Application of Cascaded TFBG for Wavelength-Shift-Based SRI Measurement with Reduced Polarization Cross-Sensitivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principles of the TFBG Operation
2.2. The Polarization Effect on the SRI Measurement Using the Wavelemgth Shift in TFBG Cladding Modes
2.3. Comparison of Polarization Dependence of SRI Measurements Using TFBG and P-TFBG Cladding Mode Shift
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, C.; Hao, W.; Ge, Y.; Chen, J.; Wang, W.; Xu, C. Shape monitoring method of submarine cable based on fiber Bragg grating. Opt. Fiber Technol. 2023, 77, 103255. [Google Scholar]
- Leal-Junior, A.; Frizera-Neto, A. Chapter 8—Smart structures and textiles for gait analysis. In Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics; Elsevier Inc.: Amsterdam, The Netherlands, 2022; pp. 175–200. [Google Scholar]
- Chen, Y.T.; Liao, Y.Y.; Chen, C.C.; Hsiao, H.H.; Huang, J.J. Surface plasmons coupled two-dimensional photonic crystal biosensors for Epstein-Barrvirus protein detection. Sens. Actuators B-Chem. 2019, 291, 81–88. [Google Scholar]
- Kisała, P.; Skorupski, K.; Cięszczyk, S.; Panas, P.; Klimek, J. Rotation and twist measurement using tilted fibre bragg gratings. Metrol. Meas. Syst. 2018, 25, 429–440. [Google Scholar]
- Cięszczyk, S.; Kisała, P.; Mroczka, J. New Parameters Extracted from Tilted Fiber Bragg Grating Spectra for the Determination of the Refractive Index and Cut-Off Wavelength. Sensors 2019, 19, 1964. [Google Scholar] [CrossRef]
- Moro, G.; Chiavaioli, F.; Liberi, S. Nanocoated fiber label-free biosensing for perfluorooctanoic acid detection by lossy mode resonance. Results Opt. 2021, 5, 100123. [Google Scholar]
- Chen, S.; Zhang, C.; Wang, J.; Li, N.; Song, Y.; Wu, H.; Liu, Y. A Fiber Bragg Grating Sensor Based on Cladding Mode Resonance for Label-Free Biosensing. Biosensors 2023, 13, 97. [Google Scholar] [CrossRef]
- Kersey, A.D.; Davis, M.A.; Patrick, H.J. Fiber Grating Sensors. J. Light. Technol. 1997, 15, 1442–1463. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, H.; Liu, B.; Miao, Y. Tilted Fiber Bragg Gratings: Principle and Sensing Applications. Photonic Sens. 2011, 1, 6–30. [Google Scholar] [CrossRef]
- Guo, T.; Liu, F.; Guan, B.O.; Albert, J. Tilted fiber grating mechanical and biochemical sensors. Opt. Laser Technol. 2016, 78, 19–33. [Google Scholar] [CrossRef]
- Maskaant, R.; Alavie, T.; Measures, R.M. Fiber-optic Bragg grating sensors for bridge monitoring. Cem. Concr. Compos. 1997, 19, 21–33. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, Y.; Wen, J.; Huang, L.; Dong, J. Integrated fiber-optic sensor based on inscription of FBG in seven-core fiber for curvature and temperature measurements. Opt. Fiber Technol. 2023, 75, 103197. [Google Scholar] [CrossRef]
- Abdelmonaim, A.; Lamia, H.; Ki-Hyun, K. Advances in surface plasmon resonance–based biosensor technologies for cancer biomarker detection. Biosens. Bioelectron. 2022, 197, 113767. [Google Scholar]
