Research on Yield Prediction Model Driven by Mechanism and Data Fusion
Abstract
:1. Introduction
2. Overall Framework
- 1.
- Mechanistic Equipment Modeling
- 2.
- Global–Local Branching Forecast Model
- 3.
- Fusion of Mechanistic Model Data
3. Methodology
3.1. Mechanistic Model Design
3.1.1. Mathematical Model of Three-Phase Separator
3.1.2. MPC Controller Design
3.2. Mechanism–Data Fusion Prediction Model Design
3.2.1. Forecasting Model Formulation
3.2.2. Global–Local Branch Prediction Model
3.2.3. Mechanism–Data Fusion Method
4. Mechanism–Data Fusion Prediction Model Verification
4.1. Data Processing
4.2. Evaluation Metrics
4.3. Mechanism–Data Fusion Prediction Model Analysis
5. Conclusions
- (1)
- This paper proposes a Mechanism–Data Fusion Prediction Model, which fuses two types of data into the time-series prediction model to achieve the multi-angle prediction of production. This is a new production prediction method and has achieved certain results.
- (2)
- This paper also proposes a Global–Local Branch Prediction Model. By extracting global and local information from the input sequence, this model can effectively capture global information and integrate it with a module based on local attention, thereby significantly improving prediction accuracy.
- (3)
- The experiments show that the Global–Local Branch Prediction Model is superior to other model algorithms, and the performance is also improved after the fusion of the mechanism model data.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LSTM | Long Short-Term Memory |
SVM | Support Vector Machine |
ARIMA | Autoregressive Integrated Moving Average |
PID | Proportional-Integral Derivative |
SOTA | State Of The Art |
MPC | Model Predictive Control |
MSE | Mean Square Error |
MAE | Mean Absolute Error |
RSE | Relative Standard Error |
References
- Bratvold, R.B.; Bickel, J.E.; Lohne, H.P. Value of information in the oil and gas industry: Past, present, and future. SPE Reserv. Eval. Eng. 2009, 12, 630–638. [Google Scholar] [CrossRef]
- Rehman, A.; Zhu, J.J.; Segovia, J.; Anderson, P.R. Assessment of deep learning and classical statistical methods on forecasting hourly natural gas demand at multiple sites in Spain. Energy 2022, 244, 122562. [Google Scholar] [CrossRef]
- Wei, B.; Qiao, R.; Hou, J.; Wu, Z.; Sun, J.; Zhang, Y.; Qiang, X.; Zhao, E. Multiphase production prediction of volume fracturing horizontal wells in tight oil reservoir during cyclic water injection. Phys. Fluids 2025, 37, 013304. [Google Scholar] [CrossRef]
- Liu, W.; Liu, W.D.; Gu, J. Forecasting oil production using ensemble empirical model decomposition based Long Short-Term Memory neural network. J. Pet. Sci. Eng. 2020, 189, 107013. [Google Scholar] [CrossRef]
- Qiao, Y.; Peng, J.; Ge, L.; Wang, H. Application of PSO LS-SVM forecasting model in oil and gas production forecast. In Proceedings of the 2017 IEEE 16th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), Oxford, UK, 26–28 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 470–474. [Google Scholar]
- Rajni, R.; Banerjee, T.; Kumar, P. Forecasting of renewable energy production in United States: An ARIMA based time series analysis. AIP Conf. Proc. 2024, 3010, 030014. [Google Scholar]
- Eshkalak, M.O.; Aybar, U.; Sepehrnoori, K. An integrated reservoir model for unconventional resources, coupling pressure dependent phenomena. In Proceedings of the SPE Eastern Regional Meeting, Charleston, WV, USA, 21–23 October 2014; SPE: Richardson, TX, USA, 2014. SPE-171008-MS. [Google Scholar]
- Ali, A.A.; Abdul-Majeed, G.H.; Al-Sarkhi, A. Review of multiphase flow models in the petroleum engineering: Classifications, simulator types, and applications. Arab. J. Sci. Eng. 2024, 1–44. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, X.; Yang, Z.; Wang, F.; Zhang, Y.; Liu, G.; Lin, W. Experimental study on physical modeling of flow mechanism in volumetric fracturing of tight oil reservoir. Phys. Fluids 2021, 33, 107118. [Google Scholar] [CrossRef]
