Recent Advances in Vehicle Driver Health Monitoring Systems
Abstract
:1. Introduction
2. Methods
3. Fundamentals of Biosensors: Use in Vehicles, Working Principles, and Recent Advancements
3.1. Wearable Technologies for Driver Monitoring
3.2. Working Principles
3.3. Recent Advancements
3.4. Use in Health Monitoring Context
3.5. Law Regulations
4. Wearable Sensors
4.1. Common Types and Key Parameters
4.2. Wristbands
4.3. Smartwatches
4.4. Ring-Type Sensors
5. Remote Devices and Sensors
5.1. Smartphones
5.2. Wireless Communication in Remote Patient Monitoring
5.3. Next-Generation Smart Devices
6. Challenges and Limitations for Future Applications
Comparative Analysis
7. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HR | Heart rate |
IoT | Internet of Things |
EEG | Electroencephalogram (Brain Activity) |
EOG | Electrooculogram (The Cornea-Positive Potential) |
CAN | Controller Area Network |
ECG | Electrocardiogram (Electrical Activity of Heart) |
PCB | Printed circuit board |
ML | Machine learning |
VO2 | Maximal oxygen consumption |
IR | Identifiable infrared |
RAM | Random-Access Memory |
PDA | Personal Digital Assistant |
LED | Light-Emitting Diode |
CAN | Control Area Network |
PD | Photodetector |
RPM | Revolutions Per Minute |
RR | Respiration rate |
CO2 | Carbon dioxide |
SVM | Support Vector Machine |
BGL | Blood glucose level |
GF | Gauge factor |
DC | Direct current |
SHM | Structural health monitoring |
PPG | Photoplethysmographic |
GSR | Galvanic Skin Response |
References
- Kim, E.R.; Joe, C.; Mitchell, R.J.; Gu, M.B. Biosensors for Healthcare: Current and Future Perspectives. Trends Biotechnol. 2023, 41, 374–395. [Google Scholar] [CrossRef] [PubMed]
- Hemdan, M.; Ali, M.A.; Doghish, A.S.; Mageed, S.S.A.; Elazab, I.M.; Khalil, M.M.; Mabrouk, M.; Das, D.B.; Amin, A.S. Innovations in Biosensor Technologies for Healthcare Diagnostics and Therapeutic Drug Monitoring: Applications, Recent Progress, and Future Research Challenges. Sensors 2024, 24, 5143. [Google Scholar] [CrossRef]
- Garikapati, D.; Shetiya, S.S. Autonomous Vehicles: Evolution of Artificial Intelligence and the Current Industry Landscape. Big Data Cogn. Comput. 2024, 8, 42. [Google Scholar] [CrossRef]
- Giannaros, A.; Karras, A.; Theodorakopoulos, L.; Karras, C.; Kranias, P.; Schizas, N.; Kalogeratos, G.; Tsolis, D. Autonomous Vehicles: Sophisticated Attacks, Safety Issues, Challenges, Open Topics, Blockchain, and Future Directions. J. Cybersecur. Priv. 2023, 3, 493–543. [Google Scholar] [CrossRef]
- Gherardini, L.; Cabri, G. The Impact of Autonomous Vehicles on Safety, Economy, Society, and Environment. World Electr. Veh. J. 2024, 15, 579. [Google Scholar] [CrossRef]
- Bosurgi, G.; Pellegrino, O.; Ruggeri, A.; Sollazzo, G. The Effects of ADAS on Driving Behavior: A Case Study. Sensors 2023, 23, 1758. [Google Scholar] [CrossRef] [PubMed]
- Neumann, T. Analysis of Advanced Driver-Assistance Systems for Safe and Comfortable Driving of Motor Vehicles. Sensors 2024, 24, 6223. [Google Scholar] [CrossRef]
