Technologies for Fabricating Large-Size Diffraction Gratings
Abstract
1. Introduction
2. Main Fabrication Technologies of Diffraction Gratings
3. Fabrication of Large-Size Gratings Based on the Grating Tiling Technology
3.1. Grating Tiling Error Theories
3.2. Grating Tiling Devices and Stability Control
4. Fabrication of Large-Size Gratings Based on the Grating Ruling Technology
5. Fabrication of Large-Size Gratings Based on Laser Interference Lithography
5.1. Fringe Locking Technology
5.2. Single-Exposure Lithography
5.3. Mosaic Exposure Lithography
5.4. Scanning Exposure Lithography
6. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silberstein, E.; Lalanne, P.; Hugonin, J.P.; Cao, Q. Use of grating theories in integrated optics. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 2001, 18, 2865–2875. [Google Scholar] [CrossRef] [PubMed]
- Kersey, A.D.; Davis, M.A.; Patrick, H.J.; LeBlanc, M.; Koo, K.P.; Askins, C.G.; Putnam, M.A.; Friebele, E.J. Fiber grating sensors. J. Light. Technol. 1997, 15, 1442–1463. [Google Scholar] [CrossRef]
- Zhu, J.H.; Wang, G.C.; Wang, S.T.; Li, X.H. A reflective-type heterodyne grating interferometer for three-degree-of-freedom subnanometer measurement. IEEE Trans. Instrum. Meas. 2022, 71, 9. [Google Scholar] [CrossRef]
- Pfeiffer, F.; Bech, M.; Bunk, O.; Kraft, P.; Eikenberry, E.F.; Brönnimann, C.; Grünzweig, C.; David, C. Hard-X-ray dark-field imaging using a grating interferometer. Nat. Mater. 2008, 7, 134–137. [Google Scholar] [CrossRef]
- Chai, Y.W.; Li, F.F.; Wang, J.Y.; Karvinen, P.; Kuittinen, M.; Kang, G.G. Enhanced sensing performance from trapezoidal metallic gratings fabricated by laser interference lithography. Opt. Lett. 2022, 47, 1009–1012. [Google Scholar] [CrossRef]
- Dekker, H.; D’Odorico, S.; Kaufer, A.; Delabre, B.; Kotzlowski, H. Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory. In Proceedings of the SPIE—The International Society for Optical Engineering, Munich, Germany, 27 March–1 April 2000. [Google Scholar] [CrossRef]
- den Herder, J.W.; Brinkman, A.C.; Kahn, S.M.; Branduardi-Raymont, G.; Thomsen, K.; Aarts, H.; Audard, M.; Bixler, J.V.; den Boggende, A.J.; Cottam, J.; et al. The reflection grating spectrometer on board XMM-Newton. Astron. Astrophys. 2001, 365, L7–L17. [Google Scholar] [CrossRef]
- Sokolova, E. Holographic diffraction gratings for flat-field spectrometers. J. Mod. Opt. 2000, 47, 2377–2389. [Google Scholar] [CrossRef]
- Ottevaere, H.; Shcheglov, A.; Nie, Y.; Thienpont, H. Miniaturized broadband spectrometers using concave blazed gratings. In Proceedings of the 2023 28th Micro-Optics Conference, Miyazaki, Japan, 24–27 September 2023. [Google Scholar] [CrossRef]
- Li, X.H.; Gao, W.; Muto, H.S.; Shimizu, Y.; Ito, S.; Dian, S. A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage. Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol. 2013, 37, 771–781. [Google Scholar] [CrossRef]
- Wang, S.T.; Luo, L.B.; Zhu, J.H.; Shi, N.N.; Li, X.H. An ultra-precision absolute-type multi-degree-of-freedom grating encoder. Sensors 2022, 22, 9047. [Google Scholar] [CrossRef]
- Wang, S.T.; Liao, B.Q.; Shi, N.N.; Li, X.H. A compact and high-precision three-degree-of-freedom grating encoder based on a quadrangular frustum pyramid prism. Sensors 2023, 23, 4022. [Google Scholar] [CrossRef]
- Wang, G.C.; Xue, G.P.; Zhai, Q.H.; Zhu, J.H.; Yu, K.N.; Huang, G.Y.; Wang, M.; Zhong, A.H.; Zhu, L.X.; Yan, S.H.; et al. Planar diffractive grating for magneto-optical trap application: Fabrication and testing. Appl. Opt. 2021, 60, 9358–9364. [Google Scholar] [CrossRef]
- Wang, S.; Luo, L.; Li, X. Design and parameter optimization of zero position code considering diffraction based on deep learning generative adversarial networks. Nanomanuf. Metrol. 2024, 7, 2. [Google Scholar] [CrossRef]
- Kaushal, H.; Kaddoum, G. Optical communication in space: Challenges and mitigation techniques. IEEE Commun. Surv. Tutor. 2017, 19, 57–96. [Google Scholar] [CrossRef]
- Goedgebuer, J.P.; Levy, P.; Larger, L.; Chen, C.C.; Rhodes, W.T. Optical communication with synchronized hyperchaos generated electrooptically. IEEE J. Quantum Electron. 2002, 38, 1178–1183. [Google Scholar] [CrossRef]
- Ran, J.Q.; Chen, Y.R.; Wang, G.H.; Zhong, Z.L.; Zhang, J.L.; Xu, O.; Huang, Q.D.; Lei, X.Q. Mechanically induced long-period fiber gratings and applications. Photonics 2024, 11, 223. [Google Scholar] [CrossRef]
- Yi, J.J.; Guo, C.J.; Ruan, Z.L.; Chen, G.X.; Wei, H.Q.; Lu, L.W.; Gong, S.Q.; Pan, X.F.; Shen, X.W.; Guan, X.W.; et al. Anisotropy-free arrayed waveguide gratings on X-cut thin film lithium niobate platform of in-plane anisotropy. Light-Sci. Appl. 2024, 13, 11. [Google Scholar] [CrossRef]
- Han, Y.; Zang, Z.; Wu, L.; Hao, Y.; Zhu, Q.; Liu, X.; Chang-Hasnain, C.; Fu, H.Y. Wide-field multipass spectral-scanning 3D imaging LiDAR using an echelle grating. In Proceedings of the 2023 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 7–12 May 2023. [Google Scholar]
