A Beam Steering Vector Tracking GNSS Software-Defined Receiver for Robust Positioning
Abstract
:1. Introduction
- An outline of a simple implementation of a beamforming VTL for robust performance in everyday degraded environments.
- An evaluation of a deterministic beamformer that uses a navigation state-determined DOA to prevent NLOS distortions from affecting signal-based DOA estimates.
- A receiver architecture that has modularity with additional sensors for attitude information and deep integration.
- A validation of the proposed receiver in both simulation and in live-sky experiments with dynamic and degraded signal environments.
2. Algorithms and Simulation Studies
2.1. Overview of Algorithms
2.1.1. An Overview of Vector Tracking
2.1.2. The Central Navigation Filter
2.1.3. Vector Tracking Measurement Models
2.1.4. Vector Tracking NCO Updates
2.1.5. Overview of the Beamforming Algorithm
2.2. Simulation of Antenna Array Performance
3. Methods for Experimental Collection
4. Results
4.1. Beam Steering Comparison
4.2. Commuter Route
4.3. Campus Route
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lashley, M.; Bevly, D.M. Comparison of traditional tracking loops and vector-based tracking loops for weak GPS signals. In Proceedings of the 20th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2007), Fort Worth, TX, USA, 25–28 September 2007. [Google Scholar]
- Lashley, M.; Bevly, D.; Hung, J. A valid comparison of vector and scalar tracking loops. In Proceedings of the IEEE/ION Position, Location and Navigation Symposium, Indian Wells, CA, USA, 4–6 May 2010. [Google Scholar] [CrossRef]
- Liu, W.; Huang, H.; Hu, Y.; Mou, M.; Hsieh, T.; Hu, Q. Improved GNSS vector tracking loop to enhance the navigation performance of USV. Ocean Eng. 2022, 258, 111865. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, L.; Lou, N.; Liu, W. A Robust Vector-Tracking Loop Based on KF and RTS Smoothing for Shipborne Navigation. J. Mar. Sci. Eng. 2024, 12, 747. [Google Scholar] [CrossRef]
- Lashley, M.; Bevly, D.; Hung, J. Performance analysis of vector tracking algorithms for weak GPS signals in high dynamics. IEEE J. Sel. Top. Signal Process. 2009, 3, 661. [Google Scholar] [CrossRef]
- Mu, R.; Long, T. Design and implementation of vector tracking loop for high-dynamic gnss receiver. Sensors 2021, 21, 5629. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Ruotsalainen, L.; Chen, X.; Tang, X. An INS-assisted vector tracking receiver with multipath error estimation for dense urban canyons. GPS Solut 2023, 27, 88. [Google Scholar] [CrossRef]
- Hsu, L.; Jan, S.; Groves, P.; Kubo, N. Multipath mitigation and NLOS detection using vector tracking in urban environments. GPS Solut. 2015, 19, 249–262. [Google Scholar] [CrossRef]
- Peretic, M.; Gao, G. Design of a parallelized direct position estimation-based GNSS receiver. Navigation 2021, 68, 21–39. [Google Scholar] [CrossRef]
- Vicenzo, S.; Xu, B.; Dey, A.; Hsu, L. Experimental investigation of GNSS direct position estimation in a densely urban area. In Proceedings of the 36th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2023), Denver, CO, USA, 11–15 September 2023. [Google Scholar]
- Suzuki, T.; Amano, Y. NLOS Multipath Classification of GNSS Signal Correlation Output Using Machine Learning. Sensors 2021, 21, 2503. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhang, G.; Yang, B.; Hsu, L. Machine Learning in GNSS Multipath/NLOS Mitigation: Review and Benchmark. IEEE Aerosp. Electron. Syst. Mag. 2024, 39, 26–44. [Google Scholar] [CrossRef]
- Sharifi-Tehrani, O.; Sabahi, M.F.; Danaee, M.R. Null broadened–deepened array antenna beamforming for GNSS jamming mitigation in moving platforms. ICT Express 2022, 8, 161–165. [Google Scholar] [CrossRef]
- Radoš, K.; Brkic, M.; Begušic, D. Recent Advances on Jamming and Spoofing Detection in GNSS. Sensors 2024, 24, 4210. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Chen, Q.; Zhang, J.; Huang, T.; Fang, D. Time Modulated Array Antennas: A Review. Electromagn. Sci. 2024, 2, 1–19. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, R.; Lin, Z.; Zhang, R.; Cai, Y.; Wu, W.; Wang, J. Improving age of information for covert communication with time-modulated arrays. IEEE Internet Things J. 2025, 12, 1718–1731. [Google Scholar] [CrossRef]
- Razgūnas, M.; Rudys, S.; Aleksiejūnas, R. GNSS 2 × 2 antenna array with beamforming for multipath detection. Adv. Space Res. 2023, 71, 4142–4154. [Google Scholar] [CrossRef]