- Arikumar, K.S.; Prathiba, S.B.; Basheer, S.; Moorthy, R.S.; Dumka, A.; Rashid, M. V2X-Based Highly Reliable Warning System for Emergency Vehicles. Appl. Sci. 2023, 13, 1950. [Google Scholar] [CrossRef]
- Jung, C.; Lee, D.; Lee, S.; Shim, D.H. V2x-Communication-Aided Autonomous Driving: System Design and Experimental Validation. Sensors 2020, 20, 2903. [Google Scholar] [CrossRef]
- Khosravinia, P.; Perumal, T.; Zarrin, J. Enhancing Road Safety Through Accurate Detection of Hazardous Driving Behaviors With Graph Convolutional Recurrent Networks. IEEE Access 2023, 11, 52983–52995. [Google Scholar] [CrossRef]
- Sappl, H.; Kubjatko, T. A Driver Behavior Monitoring System for Sustainable Traffic and Road Construction. Sustainability 2023, 15, 12305. [Google Scholar] [CrossRef]
- Papatheocharous, E.; Kaiser, C.; Moser, J.; Stocker, A. Monitoring Distracted Driving Behaviours with Smartphones: An Extended Systematic Literature Review. Sensors 2023, 23, 7505. [Google Scholar] [CrossRef] [PubMed]
- Visconti, P.; Rausa, G.; Del-Valle-Soto, C.; Velázquez, R.; Cafagna, D.; De Fazio, R. Innovative Driver Monitoring Systems and On-Board-Vehicle Devices in a Smart-Road Scenario Based on the Internet of Vehicle Paradigm: A Literature and Commercial Solutions Overview. Sensors 2025, 25, 562. [Google Scholar] [CrossRef]
- Li, C.; Bian, Y.; Zhao, Z.; Liu, Y.; Guo, Y. Advances in Biointegrated Wearable and Implantable Optoelectronic Devices for Cardiac Healthcare. Cyborg Bionic Syst. 2024, 5, 172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Liu, N.; Xu, J.; Liu, Z.; Zhou, Y.; Yang, Y.; Li, S.; Huang, Y.; Jiang, S. Flexible Electronics for Cardiovascular Healthcare Monitoring. Innovation 2023, 4, 100485. [Google Scholar] [CrossRef]
- Jia, S.; Gao, H.; Xue, Z.; Meng, X. Recent Advances in Multifunctional Wearable Sensors and Systems: Design, Fabrication, and Applications. Biosensors 2022, 12, 1057. [Google Scholar] [CrossRef]
- Binyamin, S.S.; Hoque, M.R. Understanding the Drivers of Wearable Health Monitoring Technology: An Extension of the Unified Theory of Acceptance and Use of Technology. Sustainability 2020, 12, 9605. [Google Scholar] [CrossRef]
- Luo, F.; Chen, B.; Ran, X.; Ouyang, W.; Yao, Y.; Shang, L. Wearable and Self-Powered Triboelectric Sensors Based on NaCl/PVA Hydrogel for Driver Multidimensional Information Monitoring. Nano Energy 2023, 118, 109035. [Google Scholar] [CrossRef]
- Karrouchi, M.; Nasri, I.; Rhiat, M.; Atmane, I.; Hirech, K.; Messaoudi, A.; Melhaoui, M.; Kassmi, K. Driving Behavior Assessment: A Practical Study and Technique for Detecting a Driver’s Condition and Driving Style. Transp. Eng. 2023, 14, 100217. [Google Scholar] [CrossRef]
- Akhtar, Z.U.A.; Wang, H. Wifi-Based Driver’s Activity Monitoring with Efficient Computation of Radio-Image Features. Sensors 2020, 20, 1381. [Google Scholar] [CrossRef]