- Shimizu, Y.; Chen, L.-C.; Kim, D.W.; Chen, X.; Li, X.; Matsukuma, H. An insight into optical metrology in manufacturing. Meas. Sci. Technol. 2021, 32, 042003. [Google Scholar] [CrossRef]
- Sorgato, S.; Smeesters, L.; Vervaeke, M.; Rochlitz, K.; Rosseel, D.; Verbaenen, J.; Verlinski, S.; Thienpont, H.; Van Erps, J. Custom freeform optics for LiDAR applications: From design to fabrication. In Proceedings of the Conference on Optical Design and Engineering IX, Strasbourg, France, 8–12 April 2024. [Google Scholar] [CrossRef]
- Tabak, M.; Hammer, J.; Glinsky, M.E.; Kruer, W.L.; Wilks, S.C.; Woodworth, J.; Campbell, E.M.; Perry, M.D.; Mason, R.J. Ignition and high-gain with ultrapowerful lasers. Phys. Plasmas 1994, 1, 1626–1634. [Google Scholar] [CrossRef]
- Lindl, J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 1995, 2, 3933–4024. [Google Scholar] [CrossRef]
- Lindl, J.D.; Amendt, P.; Berger, R.L.; Glendinning, S.G.; Glenzer, S.H.; Haan, S.W.; Kauffman, R.L.; Landen, O.L.; Suter, L.J. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 2004, 11, 339–491. [Google Scholar] [CrossRef]
- Lehmann, G.; Spatschek, K.H. Plasma-grating-based laser pulse compressor. Phys. Rev. E 2024, 110, 13. [Google Scholar] [CrossRef]
- Eidam, T.; Hanf, S.; Seise, E.; Andersen, T.V.; Gabler, T.; Wirth, C.; Schreiber, T.; Limpert, J.; Tünnermann, A. Femtosecond fiber CPA system emitting 830 W average output power. Opt. Lett. 2010, 35, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Tamer, I.; Hubka, Z.; Kiani, L.; Owens, J.; Church, A.; Batysta, F.; Galvin, T.; Willard, D.; Yandow, A.; Galbraith, J.; et al. Demonstration of a 1 TW peak power, joule-level ultrashort Tm:YLF laser. Opt. Lett. 2024, 49, 1583–1586. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.H. Chirped pulse amplification: Review and prospective from diffractive optics Invited. Chin. Opt. Lett. 2020, 18, 110502. [Google Scholar] [CrossRef]
- Zuegel, J.D.; Borneis, S.; Barty, C.; Legarrec, B.; Danson, C.; Miyanaga, N.; Rambo, P.K.; Leblanc, C.; Kessler, T.J.; Schmid, A.W.; et al. Laser challenges for fast ignition. Fusion Sci. Technol. 2006, 49, 453–482. [Google Scholar] [CrossRef]
- Xu, B.; Jia, Z.; Li, X.; Chen, Y.-L.; Shimizu, Y.; Ito, S.; Gao, W. Surface form metrology of micro-optics. In Proceedings of the International Conference on Optics in Precision Engineering and Nanotechnology (icOPEN2013), Singapore, 9–11 April 2013. [Google Scholar] [CrossRef]
- Li, X.X.; Zhou, B.; Xu, M.Q.; Chen, Y.D.; Wang, Y.H.; Wang, J.; Zhou, C.H. Detection and evaluation of surface defects for large-size grating. In Proceedings of the Conference on Holography, Diffractive Optics, and Applications XII Part of SPIE/COS Photonics Asia Conference, Electr Network, 5–11 December 2022. [Google Scholar] [CrossRef]
- Mi, X.T.; Zhang, S.W.; Qi, X.D.; Yu, H.Z.; Zhou, J.X.; Jiang, S.B. Effect of thickness non-uniformity of large-area grating metal film on grating diffraction wavefront. Opt. Laser Technol. 2019, 119, 105675. [Google Scholar] [CrossRef]
- Burgh, E.B.; Nokdsieck, K.H.; Kobulnicky, H.A.; Williams, T.B.; O’Donoghue, D.; Smith, M.P.; Percival, J.W. The prime focus imaging spectrograph for the Southern African large telescope: Optical design. In Proceedings of the Conference on Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, Waikoloa, HI, USA, 25–28 August 2002. [Google Scholar] [CrossRef]
- Baranne, A.; Queloz, D.; Mayor, M.; Adrianzyk, G.; Knispel, G.; Kohler, D.; Lacroix, D.; Meunier, J.P.; Rimbaud, G.; Vin, A. ELODIE: A spectrograph for accurate radial velocity measurements. Astron. Astrophys. Suppl. Ser. 1996, 119, 373–390. [Google Scholar] [CrossRef]
- Valdes, F.; Gupta, R.; Rose, J.A.; Singh, H.P.; Bell, D.J. The Indo-US library of coude feed stellar spectra. Astrophys. J. Suppl. Ser. 2004, 152, 251–259. [Google Scholar] [CrossRef]
- de Jong, F.; van der Pasch, B.; Castenmiller, T.; Vleeming, B.; Droste, R.; van de Mast, F. Enabling the lithography roadmap: An immersion tool based on a novel stage positioning system. In Proceedings of the SPIE Advanced Lithography, San Jose, CA, USA, 22–27 February 2009. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Y.; Yang, K.; Yang, L.; Hu, C.; Mu, H. Convergence rate oriented iterative feedback tuning with application to an ultraprecision wafer stage. IEEE Trans. Ind. Electron. 2019, 66, 1993–2003. [Google Scholar] [CrossRef]
- Yu, K.; Zhu, J.; Yuan, W.; Zhou, Q.; Xue, G.; Wu, G.; Wang, X.; Li, X. Two-channel six degrees of freedom grating-encoder for precision-positioning of sub-components in synthetic-aperture optics. Opt. Express 2021, 29, 21113–21128. [Google Scholar] [CrossRef]
- Shi, Y.; Ni, K.; Li, X.; Zhou, Q.; Wang, X. Highly accurate, absolute optical encoder using a hybrid-positioning method. Opt. Lett. 2019, 44, 5258–5261. [Google Scholar] [CrossRef]
- Incremental Exposed Two-Coordinate Encoder. Available online: https://www.heidenhain.com/products/linear-encoders/exposed/pp-281 (accessed on 21 December 2024).
