaidi, A.A.; Wahab, Y.A.; Johan, M.R. Graphene-Based Photocatalysts for Hydrogen Production and Environmental Remediation; Springer Nature: Berlin/Heidelberg, Germany, 2024; Volume 219. [Google Scholar]
- Sahu, D.; Sutar, H.; Senapati, P.; Murmu, R.; Roy, D. Graphene, graphene-derivatives and composites: Fundamentals, synthesis approaches to applications. J. Compos. Sci. 2021, 5, 181. [Google Scholar] [CrossRef]
- Hajialilou, E.; Rezanezhad, A.; Hanif, M.B.; Motola, M. Two-Dimensional Carbon Graphenylene. In Handbook of Functionalized Carbon Nanostructures: From Synthesis Methods to Applications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–37. [Google Scholar]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [PubMed]
- Tyutyunnik, V.M. Graphene breakthrough into future technology: The 2010 Nobel Prize in Physics Laureate Sir Konstantin Sergeevich Novoselov. J. Adv. Mater. Technol. 2021, 6, 6–9. [Google Scholar]
- Hayat, A.; Sohail, M.; El Jery, A.; Al-Zaydi, K.M.; Raza, S.; Ali, H.; Ajmal, Z.; Zada, A.; Taha, T.; Din, I.U.; et al. Recent advances, properties, fabrication and opportunities in two-dimensional materials for their potential sustainable applications. Energy Storage Mater. 2023, 59, 102780. [Google Scholar]
- Xiong, H.; Liu, H.; Feng, X.; Sun, Y.; Huang, Q.; Xiao, C. A review of two-dimensional porous graphene with in-plane pores: Pore construction and membrane applications. Carbon 2024, 229, 119547. [Google Scholar]
- Ashok Kumar, S.S.; Bashir, S.; Ramesh, K.; Ramesh, S. A review on graphene and its derivatives as the forerunner of the two-dimensional material family for the future. J. Mater. Sci. 2022, 57, 12236–12278. [Google Scholar]
- Govindaraj, P.; Sokolova, A.; Salim, N.; Juodkazis, S.; Fuss, F.K.; Fox, B.; Hameed, N. Distribution states of graphene in polymer nanocomposites: A review. Compos. Part B Eng. 2021, 226, 109353. [Google Scholar]
- Wang, S.; Zhuge, Y.; Liu, Y.; Lu, Y. Effect of mechanochemistry on graphene dispersion and its application in improving the mechanical properties of engineered cementitious composites. J. Build. Eng. 2024, 95, 110251. [Google Scholar] [CrossRef]
- Anegbe, B.; Ifijen, I.H.; Maliki, M.; Uwidia, I.E.; Aigbodion, A.I. Graphene oxide synthesis and applications in emerging contaminant removal: A comprehensive review. Environ. Sci. Eur. 2024, 36, 15. [Google Scholar]
- Brisebois, P.; Siaj, M. Harvesting graphene oxide–years 1859 to 2019: A review of its structure, synthesis, properties and exfoliation. J. Mater. Chem. C 2020, 8, 1517–1547. [Google Scholar]
- Shams, M.; Guiney, L.M.; Huang, L.; Ramesh, M.; Yang, X.; Hersam, M.C.; Chowdhury, I. Influence of functional groups on the degradation of graphene oxide nanomaterials. Environ. Sci. Nano 2019, 6, 2203–2214. [Google Scholar] [CrossRef]
- Singh, R.K.; Kumar, R.; Singh, D.P. Graphene oxide: Strategies for synthesis, reduction and frontier applications. RSC Adv. 2016, 6, 64993–65011. [Google Scholar] [CrossRef]
- Ullah, S.; Shi, Q.; Zhou, J.; Yang, X.; Ta, H.Q.; Hasan, M.; Ahmad, N.M.; Fu, L.; Bachmatiuk, A.; Rümmeli, M.H. Advances and trends in chemically doped graphene. Adv. Mater. Interfaces 2020, 7, 2000999. [Google Scholar] [CrossRef]
- Kaushal, S.; Kaur, M.; Kaur, N.; Kumari, V.; Singh, P.P. Heteroatom-doped graphene as sensing materials: A mini review. RSC Adv. 2020, 10, 28608–28629. [Google Scholar] [CrossRef]