- Kundinger, T.; Sofra, N.; Riener, A. Assessment of the Potential of Wrist-Worn Wearable Sensors for Driver Drowsiness Detection. Sensors 2020, 20, 1029. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.; Nie, W.; Lv, R.; Zheng, L.; Lu, J.; Yan, G. Fatigue Driving State Detection Based on Spatial Characteristics of EEG Signals. Electronics 2024, 13, 3742. [Google Scholar] [CrossRef]
- Loncar-Turukalo, T.; Zdravevski, E.; da Silva, J.M.; Chouvarda, I.; Trajkovik, V. Literature on Wearable Technology for Connected Health: Scoping Review of Research Trends, Advances, and Barriers. J. Med. Internet Res. 2019, 21, e14017. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Mustieles, M.A.; Lima-Carmona, Y.E.; Pacheco-Ramírez, M.A.; Mendoza-Armenta, A.A.; Romero-Gómez, J.E.; Cruz-Gómez, C.F.; Rodríguez-Alvarado, D.C.; Arceo, A.; Cruz-Garza, J.G.; Ramírez-Moreno, M.A.; et al. Wearable Biosensor Technology in Education: A Systematic Review. Sensors 2024, 24, 2437. [Google Scholar] [CrossRef]
- Beeby, S.P.; Torah, R.N.; Tudor, M.J.; Glynne-Jones, P.; O’Donnell, T.; Saha, C.R.; Roy, S. A Micro Electromagnetic Generator for Vibration Energy Harvesting. J. Micromech. Microeng. 2007, 17, 1257–1265. [Google Scholar] [CrossRef]
- Ee, L.T.; Pereles, B.D.; Horton, B.; Shao, R.; Zourob, M.; Keat, G.O. Implantable Biosensors for Real-Time Strain and Pressure Monitoring. Sensors 2008, 8, 6396–6406. [Google Scholar] [CrossRef] [PubMed]
- Wain, R.A.; Lyon, R.T.; Veith, F.J.; Berdejo, G.L.; Yuan, J.G.; Suggs, W.D.; Ohki, T.; Sanchez, L.A.; York, N. Accuracy of Duplex Ultrasound in Evaluating Carotid Artery Anatomy before Endarterectomy. J. Vasc. Surg. 2021, 27, 235–242, discussion 242–244. [Google Scholar] [CrossRef]
- Zhu, P.; Peng, H. Theory and Method of Temperature Control for Drug Release in Hydrogel Phantom of Gastric Mucosa in Vitro. J. Appl. Phys. 2021, 129, 214506. [Google Scholar] [CrossRef]
- Shanbhag, M.M.; Manasa, G.; Mascarenhas, R.J.; Mondal, K.; Shetti, N.P. Fundamentals of Bio-Electrochemical Sensing. Chem. Eng. J. Adv. 2023, 16, 100516. [Google Scholar] [CrossRef]
- Du, Y.; Zhou, C.; Feng, Y.; Qiu, L. Flexible, Multimodal Device for Measurement of Body Temperature, Core Temperature, Thermal Conductivity and Water Content. Flex. Electron. 2024, 8, 85. [Google Scholar] [CrossRef]
- Pang, Y.; Jian, J.; Tu, T.; Yang, Z.; Ling, J.; Li, Y.; Wang, X.; Qiao, Y.; Tian, H.; Yang, Y.; et al. Wearable Humidity Sensor Based on Porous Graphene Network for Respiration Monitoring. Biosens. Bioelectron. 2018, 116, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Coiffard, B.; Diallo, A.B.; Culver, A.; Antonini, F.; Hammad, E.; Leone, M.; Mege, J.L. Exacerbation of Circadian Rhythms of Core Body Temperature and Sepsis in Trauma Patients. J. Crit. Care 2020, 60, 23–26. [Google Scholar] [CrossRef]
- Qiu, J.; Liu, S.; Guo, Y.; Yang, L.; Jiang, K. Anisotropic Flexible Pressure/Strain Sensors: Recent Advances, Fabrication Techniques, and Future Prospects. Chem. Eng. J. 2025, 504, 158799. [Google Scholar] [CrossRef]