- Ye, W.; Zhang, M.; Zhu, Y.; Wang, L.; Hu, J.; Li, X.; Hu, C. Ultraprecision real-time displacements calculation algorithm for the grating interferometer system. Sensors 2019, 19, 2409. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Liu, Z.; Jiang, S.; Wang, W.; Yu, H.; Jiri, G.; Hao, Q.; Li, W. High-precision 2D grating displacement measurement system based on double-spatial heterodyne optical path interleaving. Opt. Lasers Eng. 2022, 158, 107167. [Google Scholar] [CrossRef]
- Zhou, W.; Sun, Y.; Liu, Z.; Wang, W.; Liu, L.; Li, W. A random angle error interference eliminating method for grating interferometry measurement based on symmetry littrow structure. Laser Photonics Rev. 2025, 2401659. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, L.; Bai, Y.; Jirigalantu; Yu, H.; Bayanheshig; Liu, Z.; Li, W. Littrow 3D measurement based on 2D grating dual-channel equal-optical path interference. Opt. Express 2022, 30, 41671–41684. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, Q.; Li, X.; Ni, K.; Wang, X. Design and testing of a linear encoder capable of measuring absolute distance. Sens. Actuators A Phys. 2020, 308, 111935. [Google Scholar] [CrossRef]
- Matsukuma, H.; Ishizuka, R.; Furuta, M.; Li, X.; Shimizu, Y.; Gao, W. Reduction in cross-talk errors in a six-degree-of-freedom surface encoder. Nanomanuf. Metrol. 2019, 2, 111–123. [Google Scholar] [CrossRef]
- Huang, G.; Cui, C.; Lei, X.; Li, Q.; Yan, S.; Li, X.; Wang, G. A Review of Optical Interferometry for High-Precision Length Measurement. Micromachines 2025, 16, 6. [Google Scholar] [CrossRef]
- Castenmiller, T.; van de Mast, F.; de Kort, T.; van de Vin, C.; de Wit, M.; Stegen, R.; van Cleef, S. Towards ultimate optical lithography with NXT:1950i dual stage immersion platform. In Proceedings of the SPIE Advanced Lithography, San Jose, CA, USA, 21–25 February 2010. [Google Scholar] [CrossRef]
- Zhu, J.H.; Wang, S.T.; Li, X.H. Ultraprecision grating positioning technology for wafer stage of lithography machine. Laser Optoelectron. Prog. 2022, 59, 17. [Google Scholar] [CrossRef]
- Luo, L.; Cao, F.; Wang, S.; Li, X. Design and demonstration of a large range precision grating sensor for simultaneous measurement of out-of-plane motions. Measurement 2025, 249, 116799. [Google Scholar] [CrossRef]
- Du, H.; Zhang, W.T.; Xiong, X.M.; Zeng, Q.L.; Wang, Y.L.; Zhang, Y.T.; Xu, S.H.; Li, H.Y. Influence of installation error of grating interferometer on high-precision displacement measurement. Opt. Eng. 2021, 60, 17. [Google Scholar] [CrossRef]
- Li, X.H.; Wang, H.H.; Ni, K.; Zhou, Q.; Mao, X.Y.; Zeng, L.J.; Wang, X.H.; Xiao, X. Two-probe optical encoder for absolute positioning of precision stages by using an improved scale grating. Opt. Express 2016, 24, 21378–21391. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.C.; Gao, L.Y.; Huang, G.Y.; Lei, X.Y.; Cui, C.; Wang, S.T.; Yang, M.Y.; Zhu, J.H.; Yan, S.H.; Li, X.H. A wavelength-stabilized and quasi-common-path heterodyne grating interferometer with sub-nanometer precision. IEEE Trans. Instrum. Meas. 2024, 73, 9. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, Z.; Sun, Y.; Teng, H.; Wang, W.; Bayanheshig; Li, W. Bidirectional Littrow double grating interferometry for quadruple optical interpolation. Opt. Laser Technol. 2024, 175, 110751. [Google Scholar] [CrossRef]
- Moses, E.I. Advances in inertial confinement fusion at the National Ignition Facility (NIF). Fusion Eng. Des. 2010, 85, 983–986. [Google Scholar] [CrossRef]
- Fathi, H.; Naerhi, M.; Gumenyuk, R. Towards ultimate high-power scaling: Coherent beam combining of fiber lasers. Photonics 2021, 8, 566. [Google Scholar] [CrossRef]
- Zhu, J.C.; Zhao, Z.C.; Liu, Q.; Chen, X.H.; Li, H.; Tang, S.F.; Shen, W.M. Geostationary full-spectrum wide-swath high-fidelity imaging spectrometer: Optical design and prototype development. Remote Sens. 2023, 15, 396. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Li, W.Z.; Duan, W.H.; Huang, Z.H.; Yang, H.D. Echelle grating spectroscopic technology for high-resolution and broadband spectral measurement. Appl. Sci. 2022, 12, 11042. [Google Scholar] [CrossRef]
- Xia, B.Z.; Yuan, C.P.; Tian, Y.; Wu, S.; Yang, K.M. Disturbance estimation and compensation for planar motors on the long-stroke stage of a wafer stage. Adv. Mech. Eng. 2015, 7, 10. [Google Scholar] [CrossRef]
- Gao, W.; Kim, S.W.; Bosse, H.; Haitjema, H.; Chena, Y.L.; Lu, X.D.; Knapp, W.; Weckenmann, A.; Estler, W.T.; Kunzmann, H. Measurement technologies for precision positioning. CIRP Ann.-Manuf. Technol. 2015, 64, 773–796. [Google Scholar] [CrossRef]
- Li, X.T.; Yu, H.L.; Qi, X.D.; Feng, S.L.; Cui, J.C.; Zhang, S.W.; Jirigalantu; Tang, Y.G. 300 mm ruling engine producing gratings and echelles under interferometric control in China. Appl. Opt. 2015, 54, 1819–1826. [Google Scholar] [CrossRef]
- Abdrakhmanov, R.K.; Balyasnikov, N.M.; Lukashevich, Y.K.; Lukin, A.V.; Nyushkin, A.A.; Chugunov, Y.P. Obtaining diffraction optical elements with a discretely variable period of the rulings on a computer-controlled ruling engine. J. Opt. Technol. 1997, 64, 603–604. [Google Scholar]
- Ti, Y.Z.; Mi, X.T.; Zhou, J.X.; Jiang, S.B.; Chen, P.Y.; Li, S.; Wang, Z.Y.; Wang, T.Y. Fabrication of a high-quality, small blaze angle grating for visible short-wave infrared hyperspectral cameras. Appl. Opt. 2024, 63, 2791–2797. [Google Scholar] [CrossRef] [PubMed]
- Lee, U.; Kim, H.; Oh, D.K.; Lee, N.; Park, J.; Park, J.; Son, H.; Noh, H.; Rho, J.; Ok, J.G. Azimuthal rotation-controlled nanoinscribing for continuous patterning of period- and shape-tunable asymmetric nanogratings. Microsyst. Nanoeng. 2024, 10, 60. [Google Scholar] [CrossRef]
- Wilson, D.W.; Maker, P.D.; Muller, R.E.; Mouroulis, P.; Backlund, J. Recent advances in blazed grating fabrication by electron-beam lithography. In Proceedings of the Conference on Current Developments in Lens Design and Optical Engineering IV, San Diego, CA, USA, 3–4 August 2003. [Google Scholar] [CrossRef]
- Fice, M.J.; Ahmed, H.; Clements, S. Fabrication of first-order gratings for 1.5 μm DFB lasers by high-voltage electron-beam lithography. Electron. Lett. 1987, 23, 590–592. [Google Scholar] [CrossRef]