- Jiang, J.; Yang, J. Coupled fluid flow and geomechanics modeling of stress-sensitive production behavior in fractured shale gas reservoirs. Int. J. Rock Mech. Min. Sci. 2018, 101, 1–12. [Google Scholar] [CrossRef]
- Sayda, A.F.; Taylor, J.H. Modeling and control of three-phase gravilty separators in oil production facilities. In Proceedings of the 2007 American Control Conference, New York, NY, USA, 11–13 July 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 4847–4853. [Google Scholar]
- Alzahra, A.M.; Najim, Y.; Dawood, A. Three Phase Oil Separator Simulation Using CFD Analysis: A Review Study. Al-Rafidain Eng. J. 2024, 29, 10–18. [Google Scholar]
- Ahmed, T.; Makwashi, N.; Hameed, M. A review of gravity three-phase separators. J. Emerg. Trends Eng. Appl. Sci. 2017, 8, 143–153. [Google Scholar]
- Ahmed, T.; Russell, P.A.; Makwashi, N.; Hamad, F.; Gooneratne, S. Design and capital cost optimisation of three-phase gravity separators. Heliyon 2020, 6, e04065. [Google Scholar] [CrossRef] [PubMed]
- Ghaffarkhah, A.; Shahrabi, M.A.; Moraveji, M.K. 3D computational-fluid-dynamics modeling of horizontal three-phase separators: An approach for estimating the optimal dimensions. SPE Prod. Oper. 2018, 33, 879–895. [Google Scholar]
- Xu, B.; Shen, J.; Liu, S.; Su, Q.; Zhang, J. Research and development of electro-hydraulic control valves oriented to industry 4.0: A review. Chin. J. Mech. Eng. 2020, 33, 29. [Google Scholar] [CrossRef]
- Bu, T.; Mesa, D.; Brito-Parada, P.R. Design strategies for miniaturised liquid–liquid separators—A critical review. Chem. Eng. J. 2024, 495, 153036. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar]
- Xing, S.; Niu, J.; Ren, T. GCFormer: Granger Causality based Attention Mechanism for Multivariate Time Series Anomaly Detection. In Proceedings of the 2023 IEEE International Conference on Data Mining (ICDM), Shanghai, China, 1–4 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1433–1438. [Google Scholar]
- Li, Y.; Cai, T.; Zhang, Y.; Chen, D.; Dey, D. What makes convolutional models great on long sequence modeling? arXiv 2022, arXiv:2210.09298. [Google Scholar]
- Zhu, Q.; Zhang, Y.; Wang, L.; Zhong, Y.; Guan, Q.; Lu, X.; Zhang, L.; Li, D. A global context-aware and batch-independent network for road extraction from VHR satellite imagery. ISPRS J. Photogramm. Remote Sens. 2021, 175, 353–365. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar]
- Mohammadi Foumani, N.; Miller, L.; Tan, C.W.; Webb, G.I.; Forestier, G.; Salehi, M. Deep learning for time series classification and extrinsic regression: A current survey. ACM Comput. Surv. 2024, 56, 217. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, Z.; Zhang, W.; Meng, G. Parameterised time-frequency analysis methods and their engineering applications: A review of recent advances. Mech. Syst. Signal Process. 2019, 119, 182–221. [Google Scholar]
- Gu, A.; Goel, K.; Ré, C. Efficiently modeling long sequences with structured state spaces. arXiv 2021, arXiv:2111.00396. [Google Scholar]
- Venkatappareddy, P.; Culli, J.; Srivastava, S.; Lall, B. A Legendre polynomial based activation function: An aid for modeling of max pooling. Digit. Signal Process. 2021, 115, 103093. [Google Scholar] [CrossRef]
- Kadambi, A.; de Melo, C.; Hsieh, C.J.; Srivastava, M.; Soatto, S. Incorporating physics into data-driven computer vision. Nat. Mach. Intell. 2023, 5, 572–580. [Google Scholar] [CrossRef]
- Duan, J.; Xiong, J.; Li, Y.; Ding, W. Deep learning based multimodal biomedical data fusion: An overview and comparative review. Inf. Fusion 2024, 112, 102536. [Google Scholar] [CrossRef]
- Frías-Paredes, L.; Mallor, F.; Gastón-Romeo, M.; León, T. Assessing energy forecasting inaccuracy by simultaneously considering temporal and absolute errors. Energy Convers. Manag. 2017, 142, 533–546. [Google Scholar] [CrossRef]