- Lee, S.J.; Theerthagiri, J.; Nithyadharseni, P.; Arunachalam, P.; Balaji, D.; Kumar, A.M.; Madhavan, J.; Mittal, V.; Choi, M.Y. Heteroatom-doped graphene-based materials for sustainable energy applications: A review. Renew. Sustain. Energy Rev. 2021, 143, 110849. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A.; Wilberforce, T.; Sayed, E.T. Application of graphene in energy storage device—A review. Renew. Sustain. Energy Rev. 2021, 135, 110026. [Google Scholar] [CrossRef]
- El-Kady, M.F.; Shao, Y.; Kaner, R.B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 2016, 1, 16033. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, R.; Gao, Z.; He, J.; Li, X. Greenly growing carbon nanotubes on graphene for high-performance lithium–sulfur batteries. Mater. Today Energy 2023, 37, 101389. [Google Scholar] [CrossRef]
- Hossain, S.; Abdalla, A.M.; Suhaili, S.B.; Kamal, I.; Shaikh, S.P.; Dawood, M.K.; Azad, A.K. Nanostructured graphene materials utilization in fuel cells and batteries: A review. J. Energy Storage 2020, 29, 101386. [Google Scholar] [CrossRef]
- Tong, Y.; Bohm, S.; Song, M. Graphene based materials and their composites as coatings. Austin J. Nanomed. Nanotechnol. 2013, 1, 1003–1019. [Google Scholar]
- Ollik, K.; Lieder, M. Review of the application of graphene-based coatings as anticorrosion layers. Coatings 2020, 10, 883. [Google Scholar] [CrossRef]
- Zhang, R.; Yu, X.; Yang, Q.; Cui, G.; Li, Z. The role of graphene in anti-corrosion coatings: A review. Constr. Build. Mater. 2021, 294, 123613. [Google Scholar] [CrossRef]
- Mohan, V.B.; Lau, K.-t.; Hui, D.; Bhattacharyya, D. Graphene-based materials and their composites: A review on production, applications and product limitations. Compos. Part B Eng. 2018, 142, 200–220. [Google Scholar] [CrossRef]
- Tong, L.; Qiu, F.; Zeng, T.; Long, J.; Yang, J.; Wang, R.; Zhang, J.; Wang, C.; Sun, T.; Yang, Y. Recent progress in the preparation and application of quantum dots/graphene composite materials. RSC Adv. 2017, 7, 47999–48018. [Google Scholar]
- Li, F.; Long, L.; Weng, Y. A review on the contemporary development of composite materials comprising graphene/graphene derivatives. Adv. Mater. Sci. Eng. 2020, 2020, 7915641. [Google Scholar] [CrossRef]
- Sang, M.; Shin, J.; Kim, K.; Yu, K.J. Electronic and thermal properties of graphene and recent advances in graphene based electronics applications. Nanomaterials 2019, 9, 374. [Google Scholar] [CrossRef] [PubMed]
- Koh, W.S.; Lee, K.M.; Toh, P.Y.; Yeap, S.P. Nano-graphene and its derivatives for fabrication of flexible electronic devices: A quick review. Energy Convers. 2018, 40, 43. [Google Scholar]
- Adekoya, G.J.; Sadiku, R.E.; Ray, S.S. Nanocomposites of PEDOT: PSS with graphene and its derivatives for flexible electronic applications: A review. Macromol. Mater. Eng. 2021, 306, 2000716. [Google Scholar] [CrossRef]
- Mehmood, A.; Mubarak, N.; Khalid, M.; Walvekar, R.; Abdullah, E.; Siddiqui, M.T.H.; Baloch, H.A.; Nizamuddin, S.; Mazari, S. Graphene based nanomaterials for strain sensor application—A review. J. Environ. Chem. Eng. 2020, 8, 103743. [Google Scholar] [CrossRef]
- Shahdeo, D.; Roberts, A.; Abbineni, N.; Gandhi, S. Graphene based sensors. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; Volume 91, pp. 175–199. [Google Scholar]
- Sainz-Urruela, C.; Vera-López, S.; San Andrés, M.P.; Díez-Pascual, A.M. Graphene-based sensors for the detection of bioactive compounds: A review. Int. J. Mol. Sci. 2021, 22, 3316. [Google Scholar] [CrossRef]
- Xia, S.; Wang, M.; Gao, G. Preparation and application of graphene-based wearable sensors. Nano Res. 2022, 15, 9850–9865. [Google Scholar] [CrossRef]