- Ekberg, M.; Nikolajeff, F.; Larsson, M.; Hard, S. Proximity-compensated blazed transmission grating manufacture with direct-writing, electron-beam lithography. Appl. Opt. 1994, 33, 103–107. [Google Scholar] [CrossRef]
- Li, M.K.; Xiang, X.S.; Zhou, C.H.; Wei, C.L.; Jia, W.; Xiang, C.C.; Lu, Y.K.; Zhu, S.Y. Two-Dimensional Grating Fabrication Based on Ultra-Precision Laser Direct Writing System. Acta Opt. Sin. 2019, 39, 0905001. [Google Scholar] [CrossRef]
- Smith, B.W. Optical projection lithography. In Nanolithography: The Art of Fabricating Nanoelectronic and Nanophotonic Devices and Systems; Feldman, M., Ed.; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing Ltd.: Cambridge, UK, 2014; pp. 1–41. [Google Scholar]
- Chen, W.F.; Yan, W.; Hu, S.; Yang, Y.; Zhou, S.L. Extended dual-grating alignment method for optical projection lithography. Appl. Opt. 2010, 49, 708–713. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, M.; Bloomstein, T.M.; Fedynyshyn, T.H.; Kunz, R.R.; Liberman, V.; Switkes, M.; Efremow, N.N., Jr.; Palmacci, S.T.; Sedlacek, J.H.C.; Hardy, D.E.; et al. Recent trends in optical lithography. Linc. Lab. J. 2003, 14, 221–236. [Google Scholar]
- Zheng, L.; Zywietz, U.; Birr, T.; Duderstadt, M.; Overmeyer, L.; Roth, B.; Reinhardt, C. UV-LED projection photolithography for high-resolution functional photonic components. Microsyst. Nanoeng. 2021, 7, 64. [Google Scholar] [CrossRef]
- Ahn, S.W.; Lee, K.D.; Kim, J.S.; Kim, S.H.; Park, J.D.; Lee, S.H.; Yoon, P.W. Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography. Nanotechnology 2005, 16, 1874–1877. [Google Scholar] [CrossRef]
- Ahn, S.H.; Guo, L.J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: A step toward high-throughput application of continuous nanoimprinting. ACS Nano 2009, 3, 2304–2310. [Google Scholar] [CrossRef] [PubMed]
- Austin, M.D.; Ge, H.X.; Wu, W.; Li, M.T.; Yu, Z.N.; Wasserman, D.; Lyon, S.A.; Chou, S.Y. Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Appl. Phys. Lett. 2004, 84, 5299–5301. [Google Scholar] [CrossRef]
- Xue, G.; Zhai, Q.; Lu, H.; Zhou, Q.; Ni, K.; Lin, L.; Wang, X.; Li, X. Polarized holographic lithography system for high-uniformity microscale patterning with periodic tunability. Microsyst. Nanoeng. 2021, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Ni, K.; Zhou, Q.; Wang, X.H.; Tian, R.; Pang, J.C. Fabrication of a concave grating with a large line spacing via a novel dual-beam interference lithography method. Opt. Express 2016, 24, 8. [Google Scholar] [CrossRef]
- Zhu, X.; Li, X.; Zhou, Q.; Wang, X.; Ni, K. A blu-ray laser diode based dual-beam interference lithography for fabrication of diffraction gratings for surface encoders. In Proceedings of the SPIE/COS Photonics Asia, Beijing, China, 12–14 October 2016. [Google Scholar] [CrossRef]
- Luo, L.B.; Shan, S.N.; Li, X.H. A review: Laser interference lithography for diffraction gratings and their applications in encoders and spectrometers. Sensors 2024, 24, 6617. [Google Scholar] [CrossRef]
- Xue, G.P.; Lu, H.O.; Li, X.H.; Zhou, Q.; Wu, G.H.; Wang, X.H.; Zhai, Q.H.; Ni, K. Patterning nanoscale crossed grating with high uniformity by using two-axis Lloyd’s mirrors based interference lithography. Opt. Express 2020, 28, 2179–2191. [Google Scholar] [CrossRef]
- Jirigalantu; Li, X.T.; Mi, X.T.; Liu, K.; Tang, Y.G. Development of a parameterized mechanical model of a chisel-edge grating ruling tool. Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol. 2017, 50, 388–392. [Google Scholar] [CrossRef]
- Okazaki, S. High resolution optical lithography or high throughput electron beam lithography: The technical struggle from the micro to the nano-fabrication evolution. Microelectron. Eng. 2015, 133, 23–35. [Google Scholar] [CrossRef]
- Zhan, Y.J.; Deng, L.G.; Dai, W.; Qiu, Y.X.; Sun, S.C.; Sun, D.Z.; Hu, B.W.; Guan, J.G. Fabrication of large-area nanostructures using cross-nanoimprint strategy. Nanomaterials 2024, 14, 998. [Google Scholar] [CrossRef]
- Rothschild, M. Projection optical lithography. Mater. Today 2005, 8, 18–24. [Google Scholar] [CrossRef]
- Shimizu, Y. Laser Interference Lithography for Fabrication of Planar Scale Gratings for Optical Metrology. Nanomanuf. Metrol. 2021, 4, 3–27. [Google Scholar] [CrossRef]
- Brown, C.N. The ruling engines and diffraction gratings of Henry Augustus Rowland. Ann. Sci. 2022, 79, 81–130. [Google Scholar] [CrossRef] [PubMed]
- Verrill, J.F. Some observations on scattered light and Lyman ghosts given by diffraction gratings. Opt. Acta 1970, 17, 747–759. [Google Scholar] [CrossRef]
- Li, X.; Yu, H.; Qi, X.; Zhu, J.; Yu, H.; Bayanheshig. 300 mm-travel stage of grating ruling engine and its self-adaptive control method. Chin. J. Lasers 2014, 41, 608001. (In Chinese) [Google Scholar] [CrossRef]
- Vieu, C.; Carcenac, F.; Pépin, A.; Chen, Y.; Mejias, M.; Lebib, A.; Manin-Ferlazzo, L.; Couraud, L.; Launois, H. Electron beam lithography: Resolution limits and applications. Appl. Surf. Sci. 2000, 164, 111–117. [Google Scholar] [CrossRef]
- Meshram, T.; Yan, J. Formation of Laser-Induced Periodic Surface Structures on Reaction-Bonded Silicon Carbide by Femtosecond Pulsed Laser Irradiation. Nanomanuf. Metrol. 2023, 6, 4. [Google Scholar] [CrossRef]
- Li, X.H.; Zhu, X.W.; Zhou, Q.; Wang, H.H.; Ni, K. Low-cost lithography for fabrication of one-dimensional diffraction gratings by using laser diodes. In Proceedings of the International Conference on Optical Instruments and Technology—Micro/Nano Photonics and Fabrication, Beijing, China, 17–19 May 2015. [Google Scholar] [CrossRef]
- Braat, J.J.M. Extreme UV lithography: A candidate for next-generation lithography. In Proceedings of the SPIE—The International Society for Optical Engineering, Prague, Czech Republic, 21–23 June 1999. [Google Scholar] [CrossRef]
- Jugessur, A.S.; Zhang, A.; Lyu, Y. Nanoimprint of large-area optical gratings on conventional photoresist using a telflon-coated nanoimprint mold. In Proceedings of the Conference on Advanced Fabrication Technologies for Micro/Nano Optics and Photonics IX, San Francisco, CA, USA, 14–17 February 2016. [Google Scholar] [CrossRef]
- Guo, L.J. Nanoimprint lithography: Methods and material requirements. Adv. Mater. 2007, 19, 495–513. [Google Scholar] [CrossRef]