- Vagle, N.; Broumandan, A.; Jafarnia-Jahromi, A.; Lachapelle, G. Performance analysis of GNSS multipath mitigation using antenna arrays. J. Glob. Position. Syst. 2016, 14, 1–5. [Google Scholar] [CrossRef]
- Sengupta, N.; van der Merwe, J.R.; Koelpin, A.; Rügamer, A.; Kuhl, M.; Felber, W. Multibeam antenna array and software switching for low-complexity low-cost GNSS beamforming. In Proceedings of the 2021 International Conference on Localization and GNSS (ICL-GNSS), Tampere, Finland, 1–3 June 2021. [Google Scholar] [CrossRef]
- Fascista, A.; Coluccia, A.; Ricci, G. A Pseudo Maximum likelihood approach to position estimation in dynamic multipath environments. Signal Process. 2021, 181, 107907. [Google Scholar] [CrossRef]
- Cuntz, M.; Konovaltsev, A.; Meurer, M. Concepts, Development, and Validation of Multiantenna GNSS Receivers for Resilient Navigation. Proc. IEEE 2016, 104, 1288–1301. [Google Scholar] [CrossRef]
- Rudnik, P.; Kurz, L.; Wintersrein, A.; Cuntz, M. Advantages of a Robust Multi-Antenna GNSS Receiver in UAV Flight Jamming Scenarios. In Proceedings of the 36th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2023), Denver, CO, USA, 11–15 September 2023. [Google Scholar]
- Brown, R.G.; Hwang, P.Y.C. Introduction to Random Signals and Applied Kalman Filtering; John Wiley and Sons: New York, NY, USA, 1997. [Google Scholar]
- Lashley, M.; Bevly, D.M. Comparison in the Performance of the Vector Delay/Frequency Lock Loop and Equivalent Scalar Tracking Loops in Dense Foliage and Urban Canyon. In Proceedings of the 24th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2011), Portland, OR, USA, 20–23 September 2011. [Google Scholar]
- Givhan, C.; Martin, S. Comparison of CRPA Direction of Arrival Methods on Post Correlated GNSS Signals for Solution Authentication and Spoofing Detection. In Proceedings of the 2023 International Technical Meeting of The Institute of Navigation (ION ITM 2023), Long Beach, CA, USA, 24–26 January 2023. [Google Scholar]
- Sgammini, M.; Antreich, F.; Kurz, L.; Meurer, M.; Noll, T. Blind Adaptive Beamformer Based on Orthogonal Projections for GNSS. In Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2012), Nashville, TN, USA, 17–21 September 2012. [Google Scholar]
- Pallarés-Rodríguez, L.; Gómez-Casco, D.; Bni-Lam, N.; Seco-Granados, G.; López-Salcedo, J.; Crosta, P. Combining SAGE and LMS for Blind Multipath Mitigation in GNSS Receivers. In Proceedings of the 2024 11th Workshop on Satellite Navigation Technology (NAVITEC), Noordwijk, The Netherlands, 11–13 December 2024. [Google Scholar] [CrossRef]
- Florio, A.; Coviello, G.; Talarico, C.; Avitabile, G. Adaptive DDS-PLL Beamsteering Architecture based on Real-Time Angle-of-Arrival Estimation. In Proceedings of the 2024 IEEE 67th International Midwest Symposium on Circuits and Systems (MWSCAS), Springfield, MA, USA, 11–14 August 2024. [Google Scholar] [CrossRef]
- Ettus USRP X310 Product Sheet. Available online: https://www.ettus.com/all-products/x310-kit/ (accessed on 8 February 2025).
- Ublox F9 System Product Sheet. Available online: https://www.u-blox.com/en/product/zed-f9p-module (accessed on 8 February 2025).
ENU Errors: Mean and Standard Deviation (m) | |||
---|---|---|---|
Scalar | 5.99 ± 4.73 | 5.55 ± 4.13 | 0.29 ± 0.22 |
Scalar Beam Steering | 4.88 ± 3.60 | 5.26 ± 4.21 | 0.26 ± 0.20 |
Vector | 4.37 ± 3.24 | 8.69 ± 7.04 | 0.27 ± 0.08 |
Vector Beam Steering | 3.18 ± 3.07 | 3.38 ± 3.75 | 0.25 ± 0.09 |
ENU Errors: Mean and Standard Deviation (m) | |||
---|---|---|---|
Scalar | 367.51 ± 1865.48 | 253.49 ± 1315.30 | 15.57 ± 80.56 |
Scalar Beam Steering | 11.40 ± 16.41 | 25.13 ± 22.49 | 0.73 ± 0.384 |
Vector | 4.67 ± 3.26 | 5.25 ± 5.30 | 0.20 ± 0.10 |
Vector Beam Steering | 3.70 ± 1.69 | 1.63 ± 1.59 | 0.19 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burchfield, S.; Givhan, C.; Martin, S. A Beam Steering Vector Tracking GNSS Software-Defined Receiver for Robust Positioning. Sensors 2025, 25, 1951. https://doi.org/10.3390/s25061951
Burchfield S, Givhan C, Martin S. A Beam Steering Vector Tracking GNSS Software-Defined Receiver for Robust Positioning. Sensors. 2025; 25(6):1951. https://doi.org/10.3390/s25061951
Chicago/Turabian StyleBurchfield, Scott, Charles Givhan, and Scott Martin. 2025. "A Beam Steering Vector Tracking GNSS Software-Defined Receiver for Robust Positioning" Sensors 25, no. 6: 1951. https://doi.org/10.3390/s25061951
APA StyleBurchfield, S., Givhan, C., & Martin, S. (2025). A Beam Steering Vector Tracking GNSS Software-Defined Receiver for Robust Positioning. Sensors, 25(6), 1951. https://doi.org/10.3390/s25061951