- Pourmadadi, M.; Soleimani Dinani, H.; Saeidi Tabar, F.; Khassi, K.; Janfaza, S.; Tasnim, N.; Hoorfar, M. Properties and applications of graphene and its derivatives in biosensors for cancer detection: A comprehensive review. Biosensors 2022, 12, 269. [Google Scholar] [CrossRef] [PubMed]
- Karaca, E.; Acaralı, N. Application of graphene and its derivatives in medicine: A review. Mater. Today Commun. 2023, 37, 107054. [Google Scholar] [CrossRef]
- Papi, M. Graphene-based materials: Biological and biomedical applications. Int. J. Mol. Sci. 2021, 22, 672. [Google Scholar] [CrossRef]
- Khan, K.; Tareen, A.K.; Iqbal, M.; Mahmood, A.; Mahmood, N.; Shi, Z.; Yin, J.; Qing, D.; Ma, C.; Zhang, H. Recent development in graphdiyne and its derivative materials for novel biomedical applications. J. Mater. Chem. B 2021, 9, 9461–9484. [Google Scholar] [CrossRef]
- Saba, N.; Jawaid, M. Energy and environmental applications of graphene and its derivatives. In Polymer-Based Nanocomposites for Energy and Environmental Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 105–129. [Google Scholar]
- Ding, X.; Pu, Y.; Tang, M.; Zhang, T. Environmental and health effects of graphene-family nanomaterials: Potential release pathways, transformation, environmental fate and health risks. Nano Today 2022, 42, 101379. [Google Scholar] [CrossRef]
- Karthik, V.; Selvakumar, P.; Senthil Kumar, P.; Vo, D.-V.N.; Gokulakrishnan, M.; Keerthana, P.; Tamil Elakkiya, V.; Rajeswari, R. Graphene-based materials for environmental applications: A review. Environ. Chem. Lett. 2021, 19, 3631–3644. [Google Scholar] [CrossRef]
- Patil, P.O.; Pandey, G.R.; Patil, A.G.; Borse, V.B.; Deshmukh, P.K.; Patil, D.R.; Tade, R.S.; Nangare, S.N.; Khan, Z.G.; Patil, A.M.; et al. Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review. Biosens. Bioelectron. 2019, 139, 111324. [Google Scholar] [CrossRef]
- Molina, J.; Cases, F.; Moretto, L.M. Graphene-based materials for the electrochemical determination of hazardous ions. Anal. Chim. Acta 2016, 946, 9–39. [Google Scholar] [CrossRef]
- Ahmed, A.; Singh, A.; Young, S.-J.; Gupta, V.; Singh, M.; Arya, S. Synthesis techniques and advances in sensing applications of reduced graphene oxide (rGO) Composites: A review. Compos. Part A Appl. Sci. Manuf. 2023, 165, 107373. [Google Scholar] [CrossRef]
- Reddy, Y.V.M.; Shin, J.H.; Palakollu, V.N.; Sravani, B.; Choi, C.-H.; Park, K.; Kim, S.-K.; Madhavi, G.; Park, J.P.; Shetti, N.P. Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors. Adv. Colloid Interface Sci. 2022, 304, 102664. [Google Scholar] [PubMed]
- Coros, M.; Varodi, C.; Pogacean, F.; Gal, E.; Pruneanu, S.M. Nitrogen-doped graphene: The influence of doping level on the charge-transfer resistance and apparent heterogeneous electron transfer rate. Sensors 2020, 20, 1815. [Google Scholar] [CrossRef]
- Parviz, D.; Irin, F.; Shah, S.A.; Das, S.; Sweeney, C.B.; Green, M.J. Challenges in liquid-phase exfoliation, processing, and assembly of pristine graphene. Adv. Mater. 2016, 28, 8796–8818. [Google Scholar]
- Urade, A.R.; Lahiri, I.; Suresh, K. Graphene properties, synthesis and applications: A review. JOM 2023, 75, 614–630. [Google Scholar]
- Abhilash; Swetha, V.; Meshram, P. An overview on chemical processes for synthesis of graphene from waste carbon resources. Carbon Lett. 2022, 32, 653–669. [Google Scholar]
- Yan, Y.; Nashath, F.Z.; Chen, S.; Manickam, S.; Lim, S.S.; Zhao, H.; Lester, E.; Wu, T.; Pang, C.H. Synthesis of graphene: Potential carbon precursors and approaches. Nanotechnol. Rev. 2020, 9, 1284–1314. [Google Scholar]