- Rui, M.; Xiaodan, Z.; Duncan, S.; Vladimir, B.; Shikai, D. Nanofabrication of nanostructure lattices: From high-quality large patterns to precise hybrid units. Int. J. Extrem. Manuf. 2024, 6, 062004. [Google Scholar] [CrossRef]
- Li, X.H.; Gao, W.; Shimizu, Y.; Ito, S. A two-axis Lloyd’s mirror interferometer for fabrication of two-dimensional diffraction gratings. CIRP Ann.-Manuf. Technol. 2014, 63, 461–464. [Google Scholar] [CrossRef]
- Li, X.H.; Shimizu, Y.; Ito, S.; Gao, W. Fabrication of scale gratings for surface encoders by using laser interference lithography with 405 nm laser diodes. Int. J. Precis. Eng. Manuf. 2013, 14, 1979–1988. [Google Scholar] [CrossRef]
- Li, X.H.; Zhou, Q.; Zhu, X.W.; Lu, H.O.; Yang, L.; Ma, D.H.; Sun, J.H.; Ni, K.; Wang, X.H. Holographic fabrication of an arrayed one-axis scale grating for a two-probe optical linear encoder. Opt. Express 2017, 25, 16028–16039. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.; Lin, L.; Zhai, Q.; Zeng, C.; Wang, X.; Li, X. Development of dielectric-film-based polarization modulation scheme for patterning highly uniform 2D array structures with periodic tunability. Opt. Lasers Eng. 2023, 167, 107627. [Google Scholar] [CrossRef]
- Li, X.H.; Lu, H.O.; Zhou, Q.; Wu, G.H.; Ni, K.; Wang, X.H. An orthogonal type two-axis Lloyd’s mirror for holographic fabrication of two-dimensional planar scale gratings with large area. Appl. Sci. 2018, 8, 2283. [Google Scholar] [CrossRef]
- Brealey, G.A.; Fletcher, J.M.; Grundmann, W.A.; Richardson, E.H. Adjustable mosaic grating mounts. In Proceedings of the Optics & Photonics, San Diego, CA, USA, 29 July–1 August 1980. [Google Scholar] [CrossRef]
- Cotel, A.; Crotti, C.; Audebert, P.; Le Bris, C.; Le Blanc, C. Tiled-grating compression of multiterawatt laser pulses. Opt. Lett. 2007, 32, 1749–1751. [Google Scholar] [CrossRef]
- Zhai, Q.H.; Xue, G.P.; Lin, L.Y.; Zhou, Q.; Ni, K.; Wang, X.H.; Li, X.H. A mechanical mosaic method for reflective grating base on diffracted beams orientation. In Proceedings of the Conference on Holography, Diffractive Optics, and Applications XI, Nantong, China, 10–12 October 2021. [Google Scholar] [CrossRef]
- Shao, Z.X.; Wu, S.L.; Wu, J.G.; Fu, H.Y. A novel 5-DOF high-precision compliant parallel mechanism for large-aperture grating tiling. Mech. Sci. 2017, 8, 349–358. [Google Scholar] [CrossRef]
- Zhang, T.J.; Yonemura, M.; Kato, Y. An array-grating compressor for high-power chirped-pulse amplification lasers. Opt. Commun. 1998, 145, 367–376. [Google Scholar] [CrossRef]
- Zhao, B.; Hao, D.F. Manufacturing large-size grating by mosaic way. Opt. Precis. Eng. 2000, 8, 503–507. (In Chinese) [Google Scholar] [CrossRef]
- Harimoto, T. Far-field pattern analysis for an array grating compressor. Jpn. J. Appl. Phys. 2004, 43, 1362–1365. [Google Scholar] [CrossRef]
- Kessler, T.J.; Bunkenburg, J.; Huang, H.; Kozlov, A.; Meyerhofer, D.D. Demonstration of coherent addition of multiple gratings for high-energy chirped-pulse-amplified lasers. Opt. Lett. 2004, 29, 635–637. [Google Scholar] [CrossRef]
- Li, Z.Y.; Li, S.; Wang, C.; Xu, Y.; Wu, F.X.; Li, Y.Y.; Leng, Y.X. Stable and near Fourier- transform-limit 30fs pulse compression with a tiled grating compressor scheme. Opt. Express 2015, 23, 33386–33395. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Kalb, A.; Guardalben, M.J.; King, G.; Canning, D.; Kelly, J.H. Large-aperture grating tiling by interferometry for petawatt chirped-pulse-amplification systems. Opt. Express 2007, 15, 9562–9574. [Google Scholar] [CrossRef]
- Ezaki, Y.; Tabata, M.; Kihara, M.; Horiuchi, Y.; Endo, M.; Jitsuno, T. Development of a segmented grating mount system for FIREX-1. In Proceedings of the 5th International Conference on Inertial Fusion Sciences and Applications (IFSA 2007), Kobe, Japan, 9–14 September 2007. [Google Scholar] [CrossRef]
- Neauport, J.; Bonod, N. Pulse compression gratings for the PETAL project—A review of various technologies. In Proceedings of the SPIE—The International Society for Optical Engineering, Boulder, CO, USA, 22–24 September 2008. [Google Scholar] [CrossRef]
- Blanchot, N.; Bar, E.; Behar, G.; Bellet, C.; Bigourd, D.; Boubault, F.; Chappuis, C.; Coïc, H.; Damiens-Dupont, C.; Flour, O.; et al. Experimental demonstration of a synthetic aperture compression scheme for multi-Petawatt high-energy lasers. Opt. Express 2010, 18, 10088–10097. [Google Scholar] [CrossRef] [PubMed]
- Hornung, M.; Bödefeld, R.; Siebold, M.; Schnepp, M.; Hein, J.; Sauerbrey, R.; Kaluza, M.C. Alignment of a tiled-grating compressor in a high-power chirped-pulse amplification laser system. Appl. Opt. 2007, 46, 7432–7435. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, J.W.; Wang, Y.; Wang, X.; Feng, X.; Mu, J.; Xiang, X.J.; Lin, D.H.; Su, J.Q.; Li, Z.L.; et al. Theoretical and experimental research of tiling error compensation method based on a small-size mirror for large-aperture tiled-grating compressors. Opt. Laser Technol. 2018, 104, 190–196. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, W.; Zhou, Y.; Chen, L.; Wang, X.; Zhou, H.; Lin, D. Design and demonstration of high stability array tiled grating frame. Chin. J. Lasers 2012, 39, 0216001. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, J.W.; Chen, W.; Xie, N.; Zhou, Y.; Zhou, H.; Wang, X.; Jing, F.; Zhang, X.M. Design and demonstration of a tiled-grating frame. Opt. Eng. 2012, 51, 5. [Google Scholar] [CrossRef]
- Zhou, Y.; Shen, C.; Zhang, J.; Wang, X.; Zhou, H. Structure design of high accuracy 2*2 array grating. High Power Laser Part. Beams 2011, 23, 1741–1745. (In Chinese) [Google Scholar] [CrossRef]
- Li, Z.Y.; Wang, T.; Xu, G.; Li, D.W.; Yu, J.W.; Ma, W.X.; Zhu, J.; Chen, L.; Dai, Y.P. Research on potential problems of object image grating self-tiling for applications in large aperture optical systems. Appl. Opt. 2013, 52, 718–725. [Google Scholar] [CrossRef]
- Demonstration of Real-Time, Phase-Locked Alignment of Tiled Gratings for Chirped-Pulse Amplified Lasers. Available online: https://www.lle.rochester.edu/media/publications/lle_review/documents/v100/100_02Demo.pdf (accessed on 21 December 2024).