- Tarar, A.A.; Mohammad, U.; Srivastava, S.K. Wearable Skin Sensors and Their Challenges: A Review of Transdermal, Optical, and Mechanical Sensors. Biosensors 2020, 10, 56. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.; Chen, S.; Wang, L.; Shi, R.; Li, L.; Jiang, K.; Chen, D.; Shen, G. Ultrasensitive and Ultraflexible E-Skins with Dual Functionalities for Wearable Electronics. Nano Energy 2017, 38, 28–35. [Google Scholar] [CrossRef]
- Liu, H.; Yang, C.; Ma, J.; Xu, M. Multimodal Soft Sensor Integrated with Hydrogel-Optoelectronic for Wrist Motion Monitoring. Measurement 2025, 239, 115486. [Google Scholar] [CrossRef]
- Kong, L.; Wang, S.; Su, Q.; Liu, Z.; Liao, G.; Sun, B.; Shi, T. Printed Two-Dimensional Materials for Flexible Photodetectors: Materials, Processes, and Applications. Sensors 2025, 25, 1042. [Google Scholar] [CrossRef]
- Tang, J.; Li, Y.; Yu, Y.; Hu, Q.; Du, W.; Lin, D. Recent Progress in Flexible Piezoelectric Tactile Sensors: Materials, Structures, Fabrication, and Application. Sensors 2025, 25, 964. [Google Scholar] [CrossRef]
- Pathak, R.; Anoop, G.; Samanta, S. Advancements in Free-Standing Ferroelectric Films: Paving the Way for Transparent Flexible Electronics. J. Compos. Sci. 2025, 9, 71. [Google Scholar] [CrossRef]
- Chen, X.; Xie, H.; Tao, X.; Wang, F.L.; Leng, M.; Lei, B. Artificial Intelligence and Multimodal Data Fusion for Smart Healthcare: Topic Modeling and Bibliometrics. Artif. Intell. Rev. 2024, 57, 91. [Google Scholar] [CrossRef]
- Pawłowski, M.; Wróblewska, A.; Sysko-Romańczuk, S. Effective Techniques for Multimodal Data Fusion: A Comparative Analysis. Sensors 2023, 23, 2381. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, X.; Peng, S.; Jiang, X.; Xu, K.; Chen, C.; Wang, Z.; Dai, C.; Chen, W. A Review of Wearable and Unobtrusive Sensing Technologies for Chronic Disease Management. Comput. Biol. Med. 2021, 129, 104163. [Google Scholar] [CrossRef]
- Imani, S.; Bandodkar, A.J.; Mohan, A.M.V.; Kumar, R.; Yu, S.; Wang, J.; Mercier, P.P. A Wearable Chemical-Electrophysiological Hybrid Biosensing System for Real-Time Health and Fitness Monitoring. Nat. Commun. 2016, 7, 11650. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Avalos, G.; Cruz-Ramos, N.A.; Alor-Hernández, G.; Sánchez-Cervantes, J.L.; Rodríguez-Mazahua, L.; Guarneros-Nolasco, L.R. Wearable Devices for Physical Monitoring of Heart: A Review. Biosensors 2022, 12, 292. [Google Scholar] [CrossRef]
- Vo, D.K.; Trinh, K.T.L. Advances in Wearable Biosensors for Healthcare: Current Trends, Applications, and Future Perspectives. Biosensors 2024, 14, 560. [Google Scholar] [CrossRef]
- Birje, M.N.; Hanji, S.S. Internet of Things Based Distributed Healthcare Systems: A Review. J. Data Inf. Manag. 2020, 2, 149–165. [Google Scholar] [CrossRef]
- Ye, S.; Feng, S.; Huang, L.; Bian, S. Recent Progress in Wearable Biosensors: From Healthcare Monitoring to Sports Analytics. Biosensors 2020, 10, 205. [Google Scholar] [CrossRef]
- Dattatraya Mamdiwar, S.; Shakruwala, Z.; Chadha, U.; Srinivasan, K.; Chang, C.-Y. Recent Advances on IoT-Assisted Wearable Sensor Systems for Healthcare Monitoring. Biosensors 2021, 11, 372. [Google Scholar] [CrossRef]