- Annett, J.; Cross, G.L. Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate. Nature 2016, 535, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.; Xie, D.; Wang, J.; Yang, Z.; Ren, G.; Zhu, Y. Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene. Adv. Funct. Mater. 2017, 27, 1700240. [Google Scholar]
- Badami, D. Graphitization of α-silicon carbide. Nature 1962, 193, 569–570. [Google Scholar]
- Zebardastan, N.; Bradford, J.; Lipton-Duffin, J.; MacLeod, J.; Ostrikov, K.K.; Tomellini, M.; Motta, N. High quality epitaxial graphene on 4H-SiC by face-to-face growth in ultra-high vacuum. Nanotechnology 2022, 34, 105601. [Google Scholar]
- Briggs, N.; Gebeyehu, Z.M.; Vera, A.; Zhao, T.; Wang, K.; Duran, A.D.L.F.; Bersch, B.; Bowen, T.; Knappenberger, K.L.; Robinson, J.A. Epitaxial graphene/silicon carbide intercalation: A minireview on graphene modulation and unique 2D materials. Nanoscale 2019, 11, 15440–15447. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.; Yang, J.; Zhao, Y.; Kim, K.S. Chemical vapor deposition of graphene and its characterizations and applications. Curr. Appl. Phys. 2024, 61, 55–70. [Google Scholar] [CrossRef]
- Brownson, D.A.; Banks, C.E. CVD graphene electrochemistry: The role of graphitic islands. Phys. Chem. Chem. Phys. 2011, 13, 15825–15828. [Google Scholar] [CrossRef]
- Yan, K.; Fu, L.; Peng, H.; Liu, Z. Designed CVD growth of graphene via process engineering. Acc. Chem. Res. 2013, 46, 2263–2274. [Google Scholar] [CrossRef]
- Sun, B.; Pang, J.; Cheng, Q.; Zhang, S.; Li, Y.; Zhang, C.; Sun, D.; Ibarlucea, B.; Li, Y.; Chen, D.; et al. Synthesis of wafer-scale graphene with chemical vapor deposition for electronic device applications. Adv. Mater. Technol. 2021, 6, 2000744. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef]
- de Assis, L.K.; Damasceno, B.S.; Carvalho, M.N.; Oliveira, E.H.; Ghislandi, M.G. Adsorption capacity comparison between graphene oxide and graphene nanoplatelets for the removal of coloured textile dyes from wastewater. Environ. Technol. 2020, 41, 2360–2371. [Google Scholar] [CrossRef] [PubMed]
- Brodie, B.C. XIII. On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 1859, 149, 249–259. [Google Scholar]
- Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Berichte Dtsch. Chem. Ges. 1898, 31, 1481–1487. [Google Scholar] [CrossRef]
- Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Berichte Dtsch. Chem. Ges. 1899, 32, 1394–1399. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar]
- Chen, J.; Yao, B.; Li, C.; Shi, G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013, 64, 225–229. [Google Scholar] [CrossRef]
- Peng, L.; Xu, Z.; Liu, Z.; Wei, Y.; Sun, H.; Li, Z.; Zhao, X.; Gao, C. An iron-based green approach to 1-h production of single-layer graphene oxide. Nat. Commun. 2015, 6, 5716. [Google Scholar] [PubMed]
- Shen, J.; Hu, Y.; Shi, M.; Lu, X.; Qin, C.; Li, C.; Ye, M. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem. Mater. 2009, 21, 3514–3520. [Google Scholar]
- Pei, S.; Cheng, H.-M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228. [Google Scholar]
- Xiang, X.; Zhu, Y.; Gao, C.; Du, H.; Guo, C. Study on the structure of reduced graphene oxide prepared by different reduction methods. Carbon Lett. 2022, 32, 557–566. [Google Scholar]
- Cao, J.; Qi, G.-Q.; Ke, K.; Luo, Y.; Yang, W.; Xie, B.-H.; Yang, M.-B. Effect of temperature and time on the exfoliation and de-oxygenation of graphite oxide by thermal reduction. J. Mater. Sci. 2012, 47, 5097–5105. [Google Scholar]
- Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A.N.; et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196. [Google Scholar]