- Habara, H.; Xu, G.; Jitsuno, T.; Kodama, R.; Suzuki, K.; Sawai, K.; Kondo, K.; Miyanaga, N.; Tanaka, K.A.; Mima, K.; et al. Pulse compression and beam focusing with segmented diffraction gratings in a high-power chirped-pulse amplification glass laser system. Opt. Lett. 2010, 35, 1783–1785. [Google Scholar] [CrossRef]
- Habara, H.; Xu, G.; Jitsuno, T.; Kodama, R.; Suzuki, K.; Sawai, K.; Barty, C.; Kawasaki, T.; Kitamura, H.; Kondo, K.; et al. Pulse compression using segmented grating in Gekko MII system, ILE. J. Phys. Conf. Ser. 2008, 112, 032017. [Google Scholar] [CrossRef]
- Yang, Y.C.; Wang, X.; Zhang, J.W.; Luo, H.; Li, F.Q.; Huang, X.J.; Jing, F. Demonstration of state-locked control of tiled system. Opt. Eng. 2011, 50, 6. [Google Scholar] [CrossRef]
- Yang, Y.C.; Wang, X.; Zhang, J.W.; Luo, H.; Li, F.Q.; Huang, X.J.; Jing, F. Automatic phase-locked control of grating tiling. Opt. Lasers Eng. 2012, 50, 262–267. [Google Scholar] [CrossRef]
- Strong, J. The Johns Hopkins University and diffraction gratings. J. Opt. Soc. Am. 1960, 50, 1148–1152. [Google Scholar] [CrossRef]
- Gerasimov, F.M.; Sergeev, V.P.; Teltevskii, I.A.; Sergeev, V.V. Optical-electronic tracking system for controlling the fabrication of diffraction gratings. Opt. Spectrosc. 1970, 28, 643–646. [Google Scholar]
- Gerasimov, F.M. Use of diffraction gratings for controlling a ruling engine. Appl. Opt. 1967, 6, 1861–1865. [Google Scholar] [CrossRef]
- Harrison, G.R.; Archer, J.E. Interferometric calibration of precision screws and control of ruling engines. J. Opt. Soc. Am. 1951, 41, 495–503. [Google Scholar] [CrossRef]
- Harrison, G.R.; Stroke, G.W. Interferometric control of grating ruling with continuous carriage advance. J. Opt. Soc. Am. 1955, 45, 112–121. [Google Scholar] [CrossRef]
- Harrison, G.R.; Thompson, S.W. Large diffraction gratings ruled on a commercial measuring machine controlled interferometrically. J. Opt. Soc. Am. 1970, 60, 591–595. [Google Scholar] [CrossRef]
- Harrison, G.R.; Thompson, S.W.; Kazukonis, H.; Connell, J.R. 750-mm ruling engine producing large gratings and echelles. J. Opt. Soc. Am. 1972, 62, 751–756. [Google Scholar] [CrossRef]
- Mi, X.T.; Zhang, S.W.; Qi, X.D.; Yu, H.L.; Yu, H.Z.; Tang, Y.G. Ruling engine using adjustable diamond and interferometric control for high-quality gratings and large echelles. Opt. Express 2019, 27, 19448–19462. [Google Scholar] [CrossRef] [PubMed]
- Kita, T.; Harada, T. Ruling engine using a piezoelectric device for large and high-groove density gratings. Appl. Opt. 1992, 31, 1399–1406. [Google Scholar] [CrossRef]
- Mi, X.; Yu, H.; Yu, H.; Yao, X.; Song, N.; Feng, S.; Qi, X. Analysis and improvement of rod structures for large diffraction grating ruling engines. Opt. Precis. Eng. 2015, 23, 745–752. (In Chinese) [Google Scholar] [CrossRef]
- The Large-Scale High-Precision Diffraction Grating Ruling System. Available online: http://old2022.bulletin.cas.cn/publish_article/2018/Z1/2018Z113.htm (accessed on 21 December 2024). (In Chinese).
- Mi, X.; Yu, H.; Yu, H.; Zhang, S.; Li, X.; Yao, X.; Qi, X.; Bayinhedhig; Wan, Q. Correcting groove error in gratings ruled on a 500-mm ruling engine using interferometric control. Appl. Opt. 2017, 56, 5857–5864. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Li, X.T.; Yu, H.L.; Yu, H.Z.; Zhu, J.W.; Zhang, S.W.; Gao, J.X.; Bayanheshig; Tang, Y.G. Practical method study on correcting yaw error of 500 mm grating blank carriage in real time. Appl. Opt. 2015, 54, 4084–4088. [Google Scholar] [CrossRef]
- Abrakhmanov, R.K.; Znamenskii, M.Y.; Lukashevich, Y.K. Obtaining ruled diffraction gratings with a nonrectangular ruled zone. J. Opt. Technol. 2012, 79, 189–190. [Google Scholar] [CrossRef]
- Moriyama, S.; Harada, T.; Kita, T. Development of a numerically controlled ruling engine for stigmatic concave gratings. Bull. Jpn. Soc. Precis. Eng. 1976, 10, 37–38. [Google Scholar]
- Zhang, S.W.; Mi, X.T.; Zhang, Q.; Jirigalantu; Feng, S.L.; Yu, H.L.; Qi, X.D. Groove shape characteristics of echelle gratings with high diffraction efficiency. Opt. Commun. 2017, 387, 401–404. [Google Scholar] [CrossRef]
- Bach, K.; Bach, B. Large-ruled monolithic echelle gratings. In Proceedings of the Astronomical Telescopes and Instrumentation, Munich, Germany, 27 March–1 April 2000. [Google Scholar] [CrossRef]
- Mi, X.; Yu, H.; Gao, J.; Yu, H.; Zhang, S.; Qi, X. Design of the controller of the micro-positioning system for large diffraction grating ruling engine. Chin. J. Sci. Instrum. 2015, 36, 473–480. (In Chinese) [Google Scholar] [CrossRef]
- Liang, J.; Wang, C.; Lu, H.; Wang, X.; Ni, K.; Zhou, Q. Method for fabricating large-area gratings with a uniform duty cycle without a spatial beam modulator. Opt. Express 2021, 29, 27791–27806. [Google Scholar] [CrossRef]
- Zhang, H.D.; Zhao, C.Q.; Zhang, Y.B.; Cao, H.C.; Jin, Y.X.; Liu, S.J.; Shao, J.D. Light field homogenization technology based on beam scanning. Acta Opt. Sin. 2024, 44, 10. [Google Scholar] [CrossRef]
- Armstrong, J.J.; Kessler, T.J. Holographic recording of large-aperture, high-efficiency, high-damage-threshold, transmission diffraction gratings. Proceedings of SPIE—The International Society for Optical Engineering, San Diego, CA, USA, 22 July 1992. [Google Scholar] [CrossRef]
- Gao, X.; Li, J.; Zhong, Z.; Li, X. Global alignment reference strategy for laser interference lithography pattern arrays. Microsyst. Nanoeng. 2025, 11, 41. [Google Scholar] [CrossRef]
- Shi, L.; Zeng, L.J. Fabrication of optical mosaic gratings by consecutive holographic exposures employing a latent-fringe based alignment technique. In Proceedings of the Conference on Holography, Diffractive Optics, and Applications IV, Beijing, China, 18–20 October 2010. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Zeng, L.J. Method to fabricate orthogonal crossed gratings based on a dual Lloyd’s mirror interferometer. Opt. Commun. 2016, 360, 68–72. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Zeng, L.J. Fabrication of optical mosaic two-dimensional gratings with a dual Lloyd’s mirror interferometer. In Proceedings of the 11th Symposium on Laser Metrology for Precision Measurement and Inspection in Industry, Tsukuba, Japan, 3–5 September 2014. [Google Scholar]