- Melders, L.; Smigins, R.; Birkavs, A. Data Acquisition System for Vehicle Engine Sensors: A Review. Res. Rural. Dev. 2024, 39, 277–284. [Google Scholar] [CrossRef]
- Blachowicz, T.; Kola, I.; Ehrmann, A.; Guenther, K.; Ehrmann, G. Magnetic Micro and Nano Sensors for Continuous Health Monitoring. Micro 2024, 4, 206–228. [Google Scholar] [CrossRef]
- Oh, J.Y.; Bao, Z. Second Skin Enabled by Advanced Electronics. Adv. Sci. 2019, 6, 1900186. [Google Scholar] [CrossRef] [PubMed]
- Linh, V.T.N.; Han, S.; Koh, E.; Kim, S.; Jung, H.S.; Koo, J. Advances in Wearable Electronics for Monitoring Human Organs: Bridging External and Internal Health Assessments. Biomaterials 2025, 314, 122865. [Google Scholar] [CrossRef] [PubMed]
- Junaid, S.B.; Imam, A.A.; Abdulkarim, M.; Surakat, Y.A.; Balogun, A.O.; Kumar, G.; Shuaibu, A.N.; Garba, A.; Sahalu, Y.; Mohammed, A.; et al. Recent Advances in Artificial Intelligence and Wearable Sensors in Healthcare Delivery. Appl. Sci. 2022, 12, 10271. [Google Scholar] [CrossRef]
- Aguilar-Torán, J.; Rabost-Garcia, G.; Toinga-Villafuerte, S.; Álvarez-Carulla, A.; Colmena-Rubil, V.; Fajardo-Garcia, A.; Cardona-Bonet, A.; Casals-Terré, J.; Muñoz-Pascual, X.; Miribel-Català, P.; et al. Novel Sweat-Based Wearable Device for Advanced Monitoring of Athletic Physiological Biometrics. Sensors 2023, 23, 9473. [Google Scholar] [CrossRef]
- Majumder, S.; Mondal, T.; Deen, M.J. Wearable Sensors for Remote Health Monitoring. Sensors 2017, 17, 130. [Google Scholar] [CrossRef]
- Hosseinzadeh Fakhr, M.; Lopez Carrasco, I.; Belyaev, D.; Kang, J.; Shin, Y.H.; Yeo, J.S.; Koh, W.G.; Ham, J.; Michaelis, A.; Opitz, J.; et al. Recent Advances in Wearable Electrochemical Biosensors towards Technological and Material Aspects. Biosens. Bioelectron. X 2024, 19, 100503. [Google Scholar] [CrossRef]
- Ali, A.; Majhi, S.M.; Siddig, L.A.; Deshmukh, A.H.; Wen, H.; Qamhieh, N.N.; Greish, Y.E.; Mahmoud, S.T. Recent Advancements in MXene-Based Biosensors for Health and Environmental Applications-A Review. Biosensors 2024, 14, 497. [Google Scholar] [CrossRef]
- Dincer, C.; Bruch, R.; Costa-Rama, E.; Fernández-Abedul, M.T.; Merkoçi, A.; Manz, A.; Urban, G.A.; Güder, F. Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Adv. Mater. 2019, 20, 6739. [Google Scholar] [CrossRef]
- Perez-Pozuelo, I.; Spathis, D.; Clifton, E.A.D.; Mascolo, C. Wearables, Smartphones, and Artificial Intelligence for Digital Phenotyping and Health. In Digital Health: Mobile and Wearable Devices for Participatory Health Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 33–54. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J.; et al. Wearable Sensors: Modalities, Challenges, and Prospects. Lab Chip 2018, 18, 217–248. [Google Scholar] [CrossRef]
- Freitas, A.; Almeida, R.; Gonçalves, H.; Conceição, G.; Freitas, A. Monitoring Fatigue and Drowsiness in Motor Vehicle Occupants Using Electrocardiogram and Heart Rate—A Systematic Review. Transp. Res. Part F Traffic Psychol. Behav. 2024, 103, 586–607. [Google Scholar] [CrossRef]