- Schniepp, H.C.; Li, J.-L.; McAllister, M.J.; Sai, H.; Herrera-Alonso, M.; Adamson, D.H.; Prud’homme, R.K.; Car, R.; Saville, D.A.; Aksay, I.A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110, 8535–8539. [Google Scholar]
- McAllister, M.J.; Li, J.-L.; Adamson, D.H.; Schniepp, H.C.; Abdala, A.A.; Liu, J.; Herrera-Alonso, M.; Milius, D.L.; Car, R.; Prud’homme, R.K.; et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404. [Google Scholar]
- Trusovas, R.; Ratautas, K.; Račiukaitis, G.; Barkauskas, J.; Stankevičienė, I.; Niaura, G.; Mažeikienė, R. Reduction of graphite oxide to graphene with laser irradiation. Carbon 2013, 52, 574–582. [Google Scholar] [CrossRef]
- Alotaibi, F.; Tung, T.T.; Nine, M.J.; Kabiri, S.; Moussa, M.; Tran, D.N.; Losic, D. Scanning atmospheric plasma for ultrafast reduction of graphene oxide and fabrication of highly conductive graphene films and patterns. Carbon 2018, 127, 113–121. [Google Scholar]
- Xie, X.; Zhou, Y.; Huang, K. Advances in microwave-assisted production of reduced graphene oxide. Front. Chem. 2019, 7, 355. [Google Scholar]
- Cai, J.; Wu, Z.; Wang, S.; Guo, J.; Fan, M.; Xu, W.; Jin, H.; Wan, J. Exploring advanced microwave strategy for the synthesis of two-dimensional energy materials. Appl. Phys. Rev. 2024, 11, 041320. [Google Scholar]
- Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H.Y.; Shin, H.S.; Chhowalla, M. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 2016, 353, 1413–1416. [Google Scholar]
- Agarwal, V.; Zetterlund, P.B. Strategies for reduction of graphene oxide—A comprehensive review. Chem. Eng. J. 2021, 405, 127018. [Google Scholar]
- Gómez-Navarro, C.; Weitz, R.T.; Bittner, A.M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499–3503. [Google Scholar] [CrossRef]
- Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K.A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 2009, 19, 2577–2583. [Google Scholar]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar]
- Saleem, H.; Haneef, M.; Abbasi, H.Y. Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Mater. Chem. Phys. 2018, 204, 1–7. [Google Scholar]
- De Lima, B.; Bernardi, M.I.B.; Mastelaro, V.R. Wavelength effect of ns-pulsed radiation on the reduction of graphene oxide. Appl. Surf. Sci. 2020, 506, 144808. [Google Scholar]
- Kotov, N.A.; Dékány, I.; Fendler, J.H. Ultrathin graphite oxide–polyelectrolyte composites prepared by self-assembly: Transition between conductive and non-conductive states. Adv. Mater. 1996, 8, 637–641. [Google Scholar]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar]
- Shin, H.J.; Kim, K.K.; Benayad, A.; Yoon, S.M.; Park, H.K.; Jung, I.S.; Jin, M.H.; Jeong, H.K.; Kim, J.M.; Choi, J.Y. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19, 1987–1992. [Google Scholar]
- Gao, W.; Alemany, L.B.; Ci, L.; Ajayan, P.M. New insights into the structure and reduction of graphite oxide. Nat. Chem. 2009, 1, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Souza, I.E.; Cambraia, L.V.; Gomide, V.S.; Nunes, E.H. Short review on the use of graphene as a biomaterial–prospects, and challenges in Brazil. J. Mater. Res. Technol. 2022, 19, 2410–2430. [Google Scholar]
- Raja, I.S.; Molkenova, A.; Kang, M.S.; Lee, S.H.; Lee, J.E.; Kim, B.; Han, D.-W.; Atabaev, T.S. Differential toxicity of graphene family nanomaterials concerning morphology. In Multifaceted Biomedical Applications of Graphene; Springer: Berlin/Heidelberg, Germany, 2022; pp. 23–39. [Google Scholar]