- Montoya, J.C.; Chang, C.H.; Heilmann, R.K.; Schattenburg, M.L. Doppler writing and linewidth control for scanning beam interference lithography. J. Vac. Sci. Technol. B 2005, 23, 2640–2645. [Google Scholar] [CrossRef]
- Pati, G.S.; Heilmann, R.K.; Konkola, P.T.; Joo, C.; Chen, C.G.; Murphy, E.; Schattenburg, M.L. Generalized scanning beam interference lithography system for patterning gratings with variable period progressions. J. Vac. Sci. Technol. B 2002, 20, 2617–2621. [Google Scholar] [CrossRef]
- Schattenburg, M.; Chen, C.; Heilmann, R.; Konkola, P.; Pati, G. Progress toward a general grating patterning technology using phase-locked scanning beams. In Proceedings of the International Symposium on Optical Science and Technology, San Diego, CA, USA, 29 July–3 August 2021. [Google Scholar] [CrossRef]
- Zhang, W.; Li, W.H.; Zhang, T.; Zheng, Z.M.; Chi, Z.D.; Jiang, Y.X.; Wu, N. A large-size and polarization-independent two dimensional grating fabricated by scanned reactive-ion-beam etching. Nanophotonics 2022, 11, 4649–4657. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Luo, W.; Zhang, M.; Zhu, Y. Design on constant coherent light intensity fringe locking system for scanning beam interference lithography. Opt. Precis. Eng. 2022, 30, 938–947. [Google Scholar]
- Heilmann, R.K.; Konkola, P.T.; Chen, C.G.; Pati, G.S.; Schattenburg, M.L. Digital heterodyne interference fringe control system. J. Vac. Sci. Technol. B 2001, 19, 2342–2346. [Google Scholar] [CrossRef]
- Qian, G.L.; Wu, J.H.; Li, C.M.; Cheng, J.F. Design of 3D locking system for interference fringes of holographic grating. Acta Opt. Sin. 2019, 39, 0405001. [Google Scholar] [CrossRef]
- Xu, Y.; Liao, Q.; Liu, J. Fringe locking system with large phase compensation range for holographic exposure systems with arbitrary recording wavefronts. Opt. Laser Technol. 2025, 183, 112254. [Google Scholar] [CrossRef]
- Li, J.; Zhong, Z.; Shao, C.; Li, X. Multireference fringe locking technique for interference lithography. In Proceedings of the SPIE/COS Photonics Asia, Nantong, China, 12–14 October 2024. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, J.; Lu, T.; Li, X. High dynamic wavefront stability control for high-uniformity periodic microstructure fabrication. Precis. Eng. 2025, 93, 216–223. [Google Scholar] [CrossRef]
- Li, C.; Chen, X.; Wu, J.; Ju, J.; Zhu, Y.; Hu, Z. Research and development of a stabilizing holographic interference fringe system based on linear CCD. In Proceedings of the International Symposium on Photoelectronic Detection and Imaging 2009, Beijing, China, 17–19 June 2009. [Google Scholar] [CrossRef]
- Shi, L.; Zeng, L.; Li, L. Fabrication of optical mosaic gratings with phase and attitude adjustments employing latent fringes and a red-wavelength dual-beam interferometer. Opt. Express 2009, 17, 21530–21543. [Google Scholar] [CrossRef]
- Song, Y. Effect of phase changes of interference fringes on exposure of plane holographic gratings. Laser Technol. 2016, 40, 339–343. (In Chinese) [Google Scholar] [CrossRef]
- Song, Y.; Bayanheshig; Qi, X.-D.; Zhang, N.; Tang, Y.-G. Design of frequency-shift interference fringe locking system in holographic grating exposure. Opt. Precis. Eng. 2014, 22, 318–324. (In Chinese) [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.; Zhu, Y.; Lu, S.; Yang, K. Design of phase locking system for an interference lithography scanner. J. Tsinghua Univ. Sci. Technol. 2015, 55, 722–727. (In Chinese) [Google Scholar]
- Lu, S.; Yang, K.M.; Zhu, Y.; Wang, L.J.; Zhang, M. Analysis and design of fringe phase control system for scanning beam interference lithography. Opt. Eng. 2021, 60, 13. [Google Scholar] [CrossRef]
- Sen, L.; Kaiming, Y.; Yu, Z.; Leijie, W.; Ming, Z. Optimal control for stabilizing fringe phase in interference lithography. In Proceedings of the 2020 IEEE 5th Optoelectronics Global Conference (OGC), Shenzhen, China, 7–11 September 2020. [Google Scholar] [CrossRef]
- Cao, L.; Lu, S.; Yang, K.M.; Zhang, M.; Zhu, Y. Optical interference phase control method with single photodetector for interference lithography. Opt. Express 2023, 31, 40086–40101. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhao, X.; Jiang, Y.; Bayanheshig; Qi, X. Interference fringe locking by grating-shifting holographic grating exposure. Chin. J. Lasers 2017, 44, 0509001. (In Chinese) [Google Scholar] [CrossRef]
- Konkola, P.T.; Chen, C.G.; Heilmann, R.K.; Joo, C.; Montoya, J.; Chang, C.H.; Schattenburg, M.L. Nanometer-level repeatable metrology using the Nanoruler. J. Vac. Sci. Technol. B 2003, 21, 3097–3101. [Google Scholar]
- Dixit, S.N.; Britten, J.A.; Hyde, R.A.; Hoaglan, C.R.; Rushford, M.C.; Summers, L.J.; Toeppen, J.S. Fabrication and applications of large-aperture diffractive optics. In Proceedings of the International Symposium on Optical Science and Technology, San Diego, CA, USA, 29 July–3 August 2001. [Google Scholar] [CrossRef]
- Xu, J.; Xu, W.B.; Bu, H.Y.; Lu, Z.W.; Liu, Z.K.; Hong, Y.L.; Yu, W.X. Meter-scale thin film coating equipment based on meniscus-coating technology. Opt. Precis. Eng. 2017, 25, 133–140. (In Chinese) [Google Scholar] [CrossRef]
- Lin, J.; Liu, Z.; Hong, Y.; Jiang, X.; Qiu, K.; Liu, Y.; Xu, X.; Fu, S. Improvement of film thickness uniformity in meniscus coating. High Power Laser Part. Beams 2015, 27, 121003. (In Chinese) [Google Scholar] [CrossRef]
- Jin, Y.; Han, Y.; Cao, H.; Kong, F.; Shao, J. Intertwined development of near-infrared high-power lasers and reflective holographic surface-relief diffraction gratings. Chin. J. Lasers 2024, 51, 1101028. (In Chinese) [Google Scholar]
- Han, Y.X.; Li, Z.Y.; Jin, Y.X.; Cao, H.C.; Kong, F.Y.; Shao, J.D. Ultra-broadband and large aperture gratings for single-cycle Exawatt lasers. In Proceedings of the Conference on Advanced Lasers, High-Power Lasers, and Applications XIV, Beijing, China, 14–16 October 2023. [Google Scholar] [CrossRef]
- Shanghai Institute of Optics and Mechanics Has Developed the World’s Largest ~2 m Seamless Pulse Compression Grating. Available online: https://siom.cas.cn/jgsz/bomo/xwdt_146730/202311/t20231128_6898849.html (accessed on 21 December 2024).