- Homayounfar, S.Z.; Andrew, T.L. Wearable Sensors for Monitoring Human Motion: A Review on Mechanisms, Materials, and Challenges. SLAS Technol. 2020, 25, 9–24. [Google Scholar] [CrossRef]
- Moczko, J.A. Advanced Methods of Heart Rate Signals Processing and Their Usefulness in Diagnosis Support Mathematical Heart Rate Descriptors and Virtual Instrumentation. Comput. Methods Sci. Technol. 2002, 8, 65–76. [Google Scholar] [CrossRef]
- Campos-Ferreira, A.E.; Lozoya-Santos, J.d.J.; Tudon-Martinez, J.C.; Mendoza, R.A.R.; Vargas-Martínez, A.; Morales-Menendez, R.; Lozano, D. Vehicle and Driver Monitoring System Using On-Board and Remote Sensors. Sensors 2023, 23, 814. [Google Scholar] [CrossRef] [PubMed]
- Lakshminarayana, S.; Ranganatha, M.; Park, H.; Jung, S. Trimodal Watch-Type Wearable Health Monitoring Device. Appl. Sci. 2024, 14, 9267. [Google Scholar] [CrossRef]
- King, C.E.; Sarrafzadeh, M. A Survey of Smartwatches in Remote Health Monitoring. J. Healthc. Inf. Res. 2018, 2, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Sláma, D.; Mergl, V.; Pavlíková, E.A. Analysis of the Heart Rate of Operators of Forwarding Machines during Work Activities. Forests 2023, 14, 1348. [Google Scholar] [CrossRef]
- Barka, R.E.; Politis, I. Driving into the Future: A Scoping Review of Smartwatch Use for Real-Time Driver Monitoring. Transp. Res. Interdiscip. Perspect. 2024, 25, 101098. [Google Scholar] [CrossRef]
- Carrier, B.; Marten Chaves, S.; Navalta, J.W. Validation of Aerobic Capacity (VO2max) and Pulse Oximetry in Wearable Technology. Sensors 2025, 25, 275. [Google Scholar] [CrossRef]
- Pacchierotti, C.; Salvietti, G.; Hussain, I.; Meli, L.; Prattichizzo, D. The HRing: A Wearable Haptic Device to Avoid Occlusions in Hand Tracking. In Proceedings of the 2016 IEEE Haptics Symposium (HAPTICS), Philadelphia, PA, USA, 8–11 April 2016; pp. 134–139. [Google Scholar] [CrossRef]
- Poorzargar, K.; Pham, C.; Ariaratnam, J.; Lee, K.; Parotto, M.; Englesakis, M.; Chung, F.; Nagappa, M. Accuracy of Pulse Oximeters in Measuring Oxygen Saturation in Patients with Poor Peripheral Perfusion: A Systematic Review. J. Clin. Monit. Comput. 2022, 36, 961–973. [Google Scholar] [CrossRef]
- Rosic, T.; Petrina, N.; Baysari, M.; Ritchie, A.; Poon, S.K. Patient and Clinician Use Characteristics and Perceptions of Pulse Oximeter Use: A Scoping Review. Int. J. Med. Inform. 2022, 162, 104735. [Google Scholar] [CrossRef]
- León-Valladares, D.; Barrio-Mateu, L.A.; Cortés-Carmona, N.; Fuentes-Lizana, G.; Cabanas, A.M.; Latorre-Progulakis, K.; Fuentes-Guajardo, M.; Martín-Escudero, P. Determining Factors of Pulse Oximetry Accuracy: A Literature Review. Rev. Clínica Española 2024, 224, 314–330. [Google Scholar] [CrossRef]
- Rojas, A.N.; Mosquera, F.C. Advances and Challenges Associated with Low-Cost Pulse Oximeters in Home Care Programs: A Review. Sensors 2024, 24, 6284. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, K.V.S.S.; Jeyanth, S.P.S.; Bevi, A.R. IOT Based Portable Heart Rate and SpO2 Pulse Oximeter. HardwareX 2022, 11, e00309. [Google Scholar] [CrossRef] [PubMed]