- Pérez, M. An Investigation of ADAM: A Stochastic Optimization Method. In Proceedings of the 39th International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022. [Google Scholar]
Parameter | Unit | Meaning |
---|---|---|
Inlet volume flow | ||
Oil inlet volume flow | ||
Inlet molar flow | ||
Outlet molar flow | ||
Outlet volume flow | ||
Outlet pressure of water outlet valve | ||
Oil outlet valve outlet pressure | ||
Outlet pressure of air outlet valve | ||
/ | Flow characteristic curve slope | |
Water outlet valve cross-sectional area | ||
Oil outlet valve cross-sectional area | ||
Exhaust valve cross-sectional area | ||
m | Water chamber liquid level | |
m | Oil chamber liquid level | |
H | m | Weir plate height |
V | Separator volume | |
P | Tank pressure | |
Oil–water interface cross-sectional area | ||
Oil chamber cross-sectional area | ||
K | Temperature in separator | |
/ | Relative molecular weight | |
m | Separator radius | |
L | m | Separator length |
Water phase density | ||
Oil phase density | ||
/ | Valve opening |
Data Name | Unit |
---|---|
Gas production | m3 |
Chip catcher pressure | MPa |
Chip catcher pressure | MPa |
Separator upper pressure | MPa |
Separator down pressure | MPa |
Separator temperature | °C |
Data Name | Unit |
---|---|
Separator pressure | MPa |
Separator level | MPa |
Separator temperature | °C |
Global–Local Branching Prediction Model | Autoformer | DLinear | |||||||
---|---|---|---|---|---|---|---|---|---|
Mse | Mae | Rse | Mse | Mae | Rse | Mse | Mae | Rse | |
Organic Mechanism | 0.0256 | 0.0895 | 11.773% | 0.0383 | 0.1371 | 13.197% | 0.0339 | 0.1002 | 12.336% |
0.0266 | 0.0917 | 11.872% | 0.0346 | 0.1422 | 13.218% | 0.0328 | 0.1001 | 12.296% | |
0.0259 | 0.0923 | 11.932% | 0.0352 | 0.1447 | 13.351% | 0.0353 | 0.1011 | 12.380% | |
No Mechanism | 0.0324 | 0.1008 | 12.808% | 0.0405 | 0.1181 | 14.298% | 0.0359 | 0.1023 | 13.801% |
0.0326 | 0.101 | 12.838% | 0.0400 | 0.1153 | 14.209% | 0.0364 | 0.1019 | 13.791% | |
0.0325 | 0.1007 | 12.797% | 0.0399 | 0.1164 | 14.198% | 0.0368 | 0.1020 | 13.792% |
Global–Local Branch Prediction Model Prediction Results | Comparison of Prediction Results Between Global–Local Branch Prediction Model and Autoformer | Comparison of Prediction Results Between Global–Local Branch Prediction Model and DLinear | |||||||
---|---|---|---|---|---|---|---|---|---|
Mse | Mae | Rse | Mse | Mae | Rse | Mse | Mae | Rse | |
Organic Mechanism | 0.0256 | 0.0895 | 11.773% | ↓0.0127 | ↓0.0476 | ↓1.424% | ↓0.0083 | ↓0.0107 | ↓0.563% |
0.0266 | 0.0917 | 11.872% | ↓0.008 | ↓0.0505 | ↓1.346% | ↓0.0062 | ↓0.0084 | ↓0.424% | |
0.0259 | 0.0923 | 11.932% | ↓0.0093 | ↓0.0524 | ↓1.419% | ↓0.0094 | ↓0.0088 | ↓0.448% | |
No Mechanism | 0.0324 | 0.1008 | 12.808% | ↓0.0081 | ↓0.0173 | ↓1.49% | ↓0.0035 | ↓0.0015 | ↓0.993% |
0.0326 | 0.101 | 12.838% | ↓0.0074 | ↓0.0143 | ↓1.371% | ↓0.0038 | ↓0.0009 | ↓0.953% | |
0.0325 | 0.1007 | 12.797% | ↓0.0074 | ↓0.0157 | ↓1.401% | ↓0.0043 | ↓0.0013 | ↓0.995% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Liu, X.; Duan, H.; Hu, Z.; Wang, M. Research on Yield Prediction Model Driven by Mechanism and Data Fusion. Sensors 2025, 25, 1946. https://doi.org/10.3390/s25061946
Meng X, Liu X, Duan H, Hu Z, Wang M. Research on Yield Prediction Model Driven by Mechanism and Data Fusion. Sensors. 2025; 25(6):1946. https://doi.org/10.3390/s25061946
Chicago/Turabian StyleMeng, Xin, Xingyu Liu, Hancong Duan, Ze Hu, and Min Wang. 2025. "Research on Yield Prediction Model Driven by Mechanism and Data Fusion" Sensors 25, no. 6: 1946. https://doi.org/10.3390/s25061946
APA StyleMeng, X., Liu, X., Duan, H., Hu, Z., & Wang, M. (2025). Research on Yield Prediction Model Driven by Mechanism and Data Fusion. Sensors, 25(6), 1946. https://doi.org/10.3390/s25061946