- Aono, Y.; Negishi, M.; Takano, J. Development of large-aperture aspherical lens with glass molding. In Proceedings of the International Topical Symposium on Advanced Optical Manufacturing and Testing Technology, Chengdu, China, 1–4 November 2000. [Google Scholar] [CrossRef]
- Ke, X.L.; Liu, J.C.; Huang, H.B. Study on precision grinding technique for large size optical aspheric lens. In Proceedings of the 3rd International Conference on Advanced Design and Manufacturing Engineering (ADME 2013), Anshan, China, 13–14 July 2013. [Google Scholar] [CrossRef]
- Turukhano, B.G.; Gorelik, V.P.; Kovalenko, S.N.; Turukhano, N. Phase synthesis of a holographic metrological diffraction grating of unlimited length. Opt. Laser Technol. 1996, 28, 263–268. [Google Scholar] [CrossRef]
- Li, C.; Wu, J.; Chen, X.; Hu, Z.; Qian, G. Research on the multi-exposure method to fabricate pulse compression mosaic grating. Acta Opt. Sin. 2009, 29, 1943–1946. (In Chinese) [Google Scholar]
- Qian, G.L.; Wu, J.H.; Li, C.M. Parallel splicing method for holographic gratings. Acta Opt. Sin. 2022, 42, 9. (In Chinese) [Google Scholar] [CrossRef]
- Qiu, K.; Chen, H.; Liu, Y. Meter-scale pulse-compression gratings for high power laser systems in China. In Proceedings of the International Committee for Ultra-High Intensity Lasers Conference, Lindau, Germany, 9–14 September 2018. [Google Scholar]
- Shi, L.; Zeng, L. Fabrication of optical mosaic gratings: A self-referencing alignment method. Opt. Express 2011, 19, 8985–8993. [Google Scholar] [CrossRef] [PubMed]
- Konkola, P. Design and analysis of a scanning beam interference lithography system for patterning gratings with nanometer-level distortions. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, June 2003. [Google Scholar]
- Ma, D.H.; Zhao, Y.X.; Zeng, L.J. Achieving unlimited recording length in interference lithography via broad-beam scanning exposure with self-referencing alignment. Sci. Rep. 2017, 7, 926. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.J.; Qi, X.D.; Mi, X.T.; Zhang, S.W.; Yu, H.Z.; Yu, H.L.; Li, X.T.; Yang, S. Numerical calculation of the mosaic error between mosaic gratings. Appl. Opt. 2020, 59, 4048–4054. [Google Scholar] [CrossRef]
- Napier, B.; Phillips, N. Use of real-time latent images to write long holographic diffraction gratings in photoresist. In Proceedings of the Electronic Imaging, San Jose, CA, USA, 8–14 February 1997. [Google Scholar] [CrossRef]
- Zeng, L.J.; Shi, L.; Li, L.F. Fabrication of large grating by monitoring the latent fringe pattern. In Proceedings of the 9th International Symposium on Measurement Technology and Intelligent Instruments, St. Petersburg, Russia, 29 June–2 July 2009. [Google Scholar] [CrossRef]
- Gao, X.; Zhong, Z.; Lu, T.; Li, J.; Li, X. Fabrication of optical mosaic gratings. In Proceedings of the SPIE/COS Photonics Asia, Nantong, China, 12–14 October 2024. [Google Scholar] [CrossRef]
- Qian, G.; Wu, J.; Li, C. Laser pulse pattern influenced by mosaic grating gap. High Power Laser Part. Beams 2011, 23, 3177–3182. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, Y. Ultra-High Precision Scanning Beam Interference Lithography and Its Application: Spatial Frequency Multiplication. Ph.D. Thesis, MIT, Cambridge, MA, USA, June 2008. [Google Scholar]
- Jitsuno, T.; Motokoshi, S.; Okamoto, T.; Mikami, T.; Smith, D.; Schattenburg, M.L.; Kitamura, H.; Matsuo, H.; Kawasaki, T.; Kondo, K.; et al. Development of 91 cm size gratings and mirrors for LEFX laser system. J. Phys. Conf. Ser. 2008, 112, 032002. [Google Scholar] [CrossRef]
- Jiang, S.; Bayanheshig; Pan, M.; Li, W.; Song, Y. An accurate method for measuring interference fringe period in scanning beam interference lithography system. Acta Opt. Sin. 2015, 35, 0705001. (In Chinese) [Google Scholar] [CrossRef]
- Wang, W.; Song, Y.; Jiang, S.; Pan, M.Z.; Bayanheshing. Beam drift error and control technology for scanning beam interference lithography. Appl. Opt. 2017, 56, 4138–4145. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.W.; Jiang, S.; Li, X.T.; Song, Y.; Li, W.H.; Bayanheshig. Precision measurement of X-axis stage mirror profile in scanning beam interference lithography by three-probe system based on bidirectional integration model. Opt. Express 2017, 25, 10312–10321. [Google Scholar] [CrossRef]
- Liu, Z.W.; Yang, H.; Li, Y.B.; Jiang, S.; Wang, W.; Song, Y.; Bayanheshig; Li, W.H. Active control technology of a diffraction grating wavefront by scanning beam interference lithography. Opt. Express 2021, 29, 37066–37074. [Google Scholar] [CrossRef] [PubMed]
- Li, M.K.; Xiang, X.S.; Zhou, C.H.; Wei, C.L. Scan angle error measurement based on phase-stepping algorithms in scanning beam interference lithography. Appl. Opt. 2019, 58, 2641–2649. [Google Scholar] [CrossRef]
- Ma, D.; Zeng, L. Fabrication of low-stray-light gratings by broad-beam scanning exposure in the direction perpendicular to the grating grooves. Opt. Lett. 2015, 40, 1346–1349. [Google Scholar] [CrossRef]
- Li, W.; Wang, X.; Bayanheshig; Liu, Z.; Wang, W.; Jiang, S.; Li, Y.; Li, S.; Zhang, W.; Jiang, Y.; et al. Controlling the wavefront aberration of a large-aperture and high-precision holographic diffraction grating. Light Sci. Appl. 2025, 14, 112. [Google Scholar] [CrossRef]
Grating Fabrication Tech | Advantages | Disadvantages |
---|---|---|
Mechanical ruling | Suitable for low groove-density gratings and blazed gratings. | Ghost lines and stray light, low processing efficiency. |
Electron beam lithography | Very high resolution. | Very low processing efficiency. |
Projection lithography | High efficiency and resolution. | Has difficulty processing heavy substrates. |
Nanoimprint lithography | High efficiency and resolution for small scale manufacturing. | Worn imprint molds reduce accuracy. |
Laser interference lithography | High efficiency, no ghost lines. | Has difficulty processing complex patterns. |
The Type of Ruling Engines | Advantages | Disadvantages | Applicable Scenarios |
---|---|---|---|
Continuous | High positioning accuracy of the groove lines. High ruling efficiency. | Low quality and linearity of groove lines. | Large-size gratings. |
Intermittent | High quality of groove lines. | Difficult positioning and low ruling efficiency. | High line-density gratings. Variable period gratings. |
Stop-and-go | Combining the advantages of the other two types, | The PZT is easily damaged because of frequent use, and is difficult to control. | Large-size gratings. High line-density gratings. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, C.; Li, X. Technologies for Fabricating Large-Size Diffraction Gratings. Sensors 2025, 25, 1990. https://doi.org/10.3390/s25071990
Shao C, Li X. Technologies for Fabricating Large-Size Diffraction Gratings. Sensors. 2025; 25(7):1990. https://doi.org/10.3390/s25071990
Chicago/Turabian StyleShao, Changfeng, and Xinghui Li. 2025. "Technologies for Fabricating Large-Size Diffraction Gratings" Sensors 25, no. 7: 1990. https://doi.org/10.3390/s25071990
APA StyleShao, C., & Li, X. (2025). Technologies for Fabricating Large-Size Diffraction Gratings. Sensors, 25(7), 1990. https://doi.org/10.3390/s25071990