- Lam, S.; Wang, F.; Yeap, S.P.; Teng, K.H.; Shaw, A.; Karunamoothei, V.; Khosravi, V.; Liu, C. On the Rapid Synthesis of Reduced Graphene Oxide via Ultrasound-Promoted Eco-Friendly Reduction Approach and Its Effects on Physicochemical Properties. ChemSusChem 2024, 17, e202400845. [Google Scholar]
- Kumari, P.S.; Ranjitha, R.; Vidhya, N. Revitalizing property of banana peel extracts by antioxidant activity and antibacterial activity against acne causing Staphylococcus epidermidis. Ann. Phytomed. 2020, 9, 215–222. [Google Scholar]
- Islam, M.R.; Kamal, M.M.; Kabir, M.R.; Hasan, M.M.; Haque, A.R.; Hasan, S.K. Phenolic compounds and antioxidants activity of banana peel extracts: Testing and optimization of enzyme-assisted conditions. Meas. Food 2023, 10, 100085. [Google Scholar]
- Wang, D.-C.; Lv, J.-Z.; Zhong, S.; Wu, Y.; Liu, Y.; Lei, S.-N.; Yu, H.-Y.; Qu, L.; Stoddart, J.F.; Guo, Q.-H. One-step conversion of biomass to reduced graphene oxide at room temperature. Nat. Sustain. 2024, 7, 1699–1708. [Google Scholar]
- Yang, K.; Wu, C.; Zhang, G. A state of review for graphene-based materials in preparation methods, characterization, and properties. Mater. Sci. Eng. B 2024, 310, 117698. [Google Scholar] [CrossRef]
- Singh, S.; Hasan, M.R.; Sharma, P.; Narang, J. Graphene nanomaterials: The wondering material from synthesis to applications. Sens. Int. 2022, 3, 100190. [Google Scholar] [CrossRef]
- Zafar, M.; Imran, S.M.; Iqbal, I.; Azeem, M.; Chaudhary, S.; Ahmad, S.; Kim, W.Y. Graphene-based polymer nanocomposites for energy applications: Recent advancements and future prospects. Results Phys. 2024, 60, 107655. [Google Scholar] [CrossRef]
- Zhao, Z.; Bai, P.; Du, W.; Liu, B.; Pan, D.; Das, R.; Liu, C.; Guo, Z. An overview of graphene and its derivatives reinforced metal matrix composites: Preparation, properties and applications. Carbon 2020, 170, 302–326. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Adel, M.; Abd El-Aziz, A.M. Recent trends in two-dimensional graphene derivatives-based composites: Review on synthesis, properties and applications. J. Compos. Mater. 2023, 57, 4327–4364. [Google Scholar] [CrossRef]
- Erkmen, C.; Unal, D.N.; Kurbanoglu, S.; Uslu, B. Basics of electrochemical sensors. In Organic electrodes: Fundamental to Advanced Emerging Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 81–99. [Google Scholar]
- Tian, R.; Ning, W.; Chen, M.; Zhang, C.; Li, Q.; Bai, J. High performance electrochemical biosensor based on 3D nitrogen-doped reduced graphene oxide electrode and tetrahedral DNA nanostructure. Talanta 2019, 194, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.U.; Deen, M.J. Bisphenol A electrochemical sensor using graphene oxide and β-cyclodextrin-functionalized multi-walled carbon nanotubes. Anal. Chem. 2020, 92, 5532–5539. [Google Scholar] [CrossRef]
- Teodoro, K.B.; Migliorini, F.L.; Facure, M.H.; Correa, D.S. Conductive electrospun nanofibers containing cellulose nanowhiskers and reduced graphene oxide for the electrochemical detection of mercury (II). Carbohydr. Polym. 2019, 207, 747–754. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Wang, T.-J.; Duraisamy, N.; Kumar, E.A. Hierarchical nanoarchitecture of zirconium phosphate/graphene oxide: Robust electrochemical platform for detection of fenitrothion. J. Hazard. Mater. 2021, 412, 125257. [Google Scholar] [CrossRef]
- Fang, X.; Chen, X.; Liu, Y.; Li, Q.; Zeng, Z.; Maiyalagan, T.; Mao, S. Nanocomposites of Zr (IV)-based metal–organic frameworks and reduced graphene oxide for electrochemically sensing ciprofloxacin in water. ACS Appl. Nano Mater. 2019, 2, 2367–2376. [Google Scholar] [CrossRef]
