Design, Build, and Initial Testing of a Portable Methane Measurement Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Sensors
2.2.1. Metal Oxide (MOx)
2.2.2. Non-Dispersive Infrared (NDIR)
2.2.3. Integrated Infrared (INIR)
2.2.4. Tunable Diode Laser Absorption Spectrometer (TDLAS)
2.2.5. Temperature and Relative Humidity
2.3. Operating Procedures
2.4. Data Files
2.5. Sensor Calibration Method
2.6. Sensor Testing Method
3. Results
3.1. Sensor Calibration
3.2. Sensor Testing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nisbet, E.G.; Fisher, R.E.; Lowry, D.; France, J.L.; Allen, G.; Bakkaloglu, S.; Broderick, T.J.; Cain, M.; Coleman, M.; Fernandez, J.; et al. Methane Mitigation: Methods to Reduce Emissions, on the Path to the Paris Agreement. Rev. Geophys. 2020, 58, e2019RG000675. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; ISBN 978-1-009-32584-4. [Google Scholar]
- Varon, D.J.; Jacob, D.J.; Hmiel, B.; Gautam, R.; Lyon, D.R.; Omara, M.; Sulprizio, M.; Shen, L.; Pendergrass, D.; Nesser, H.; et al. Continuous Weekly Monitoring of Methane Emissions from the Permian Basin by Inversion of TROPOMI Satellite Observations. Atmos. Chem. Phys. 2023, 23, 7503–7520. [Google Scholar] [CrossRef]
- Barkley, Z.; Davis, K.; Miles, N.; Richardson, S.; Deng, A.; Hmiel, B.; Lyon, D.; Lauvaux, T. Quantification of Oil and Gas Methane Emissions in the Delaware and Marcellus Basins Using a Network of Continuous Tower-Based Measurements. Atmos. Chem. Phys. 2023, 23, 6127–6144. [Google Scholar] [CrossRef]
- Nisbet, E.; Weiss, R. Top-Down Versus Bottom-Up. Science 2010, 328, 1241–1243. [Google Scholar] [CrossRef] [PubMed]
- Riddick, S.N.; Ancona, R.; Cheptonui, F.; Bell, C.S.; Duggan, A.; Bennett, K.E.; Zimmerle, D.J. A Cautionary Report of Calculating Methane Emissions Using Low-Cost Fence-Line Sensors. Elem. Sci. Anthr. 2022, 10, 00021. [Google Scholar] [CrossRef]
- Riddick, S.N.; Cheptonui, F.; Yuan, K.; Mbua, M.; Day, R.; Vaughn, T.L.; Duggan, A.; Bennett, K.E.; Zimmerle, D.J. Estimating Regional Methane Emission Factors from Energy and Agricultural Sector Sources Using a Portable Measurement System: Case Study of the Denver–Julesburg Basin. Sensors 2022, 22, 7410. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; ISBN 978-1-118-94740-1. [Google Scholar]
- Denmead, O.T. Approaches to Measuring Fluxes of Methane and Nitrous Oxide between Landscapes and the Atmosphere. Plant Soil 2008, 309, 5–24. [Google Scholar] [CrossRef]
- Sonderfeld, H.; Bösch, H.; Jeanjean, A.P.R.; Riddick, S.N.; Allen, G.; Ars, S.; Davies, S.; Harris, N.; Humpage, N.; Leigh, R.; et al. CH4 Emission Estimates from an Active Landfill Site Inferred from a Combined Approach of CFD Modelling and in Situ FTIR Measurements. Atmos. Meas. Tech. 2017, 10, 3931–3946. [Google Scholar] [CrossRef]
- Flesch, T.; Wilson, J.; Harper, L.; Crenna, B. Estimating Gas Emissions from a Farm with an Inverse-Dispersion Technique. Atmos. Environ. 2005, 39, 4863–4874. [Google Scholar] [CrossRef]
- Pasquill, F. Atmospheric Diffusion. By F. Pasquill. London (Van Nostrand Co.), 1962. Pp. Xii, 297; 60s. Q. J. R. Meteorol. Soc. 1962, 88, 202–203. [Google Scholar] [CrossRef]
- Pasquill, F.; Smith, F.B. Atmospheric Diffusion, 3rd ed.; Ellis Horwood, John Wiley & Sons: Chichester, UK, 1983; Volume 110. [Google Scholar]
- Caulton, D.R.; Li, Q.; Bou-Zeid, E.; Fitts, J.P.; Golston, L.M.; Pan, D.; Lu, J.; Lane, H.M.; Buchholz, B.; Guo, X.; et al. Quantifying Uncertainties from Mobile-Laboratory-Derived Emissions of Well Pads Using Inverse Gaussian Methods. Atmos. Chem. Phys. 2018, 18, 15145–15168. [Google Scholar] [CrossRef]
