A Circularly Polarized Broadband Composite Spiral Antenna for Ground Penetrating Radar
Abstract
:1. Introduction
2. Theory of Spiral Antenna
3. Antenna Design
3.1. Composite Planar Spiral Antenna
3.2. Balun
3.3. Backed Cavity
4. Antenna Evaluation
5. Three-Dimensional GPR Measurement
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GPR | Ground Penetrating Radar |
VNA | Vector Network Analyzer |
LHCP | Left-Hand Circularly Polarized |
RHCP | Right-Hand Circularly Polarized |
AR | Axial Ratio |
Appendix A. Deconvolution Method
References
- Daniels, D. Ground Penetrating Radar; The Institution of Electrical Engineers: London, UK, 2004. [Google Scholar]
- Jol, H.M. Ground Penetrating Radar Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Gao, X.; Podd, F.J.W.; Van Verre, W.; Daniels, D.J.; Peyton, A.J. Investigating the performance of bi-static GPR antennas for near-surface object detection. Sensors 2019, 19, 170. [Google Scholar] [CrossRef] [PubMed]
- Rial, F.I.; Lorenzo, H.; Pereira, M.; Armesto, J. Analysis of the emitted wavelet of high-resolution bowtie GPR antennas. Sensors 2009, 9, 4230–4246. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.L.; Daniels, J.J. Analysis of GPR polarization phenomena. J. Environ. Eng. Geophys. 1996, 1, 139–157. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, J.; Sato, M. A hybrid dual-polarization GPR system for detection of linear objects. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 317–320. [Google Scholar] [CrossRef]
- Feng, X.; Yu, Y.; Liu, C.; Fehler, M. Subsurface polarimetric migration imaging for full polarimetric ground-penetrating radar. Geophys. J. Int. 2015, 202, 1324–1338. [Google Scholar] [CrossRef]
- Chi-Chih, C.; Higgins, M.B.; Neill, K.O.; Detsch, R. Ultrawide-bandwidth fully-polarimetric ground penetrating radar classification of subsurface unexploded ordnance. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1221–1230. [Google Scholar] [CrossRef]
- Neill, K.O.; Haider, S.A.; Geimer, S.D.; Paulsen, K.D. Effects of the ground surface on polarimetric features of broadband radar scattering from subsurface metallic objects. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1556–1565. [Google Scholar] [CrossRef]
- Sassen, D.S.; Everett, M.E. 3D polarimetric GPR coherency attributes and full-waveform inversion of transmission data for characterizing fractured rock. Geophysics 2009, 74, J23–J34. [Google Scholar] [CrossRef]
- Zhou, H.; Feng, X.; Dong, Z.; Liu, C.; Liang, W.; An, Y. Local freeman decomposition for robust imaging and identification of subsurface anomalies using misaligned full-polarimetric GPR data. Remote Sens. 2022, 14, 804. [Google Scholar] [CrossRef]
- Zeng, Z.; Li, J.; Huang, L.; Feng, X.; Liu, F. Improving target detection accuracy based on multipolarization MIMO GPR. IEEE Trans. Geosci. Remote Sens. 2015, 53, 15–24. [Google Scholar] [CrossRef]
- Fan, H.; Zhang, Y.; Tian, Q.; Wang, X.; Meng, H. Analysis and simulation of a sequential rotationally excited circular polarized multi-dipole array for a bi-static antenna GPR for deep exploration. Remote Sens. 2023, 15, 1134. [Google Scholar] [CrossRef]
- Sun, H.-H.; Lee, Y.H.; Luo, W.; Ow, L.F.; Yusof, M.L.; Yucel, A.C. Compact dual-polarized vivaldi antenna with high gain and high polarization purity for GPR applications. Sensors 2021, 21, 503. [Google Scholar] [CrossRef]
- Liu, H.; Zhong, J.; Ding, F.; Meng, X.; Liu, C.; Cui, J. Detection of early-stage rebar corrosion using a polarimetric ground penetrating radar system. Constr. Build. Mater. 2022, 317, 125768. [Google Scholar] [CrossRef]
- Liu, H.; Huang, X.; Han, F.; Cui, J.; Spencer, B.F.; Xie, X. Hybrid polarimetric GPR calibration and elongated object orientation estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2080–2087. [Google Scholar] [CrossRef]