- Sahin, I. Cholecalciferol has strong effect on the order and dynamics of DPPC membranes: A combined Fourier transform infrared spectroscopy and differential scanning calorimetry study. Vib. Spectrosc. 2021, 113, 103207. [Google Scholar] [CrossRef]
- Zhong, H.; Liu, X.; Fu, C.; Xu, B.; He, J.; Li, P.; Meng, Y.; Du, C.; Chen, L.; Tang, J.; et al. Quasi-Distributed Temperature and Strain Sensors Based on Series-Integrated Fiber Bragg Gratings. Nanomaterials 2022, 12, 1540. [Google Scholar] [CrossRef]
- Yu, H.; Wang, X.; Gao, W.; Yang, X.; Zheng, Y. Dual-parameter measurements of curvature and strain using cladding-etched two-mode fiber Bragg grating. Opt. Fiber Technol. 2023, 78, 103319. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, F.; Zhang, X.; Liu, Q.; Lu, M.; Ji, W. TFBG-SPRDNA-Biosensor for Renewable Ultra-Trace Detection of Mercury Ions. J. Light. Technol. 2021, 39, 3903–3910. [Google Scholar] [CrossRef]
- Tomyshev, K.; Dolzhenko, E.I.; Vasilyeva, A.D.; Yourina, L.V.; Butov, O.V. Selective fiber optic TFBG-assisted biosensors featuring functional coatings. Sens. Actuators B Chem. 2023, 384, 133618. [Google Scholar] [CrossRef]
- Harasim, D.; Kisała, P.; Yeraliyeva, B.; Mroczka, J. Design and Manufacturing Optoelectronic Sensors for the Measurement of Refractive Index Changes under Unknown Polarization State. Sensors 2021, 21, 7318. [Google Scholar] [CrossRef]
- Laffont, G.; Ferdinand, P. TiltedShort-Period Fibre-Bragg-Grating-Induced Coupling to Cladding Modes for Accurate Refractometry. Meas. Sci. Technol. 2001, 12, 765–770. [Google Scholar] [CrossRef]
- Chan, C.F.; Chen, G.; Jafari, A.; Laronche, A.; Thomson, D.J.; Albert, J. Optical Fiber Refractometer Using Narrowband Cladding-Mode Resonance Shifts. Appl. Opt. 2007, 46, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Lobry, M.; Fasseaux, H.; Loyez, M.; Goormaghtigh, E.; Wattiez, R.; Chiavaioli, F.; Caucheteur, C. Plasmonic Fiber Grating Biosensors Demodulated Through Spectral Envelopes Intersection. J. Light. Technol. 2021, 39, 7288–7295. [Google Scholar] [CrossRef]
- Butov, O.V.; Tomyshev, K.A.; Nepruchenko, I.A.; Dorofeenko, A.V.; Nikitov, S.A. Tilted fiber Bragg gratings and their sensing applications. Physics-Uspekhi 2022, 65, 1290–1302. [Google Scholar] [CrossRef]
- Harasim, D. Polarization-insensitive refractive index measurement using cascaded perpendicular tilted fiber Bragg gratings. Measurement 2022, 202, 111845. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, X.; Li, K.; Guo, T.; Ianoul, A.; Albert, J. Discrimination of Bulk and Surface Refractive Index Change in Plasmonic Sensors with Narrow Bandwidth Resonance Combs. ACS Sens. 2021, 6, 3013–3023. [Google Scholar] [CrossRef]
- Caucheteur, C.; Guo, T.; Albert, J. Polarization-Assisted Fiber Bragg Grating Sensors: Tutorial and Review. J. Light. Technol. 2017, 35, 3311–3322. [Google Scholar] [CrossRef]
- Shevchenko, Y.Y.; Albert, J. Plasmon resonances in gold-coated tilted fiber Bragg gratings. Opt. Lett. 2007, 32, 211–213. [Google Scholar] [CrossRef]