- Golston, L.M.; Pan, D.; Sun, K.; Tao, L.; Zondlo, M.A.; Eilerman, S.J.; Peischl, J.; Neuman, J.A.; Floerchinger, C. Variability of Ammonia and Methane Emissions from Animal Feeding Operations in Northeastern Colorado. Environ. Sci. Technol. 2020, 54, 11015–11024. [Google Scholar] [CrossRef] [PubMed]
- Allen, G.; Hollingsworth, P.; Kabbabe, K.; Pitt, J.R.; Mead, M.I.; Illingworth, S.; Roberts, G.; Bourn, M.; Shallcross, D.E.; Percival, C.J. The Development and Trial of an Unmanned Aerial System for the Measurement of Methane Flux from Landfill and Greenhouse Gas Emission Hotspots. Waste Manag. 2019, 87, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, J.; Tatam, R.P. Optical Gas Sensing: A Review. Meas. Sci. Technol. 2013, 24, 012004. [Google Scholar] [CrossRef]
- Maity, A.; Maithani, S.; Pradhan, M. Cavity Ring-down Spectroscopy: Recent Technological Advances and Applications. In Molecular and Laser Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2020; pp. 83–120. ISBN 978-0-12-818870-5. [Google Scholar]
- Eugster, W.; Kling, G.W. Performance of a Low-Cost Methane Sensor for Ambient Concentration Measurements in Preliminary Studies. Atmos. Meas. Tech. 2012, 5, 1925–1934. [Google Scholar] [CrossRef]
- Riddick, S.N.; Mauzerall, D.L.; Celia, M.; Allen, G.; Pitt, J.; Kang, M.; Riddick, J.C. The Calibration and Deployment of a Low-Cost Methane Sensor. Atmos. Environ. 2020, 230, 117440. [Google Scholar] [CrossRef]
- Wastine, B.; Hummelgård, C.; Bryzgalov, M.; Rödjegård, H.; Martin, H.; Schröder, S. Compact Non-Dispersive Infrared Multi-Gas Sensing Platform for Large Scale Deployment with Sub-Ppm Resolution. Atmosphere 2022, 13, 1789. [Google Scholar] [CrossRef]
- Rabchinskii, M.K.; Sysoev, V.V.; Varezhnikov, A.S.; Solomatin, M.A.; Struchkov, N.S.; Stolyarova, D.Y.; Ryzhkov, S.A.; Antonov, G.A.; Gabrelian, V.S.; Cherviakova, P.D.; et al. Toward On-Chip Multisensor Arrays for Selective Methanol and Ethanol Detection at Room Temperature: Capitalizing the Graphene Carbonylation. ACS Appl. Mater. Interfaces 2023, 15, 28370–28386. [Google Scholar] [CrossRef]
- Ghosh, R.; Aslam, M.; Kalita, H. Graphene Derivatives for Chemiresistive Gas Sensors: A Review. Mater. Today Commun. 2022, 30, 103182. [Google Scholar] [CrossRef]
- Chang, Y.-S.; Chen, F.-K.; Tsai, D.-C.; Kuo, B.-H.; Shieu, F.-S. N-Doped Reduced Graphene Oxide for Room-Temperature NO Gas Sensors. Sci. Rep. 2021, 11, 20719. [Google Scholar] [CrossRef]
- Li, N.; Tao, L.; Yi, H.; Kim, C.S.; Kim, M.; Canedy, C.L.; Merritt, C.D.; Bewley, W.W.; Vurgaftman, I.; Meyer, J.R.; et al. Methane Detection Using an Interband-Cascade LED Coupled to a Hollow-Core Fiber. Opt. Express 2021, 29, 7221. [Google Scholar] [CrossRef] [PubMed]
- Gomółka, G.; Stępniewski, G.; Pysz, D.; Buczyński, R.; Klimczak, M.; Nikodem, M. Highly Sensitive Methane Detection Using a Mid-Infrared Interband Cascade Laser and an Anti-Resonant Hollow-Core Fiber. Opt. Express 2023, 31, 3685. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Laurent, O.; Lienhardt, L.; Broquet, G.; Rivera Martinez, R.; Allegrini, E.; Ciais, P. Characterising the Methane Gas and Environmental Response of the Figaro Taguchi Gas Sensor (TGS) 2611-E00. Atmos. Meas. Tech. 2023, 16, 3391–3419. [Google Scholar] [CrossRef]
- Shah, A.; Laurent, O.; Broquet, G.; Philippon, C.; Kumar, P.; Allegrini, E.; Ciais, P. Determining Methane Mole Fraction at a Landfill Site Using the Figaro Taguchi Gas Sensor 2611-C00 and Wind Direction Measurements. Environ. Sci. Atmos. 2024, 4, 362–386. [Google Scholar] [CrossRef]