- Grigoor-Feghi, N.; Masoumi, R.; Kazemi, R. Development of a fully planar logarithmic spiral antenna with integrated balun in UWB GPR systems for landmines detection. Electromagnetics 2022, 42, 559–570. [Google Scholar] [CrossRef]
- Dyson, J. The equiangular spiral antenna. IRE Trans. Antennas Propag. 1959, 7, 181–187. [Google Scholar] [CrossRef]
- Fu, W.; Lopez, E.R.; Rowe, W.S.T.; Ghorbani, K. A planar dual-arm equiangular spiral antenna. IEEE Trans. Antennas Propag. 2010, 58, 1775–1779. [Google Scholar] [CrossRef]
- Eubanks, T.W.; Chang, K. A compact parallel-plane perpendicular-current feed for a modified equiangular spiral antenna. IEEE Trans. Antennas Propag. 2010, 58, 2193–2202. [Google Scholar] [CrossRef]
- Kaiser, J. The Archimedean two-wire spiral antenna. IRE Trans. Antennas Propag. 1960, 8, 312–323. [Google Scholar] [CrossRef]
- Nakano, H.; Mimnaki, H.; Yamauchi, J.; Hirose, K. A low profile Archimedean spiral antenna. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Ann Arbor, MI, USA, 28 June–2 July 1993; Volume 451, pp. 450–453. [Google Scholar]
- Etellisi, E.A.; Elmansouri, M.A.; Filipovic, D.S. Wideband monostatic simultaneous transmit and receive (STAR) Antenna. IEEE Trans. Antennas Propag. 2016, 64, 6–15. [Google Scholar] [CrossRef]
- McFadden, M.; Scott, W.R. Analysis of the equiangular spiral antenna on a dielectric substrate. IEEE Trans. Antennas Propag. 2007, 55, 3163–3171. [Google Scholar] [CrossRef]
- Nakano, H.; Kikkawa, K.; Kondo, N.; Iitsuka, Y.; Yamauchi, J. Low-profile equiangular spiral antenna Backed by an EBG reflector. IEEE Trans. Antennas Propag. 2009, 57, 1309–1318. [Google Scholar] [CrossRef]
- Pan, T.; Dai, L.; Chen, S.; Yan, Z.; Lin, Y. Low-impedance flexible Archimedean-equiangular spiral antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1789–1793. [Google Scholar] [CrossRef]
- Nakano, H.; Nogami, K.; Arai, S.; Mimaki, H.; Yamauchi, J. A spiral antenna backed by a conducting plane reflector. IEEE Trans. Antennas Propag. 1986, 34, 791–796. [Google Scholar] [CrossRef]
- Zhong, Y.W.; Yang, G.M.; Mo, J.Y.; Zheng, L.R. Compact circularly polarized Archimedean spiral antenna for ultrawideband communication applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 129–132. [Google Scholar] [CrossRef]
- Shih, T.Y.; Behdad, N. A compact, broadband spiral antenna with unidirectional circularly polarized radiation patterns. IEEE Trans. Antennas Propag. 2015, 63, 2776–2781. [Google Scholar] [CrossRef]
- Schreider, L.; Begaud, X.; Soiron, M.; Perpere, B.; Renard, C. Broadband Archimedean spiral antenna above a loaded electromagnetic band gap substrate. IET Microw. Antennas Propag. 2007, 1, 212–216. [Google Scholar] [CrossRef]
- O’Brien, J.M.; Grandfield, J.E.; Mumcu, G.; Weller, T.M. Miniaturization of a spiral antenna using periodic Z-plane meandering. IEEE Trans. Antennas Propag. 2015, 63, 1843–1848. [Google Scholar] [CrossRef]
- Okamura, S.; Takahashi, K.; Sato, M. Non-destructive inspection of buildings using radar polarimetry. In Proceedings of the 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 23–27 September 2013; pp. 122–125. [Google Scholar]
- Lee, J.H.; Hwang, J.M.; Choi, D.H.; Park, S.O. Noninvasive biosignal detection radar system using circular polarization. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 400–404. [Google Scholar] [CrossRef]
- Yousefzadeh, M.; Ebrahimzadeh, R.; Zakeri, B.; Talbi, L.; Hettak, K.; Boutayeb, H. Design of automotive radar antenna for covering middle- and long-range with dual-circular polarization. IEEE Trans. Antennas Propag. 2024, 72, 7504–7514. [Google Scholar] [CrossRef]