- Sharma, M.D.; Basu, M. Fundamentals of Semiconductor Photoelectrochemistry. In Photoelectrochemical Generation of Fuels; CRC Press: Boca Raton, FL, USA, 2022; pp. 5–63. [Google Scholar]
- Divyapriya, G.; Singh, S.; Martínez-Huitle, C.A.; Scaria, J.; Karim, A.V.; Nidheesh, P. Treatment of real wastewater by photoelectrochemical methods: An overview. Chemosphere 2021, 276, 130188. [Google Scholar] [PubMed]
- Abe, H.; Iwama, T.; Guo, Y. Light in Electrochemistry. Electrochem 2021, 2, 472–489. [Google Scholar] [CrossRef]
- Song, M.; Sun, H.; Yu, J.; Wang, Y.; Li, M.; Liu, M.; Zhao, G. Enzyme-free molecularly imprinted and graphene-functionalized photoelectrochemical sensor platform for pollutants. ACS Appl. Mater. Interfaces 2021, 13, 37212–37222. [Google Scholar]
- Ibrahim, I.; Lim, H.; Huang, N.; Pandikumar, A. Cadmium sulphide-reduced graphene oxide-modified photoelectrode-based photoelectrochemical sensing platform for copper (II) ions. PLoS ONE 2016, 11, e0154557. [Google Scholar] [CrossRef]
- Li, R.; Wang, C.; Wang, Y.; Chen, J.; Yang, Y.; Li, C.; Xie, Y.; Zhao, P.; Fei, J. A novel photoelectrochemical sensor based on flower-like SnS2, sea urchin-like AgBiS2 and graphene oxide nanocomposite film for efficient and sensitive detection of acetaminophen in lake water samples. Anal. Chim. Acta 2023, 1239, 340681. [Google Scholar] [PubMed]
- Zhuge, W.; Li, X.; Feng, S. Visible-light photoelectrochemical sensor for glutathione based on CoFe2O4-nanosphere-sensitized copper tetraaminophthalocyanine–graphene oxide. Microchem. J. 2020, 155, 104726. [Google Scholar]
- Xiang, G.; He, X.; Liu, Y.; Huang, Q.; Huang, W.; Zhang, C.; Peng, J. A sensitive photoelectrochemical sensor for levodopa detection using benzothiadiazole-based conjugated microporous polymer-coated graphene heterostructures. ACS Appl. Mater. Interfaces 2022, 14, 51329–51340. [Google Scholar] [CrossRef] [PubMed]
- Carrara, S.; Francis, P.S.; Hogan, C.F. Electrochemiluminescence. In Springer Handbook of Inorganic Photochemistry; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1777–1809. [Google Scholar]
- Zhou, X.; Gu, X.; Zhang, S.; Zou, Y.; Yan, F. Magnetic graphene oxide and vertically-ordered mesoporous silica film for universal and sensitive homogeneous electrochemiluminescence aptasensor platform. Microchem. J. 2024, 200, 110315. [Google Scholar] [CrossRef]
- Shan, Y.; Zhang, H.-L.; Zhu, Y.; Wang, Y.; Song, H.; Shi, C. Electrochemiluminescent CdTe nanocrystal/reduced graphene oxide composite films for the detection of diethylstilbestrol. ACS Appl. Nano Mater. 2020, 3, 4670–4680. [Google Scholar]
- Ye, Y.; Wang, L.; Liu, K.; Li, J. A label-free and sensitive electrochemiluminescence sensor based on a simple one-step electrodeposition of Go/ZnS modified electrode for trace copper ions detection. Microchem. J. 2020, 155, 104749. [Google Scholar]
- Liu, M.; Zhang, B.; Zhang, M.; Hu, X.; Chen, W.; Fang, G.; Wang, S. A dual-recognition molecularly imprinted electrochemiluminescence sensor based on g-C3N4 nanosheets sensitized by electrodeposited rGO-COOH for sensitive and selective detection of tyramine. Sens. Actuators B Chem. 2020, 311, 127901. [Google Scholar]
- Lu, Y.; Zhao, X.; Tian, Y.; Guo, Q.; Li, C.; Nie, G. An electrochemiluminescence aptasensor for the ultrasensitive detection of aflatoxin B1 based on gold nanorods/graphene quantum dots-modified poly (indole-6-carboxylic acid)/flower-gold nanocomposite. Microchem. J. 2020, 157, 104959. [Google Scholar]
Methods | Conditions | Advantages | Disadvantages | References |
---|---|---|---|---|