- Cho, Y.; Smits, K.M.; Riddick, S.N.; Zimmerle, D.J. Calibration and Field Deployment of Low-Cost Sensor Network to Monitor Underground Pipeline Leakage. Sens. Actuators B Chem. 2022, 355, 131276. [Google Scholar] [CrossRef]
- Day, R.E.; Emerson, E.; Bell, C.; Zimmerle, D. Point Sensor Networks Struggle to Detect and Quantify Short Controlled Releases at Oil and Gas Sites. Sensors 2024, 24, 2419. [Google Scholar] [CrossRef]
- Furuta, D.; Sayahi, T.; Li, J.; Wilson, B.; Presto, A.A.; Li, J. Characterization of Inexpensive Metal Oxide Sensor Performance for Trace Methane Detection. Atmos. Meas. Tech. 2022, 15, 5117–5128. [Google Scholar] [CrossRef]
- White, J.U. Long Optical Paths of Large Aperture. J. Opt. Soc. Am. 1942, 32, 285. [Google Scholar] [CrossRef]
- SGX Datasheet Integrated IR Datasheet. DS-0229, ISSUE 6 Copyright © SGX Sensortech 2012–2017. Available online: https://sgx.cdistore.com/datasheets/sgx/ds-0229%20(inir%20datasheet)%20v6.pdf (accessed on 19 March 2024).
- Riddick, S.N.; Ancona, R.; Mbua, M.; Bell, C.S.; Duggan, A.; Vaughn, T.L.; Bennett, K.; Zimmerle, D.J. A Quantitative Comparison of Methods Used to Measure Smaller Methane Emissions Typically Observed from Superannuated Oil and Gas Infrastructure. Atmos. Meas. Tech. 2022, 15, 6285–6296. [Google Scholar] [CrossRef]
- Riddick, S.N.; Mbua, M.; Brouwer, R.; Emerson, E.W.; Anand, A.; Kiplimo, E.; Ojomu, S.; Lo, J.-H.; Zimmerle, D.J. Comparison of Sub-Ppm Instrument Response Suggests Higher Detection Limits Could Be Used to Quantify Methane Emissions from Oil and Gas Infrastructure. Sensors 2024, 24, 3407. [Google Scholar] [CrossRef]
- Schiff, H.I.; Mackay, G.I.; Bechara, J. The Use of Tunable Diode Laser Absorption Spectroscopy for Atmospheric Measurements. Res. Chem. Intermed. 1994, 20, 525–556. [Google Scholar] [CrossRef]
- Allen, M.G. Diode Laser Absorption Sensors for Gas-Dynamic and Combustion Flows. Meas. Sci. Technol. 1998, 9, 545–562. [Google Scholar] [CrossRef] [PubMed]
- Corbett, A.; Smith, B. A Study of a Miniature TDLAS System Onboard Two Unmanned Aircraft to Independently Quantify Methane Emissions from Oil and Gas Production Assets and Other Industrial Emitters. Atmosphere 2022, 13, 804. [Google Scholar] [CrossRef]
- Hollenbeck, D.; Zulevic, D.; Chen, Y. Advanced Leak Detection and Quantification of Methane Emissions Using sUAS. Drones 2021, 5, 117. [Google Scholar] [CrossRef]
- He, H.; Gao, S.; Hu, J.; Zhang, T.; Wu, T.; Qiu, Z.; Zhang, C.; Sun, Y.; He, S. In-Situ Testing of Methane Emissions from Landfills Using Laser Absorption Spectroscopy. Appl. Sci. 2021, 11, 2117. [Google Scholar] [CrossRef]
- Zhu, H.; Letzel, M.O.; Reiser, M.; Kranert, M.; Bächlin, W.; Flassak, T. A New Approach to Estimation of Methane Emission Rates from Landfills. Waste Manag. 2013, 33, 2713–2719. [Google Scholar] [CrossRef]
- Groth, A.; Maurer, C.; Reiser, M.; Kranert, M. Determination of Methane Emission Rates on a Biogas Plant Using Data from Laser Absorption Spectrometry. Bioresour. Technol. 2015, 178, 359–361. [Google Scholar] [CrossRef]
- Ilonze, C.; Emerson, E.; Duggan, A.; Zimmerle, D. Assessing the Progress of the Performance of Continuous Monitoring Solutions under a Single-Blind Controlled Testing Protocol. Environ. Sci. Technol. 2024, 58, 10941–10955. [Google Scholar] [CrossRef]
- Figaro Production Information. TGS 2611—For the Detection of Methane. Available online: https://www.figarosensor.com/product/docs/tgs%202611C00(1013).pdf (accessed on 26 August 2020).