- Lu, Y.C.; Geng, R.; Wang, C.; Zhang, F.; Liu, C.; Ning, T.; Jian, S. Polarization Effects in Tilted Fiber Bragg Grating Refractometers. Laser Photonics Rev. 2013, 28, 1677–1684. [Google Scholar]
- Albert, J.; Shao, L.Y.; Caucheteur, C. Tilted fiber Bragg grating sensors. Laser Photonics Rev. 2013, 7, 83–108. [Google Scholar] [CrossRef]
- Erdogan, T.; Sipe, J.E. Tilted fiber phase gratings. J. Opt. Soc. Am. A 1996, 13, 296–313. [Google Scholar] [CrossRef]
SRI | Mean Wavelength | Difference Between Actual Wavelength and Mean Value | ||||||
---|---|---|---|---|---|---|---|---|
Input Light Polarization Angle [°] | ||||||||
0 | 15 | 30 | 45 | 60 | 75 | 90 | ||
1.3333 | 1553.9701 | −0.0301 | −0.0261 | −0.0151 | −0.0031 | 0.0149 | 0.0259 | 0.0339 |
1.3374 | 1553.9901 | −0.0281 | −0.0251 | −0.0151 | −0.0001 | 0.0129 | 0.0239 | 0.0319 |
1.3433 | 1554.0241 | −0.0231 | −0.0211 | −0.0141 | −0.0001 | 0.0109 | 0.0199 | 0.0279 |
1.3494 | 1554.0640 | −0.0210 | −0.0190 | −0.0120 | 0.0000 | 0.0090 | 0.0200 | 0.0230 |
1.3557 | 1554.1157 | −0.0167 | −0.0157 | −0.0087 | −0.0017 | 0.0073 | 0.0163 | 0.0193 |
1.3622 | 1554.1828 | −0.0129 | −0.0109 | −0.0069 | −0.0019 | 0.0041 | 0.0121 | 0.0161 |
1.3689 | 1554.2993 | −0.0063 | −0.0043 | −0.0043 | −0.0013 | 0.0027 | 0.0057 | 0.0077 |
SRI | Mean Wavelength | Difference Between Actual Wavelength and Mean Value | ||||||
---|---|---|---|---|---|---|---|---|
Input Light Polarization Angle [°] | ||||||||
0 | 15 | 30 | 45 | 60 | 75 | 90 | ||
1.3333 | 1553.963 | −0.0051 | −0.0031 | −0.0011 | 0.0019 | 0.0029 | 0.0029 | 0.0019 |
1.3374 | 1553.983 | −0.0066 | −0.0026 | 0.0004 | 0.0024 | 0.0024 | 0.0024 | 0.0014 |
1.3433 | 1554.016 | −0.0040 | −0.0020 | 0.0000 | 0.0010 | 0.0030 | 0.0020 | 0.0000 |
1.3494 | 1554.058 | −0.0046 | −0.0006 | 0.0004 | 0.0024 | 0.0024 | 0.0014 | −0.0016 |
1.3557 | 1554.108 | −0.0030 | −0.0010 | 0.0000 | 0.0020 | 0.0020 | 0.0010 | −0.0010 |
1.3622 | 1554.181 | −0.0040 | −0.0010 | 0.0000 | 0.0020 | 0.0020 | 0.0020 | −0.0010 |
1.3689 | 1554.315 | −0.0021 | −0.0011 | −0.0001 | 0.0009 | 0.0009 | 0.0009 | 0.0009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harasim, D.; Kisała, P. Application of Cascaded TFBG for Wavelength-Shift-Based SRI Measurement with Reduced Polarization Cross-Sensitivity. Sensors 2025, 25, 1831. https://doi.org/10.3390/s25061831
Harasim D, Kisała P. Application of Cascaded TFBG for Wavelength-Shift-Based SRI Measurement with Reduced Polarization Cross-Sensitivity. Sensors. 2025; 25(6):1831. https://doi.org/10.3390/s25061831
Chicago/Turabian StyleHarasim, Damian, and Piotr Kisała. 2025. "Application of Cascaded TFBG for Wavelength-Shift-Based SRI Measurement with Reduced Polarization Cross-Sensitivity" Sensors 25, no. 6: 1831. https://doi.org/10.3390/s25061831
APA StyleHarasim, D., & Kisała, P. (2025). Application of Cascaded TFBG for Wavelength-Shift-Based SRI Measurement with Reduced Polarization Cross-Sensitivity. Sensors, 25(6), 1831. https://doi.org/10.3390/s25061831