Mechanical Exfoliation | -Mechanical peeling | -Simple method -High quality | -Repeated stripping -Low yield -High cost | [5,52,53] |
Epitaxial Growth | -Specific atmosphere -Heat treatment | -Large-scale preparation | -Harsh conditions -difficult separate | [54,55,56] |
CVD | -Metal substrate -Carbonaceous gas -High temperature | -Catalyst -Transferable substrate | -Inefficient transfer -High cost | [57,58,59] |
Methods | Conditions | Advantages | Disadvantages | References |
---|---|---|---|---|
Brodie | -Reducing agent -Carbon source -Strong acid -Slow heat | -Simple method -Common ingredients | -Harsh reaction conditions -Disunity of quality -Uncontrol | [63] |
Staudenmaier | -Reducing agent -Strong mixed acid -Carbon source | - Oxidizing raw material more -Controllable reaction | -High temperature -Time consuming | [64,65] |
Hummer | -Strong reducing agent -Strong mixed acid -Carbon source -Heating | -Large output -High quality | -Difficult operation -Harmful to the environment | [66] |
Methods | Conditions | Advantages | Disadvantages | References | |
---|---|---|---|---|---|
Thermal Annealing Reduction | -Vacuum or inert environment -Rapid heating | -Uniform reaction -Promotes stripping -Less impurities | -Product loss -High energy consumption | [70,71,72,73,74,75] | |
Photoreduction | Photothermal | -High-energy light | -High-quality workmanship -Time-controlled -Low-cost -Locally efficient | -Product defects -High equipment requirements | [76,77] |
Plasma | -Charged particles colliding | ||||
Microwave reduction | -Microwave radiation | -Controlled time -High purity -Short time -Practicality | -Complex heating processes | [78,79,80] | |
Chemical reduction | -Room temperature or moderate heat -Reducing agent | -Fast -Efficient -Low reduction requirements -Low cost | -Toxic by-products -Environmental hazards | [81,82,83,84] |
Materials | Linear Range (M) | Detection Limit (M) | References |
---|---|---|---|
3D N-doped rGO/AuNPs | 1 × 10−11–1 × 10−4 | 1 × 10−12 | [103] |
MWCNT-βCD/GO | 5 × 10−8–5 × 10−6 /5 × 10−6–3 × 10−4 | 6 × 10−9 | [104] |
PA6/CNW:rGO | 2.5 × 10−6–2 × 10−4 | 5.2 × 10−9 | [105] |
ZrP/GO | 8× 10−9–2.6 × 10−5 | 1 × 10−9 | [106] |
NH2–UiO-66/RGO | 2× 10−8–1 × 10−6 | 6.67 × 10−9 | [107] |
Materials | Linear Range (M) | Detection Limit (M) | References |
---|---|---|---|
RGO/Ti–Fe–O NTs | 5 × 10−11–5 × 10−8 | 1 × 10−11 | [111] |
CdS-rGO | 5 × 10−7–1.2 × 10−4 | 1.6 × 10−8 | [112] |
SnS2/AgBiS2/GO | 1 × 10−8–5 × 10−5 | 4 × 10−9 | [113] |
CoFe2O4/CuTAPc-GO | 2.5 × 10−7–3.2 × 10−4 | 1.6 × 10−8 | [114] |
CMP-rGO | 5 × 10−9–4 × 10−5 | 2.7 × 10−9 | [115] |
Materials | Linear Range (M) | Detection Limit (M) | References |
---|---|---|---|
M-GO/VMSF | 0.01–100 pg/mL | 9.6 pg/mL | [117] |
GO/ZnS | 1 × 10−10–1 × 10−7 | 2.2 × 10−11 | [118] |
GO/ZnS | 1 × 10−10–1 × 10−7 | 2.2 × 10−11 | [119] |
rGO-COO/g-C3N4 | 1 × 10−8–1 × 10−3 | 1.79 × 10−9 | [120] |
GQDs/AuNRs/PICA/F-Au | 0.01–100 mg/mL | 3.75 ng/mL−1 | [121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H. Graphene and Its Derivatives for Electrochemical Sensing. Sensors 2025, 25, 1993. https://doi.org/10.3390/s25071993
Ren H. Graphene and Its Derivatives for Electrochemical Sensing. Sensors. 2025; 25(7):1993. https://doi.org/10.3390/s25071993
Chicago/Turabian StyleRen, Haoliang. 2025. "Graphene and Its Derivatives for Electrochemical Sensing" Sensors 25, no. 7: 1993. https://doi.org/10.3390/s25071993
APA StyleRen, H. (2025). Graphene and Its Derivatives for Electrochemical Sensing. Sensors, 25(7), 1993. https://doi.org/10.3390/s25071993