- Figaro TGS 2600—For the Detection of Air Contaminants, On-Line Product Data Sheet. 2005. Available online: https://www.figarosensor.com/product/docs/TGS2600B00%20(0913).pdf (accessed on 20 March 2025).
- Southern Cross ’46 Hawk Natural Gas Detector. Available online: https://irp-cdn.multiscreensite.com/c5a1d295/files/uploaded/Hawk-Brochure.pdf (accessed on 3 July 2024).
- Kiplimo, E.; Riddick, S.N.; Mbua, M.; Upreti, A.; Anand, A.; Zimmerle, D.J. Addressing Low-Cost Methane Sensor Calibration Shortcomings with Machine Learning. Atmosphere 2024, 15, 1313. [Google Scholar] [CrossRef]
Experiment # | Distance (m) | Emission Rate (g CH4 h−1) | Duration (s) | Time Between Plumes (s) |
---|---|---|---|---|
1 | 0.5 | 1 | 10 | 50 |
2 | 0.5 | 1 | 5 | 55 |
3 | 0.5 | 1 | 5 | 30 |
4 | 0.5 | 1 | 5 | 15 |
5 | 0.5 | 1 | 5 | 5 |
TDLAS | NDIR | MOx | |||||||
---|---|---|---|---|---|---|---|---|---|
Expt | P | Av Peak (ppm) | Av Lag (s) | # | Av Peak (ppm) | Av Lag (s) | # | Av Peak (ppm) | Av Lag (s) |
1 | 100 | 6.3 | 5 | 100 | 2.68 | 18 | 0 | N/A | N/A |
2 | 100 | 6.3 | 5 | 100 | 0.96 | 13 | 0 | N/A | N/A |
3 | 100 | 6.0 | 5 | 100 | 1.47 | 17 | 0 | N/A | N/A |
4 | 100 | 5.3 | 5 | 100 | 0.69 | 14 | 0 | N/A | N/A |
5 | 100 | 6.3 | 5 | 100 | 1.01 | 12 | 0 | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riddick, S.N.; Riddick, J.C.; Kiplimo, E.; Rainwater, B.; Mbua, M.; Cheptonui, F.; Laughery, K.; Levin, E.; Zimmerle, D.J. Design, Build, and Initial Testing of a Portable Methane Measurement Platform. Sensors 2025, 25, 1954. https://doi.org/10.3390/s25071954
Riddick SN, Riddick JC, Kiplimo E, Rainwater B, Mbua M, Cheptonui F, Laughery K, Levin E, Zimmerle DJ. Design, Build, and Initial Testing of a Portable Methane Measurement Platform. Sensors. 2025; 25(7):1954. https://doi.org/10.3390/s25071954
Chicago/Turabian StyleRiddick, Stuart N., John C. Riddick, Elijah Kiplimo, Bryan Rainwater, Mercy Mbua, Fancy Cheptonui, Kate Laughery, Ezra Levin, and Daniel J. Zimmerle. 2025. "Design, Build, and Initial Testing of a Portable Methane Measurement Platform" Sensors 25, no. 7: 1954. https://doi.org/10.3390/s25071954
APA StyleRiddick, S. N., Riddick, J. C., Kiplimo, E., Rainwater, B., Mbua, M., Cheptonui, F., Laughery, K., Levin, E., & Zimmerle, D. J. (2025). Design, Build, and Initial Testing of a Portable Methane Measurement Platform. Sensors, 25(7), 1954. https://doi.org/10.3390/s25071954