- Nord, M.E.; Ainsworth, T.L.; Jong-Sen, L.; Stacy, N.J.S. Comparison of compact polarimetric synthetic aperture radar modes. IEEE Trans. Geosci. Remote Sens. 2009, 47, 174–188. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Booker, H.G. Slot aerials and their relation to complementary wire aerials (Babinet’s principle). J. Inst. Electr. Eng.-Part IIIA Radiolocation 1946, 93, 620–626. [Google Scholar] [CrossRef]
- Milligan, T.A. Modern Antenna Design; John Wiley & Sons: Hoboken, NY, USA, 2005. [Google Scholar]
- Zhao, Y.; Hu, W. Design of a UWB unidirectional radiation compound spiral antenna. In Proceedings of the 2015 IEEE 6th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), Shanghai, China, 28–30 October 2015; pp. 158–161. [Google Scholar]
- Wadell, B.C. Transmission Line Design Handbook; Artech house: Boston, MA, USA, 1991. [Google Scholar]
- Yao, H.; Yang, J.; Li, H.; Xu, J.; Bi, K. Optimal design of multilayer radar absorbing materials: A simulation-optimization approach. Adv. Compos. Hybrid Mater. 2023, 6, 43. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Mallat, S.G.; Zhang, Z. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 1993, 41, 3397–3415. [Google Scholar] [CrossRef]
- Gao, S.; Luo, Q.; Zhu, F. Circularly Polarized Antennas; John Wiley & Sons: West Sussex, UK, 2014. [Google Scholar]
- Toh, B.Y.; Cahill, R.; Fusco, V.F. Understanding and measuring circular polarization. IEEE Trans. Educ. 2003, 46, 313–318. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Z.; Lu, H.; Han, F.; Liu, C.; Li, J.; Cui, J. Migration of ground penetrating radar with antenna radiation pattern correction. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3500805. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, B.; Ding, F.; Li, J.; Meng, X.; Liu, C.; Shi, R. Enhanced imaging of reinforcement by dual-polarization ground penetrating radar. Prog. Geophys. 2024. Available online: https://kns.cnki.net/kcms/detail/11.2982.P.20241227.1354.006.html (accessed on 16 March 2025).
Equiangular Spiral Structure | Archimedean Spiral Structure | |
---|---|---|
Starting radius (r0) | 1.5 mm | 14 mm |
Starting angle (θ0) | 0° | 0° |
Azimuthal angle (θ) | 720° | 1800° |
Growth rate (a) | 0.221 | 9 |
Line width | - | 1 mm |
Reference | S11 Bandwidth (GHz) | AR | Size (mm2) | Fractional Bandwidth (%) |
---|---|---|---|---|
[20] | 3.95~10.6 | >3 dB in the whole band | 59.94 × 59.94 × 1.14 | 91.4 |
[23] | 0.8~3.5 | <3 dB (0.5~2.5 GHz) | 152.4 × 152.4 × 15 | 125.6 |
[26] | 2.5~4.5 | <3 dB (2.5–4.5 GHz) | 38.2 × 38.2 × 10 | 57.1 |
[28] | 1.9~8.5 | <3 dB (2–6 GHz) | 36 × 36 × 20 | 126.9 |
[31] | 0.8~3 | <3 dB (1.5~3 GHz) | 76.2 × 76.2 × 38.1 | 115.8 |
[39] | 5~20 | <5 dB (5~20 GHz) | 50 × 50 × 23 | 120 |
This work | 1~6 | <3 dB (1~6 GHz) | 111.5 × 111.5 × 51.8 | 142.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhang, S.; Wu, P.; Meng, X.; Zhou, J.; Du, Y. A Circularly Polarized Broadband Composite Spiral Antenna for Ground Penetrating Radar. Sensors 2025, 25, 1890. https://doi.org/10.3390/s25061890
Liu H, Zhang S, Wu P, Meng X, Zhou J, Du Y. A Circularly Polarized Broadband Composite Spiral Antenna for Ground Penetrating Radar. Sensors. 2025; 25(6):1890. https://doi.org/10.3390/s25061890
Chicago/Turabian StyleLiu, Hai, Shangyang Zhang, Pei Wu, Xu Meng, Junyong Zhou, and Yanliang Du. 2025. "A Circularly Polarized Broadband Composite Spiral Antenna for Ground Penetrating Radar" Sensors 25, no. 6: 1890. https://doi.org/10.3390/s25061890
APA StyleLiu, H., Zhang, S., Wu, P., Meng, X., Zhou, J., & Du, Y. (2025). A Circularly Polarized Broadband Composite Spiral Antenna for Ground Penetrating Radar. Sensors, 25(6), 1890. https://doi.org/10.3390/s25061890