- Mohini Baburao, M.; Guide, H.; Kulkarni, M.V.M. Remote Patient Monitoring System Using Pulse Oximeter. Int. J. Sci. Eng. Res. 2012, 3, 148–151. [Google Scholar]
- Li, K.; Warren, S. A Wireless Reflectance Pulse Oximeter with Digital Baseline Control for Unfiltered Photoplethysmograms. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 269–278. [Google Scholar] [CrossRef]
- Siddiqui, H.U.R.; Saleem, A.A.; Brown, R.; Bademci, B.; Lee, E.; Rustam, F.; Dudley, S. Non-Invasive Driver Drowsiness Detection System. Sensors 2021, 21, 4833. [Google Scholar] [CrossRef]
- Volpes, G.; Valenti, S.; Genova, G.; Barà, C.; Parisi, A.; Faes, L.; Busacca, A.; Pernice, R. Wearable Ring-Shaped Biomedical Device for Physiological Monitoring through Finger-Based Acquisition of Electrocardiographic, Photoplethysmographic, and Galvanic Skin Response Signals: Design and Preliminary Measurements. Biosensors 2024, 14, 205. [Google Scholar] [CrossRef]
- Kassal, P.; Kim, J.; Kumar, R.; De Araujo, W.R.; Steinberg, I.M.; Steinberg, M.D.; Wang, J. Smart Bandage with Wireless Connectivity for Uric Acid Biosensing as an Indicator of Wound Status. Electrochem. Commun. 2015, 56, 6–10. [Google Scholar] [CrossRef]
- Vescio, B.; De Maria, M.; Crasà, M.; Nisticò, R.; Calomino, C.; Aracri, F.; Quattrone, A.; Quattrone, A. Development of a New Wearable Device for the Characterization of Hand Tremor. Bioengineering 2023, 10, 1025. [Google Scholar] [CrossRef]
- Li, Y.; Wang, F.; Ke, H.; Wang, L.L.; Xu, C.C. A Driver’s Physiology Sensor-Based Driving Risk Prediction Method for Lane-Changing Process Using Hidden Markov Model. Sensors 2019, 19, 2670. [Google Scholar] [CrossRef]
- Kuczynski, K.; Lisicki, M.; Bilski, P.; Szymanski, J.; Bilski, A. Magnetoelectric Ring Sensor—Modelling and Experimentation. Microsyst. Technol. 2023, 29, 905–917. [Google Scholar] [CrossRef]
- Valenti, S.; Volpes, G.; Parisi, A.; Peri, D.; Lee, J.; Faes, L.; Busacca, A.; Pernice, R. Wearable Multisensor Ring-Shaped Probe for Assessing Stress and Blood Oxygenation: Design and Preliminary Measurements. Biosensors 2023, 13, 460. [Google Scholar] [CrossRef]
- Joo, M.G.; Lim, D.H.; Park, K.K.; Baek, J.; Choi, J.M.; Baac, H.W. Reflection-Boosted Wearable Ring-Type Pulse Oximeters for SpO2 Measurement with High Sensitivity and Low Power Consumption. Biosensors 2023, 13, 711. [Google Scholar] [CrossRef] [PubMed]
- Al-Quraishi, M.S.; Azhar Ali, S.S.; AL-Qurishi, M.; Tang, T.B.; Elferik, S. Technologies for Detecting and Monitoring Drivers’ States: A Systematic Review. Heliyon 2024, 10, e39592. [Google Scholar] [CrossRef]
- Magaña, V.C.; Scherz, W.D.; Seepold, R.; Madrid, N.M.; Pañeda, X.G.; Garcia, R. The Effects of the Driver’s Mental State and Passenger Compartment Conditions on Driving Performance and Driving Stress. Sensors 2020, 20, 5274. [Google Scholar] [CrossRef] [PubMed]
- Massoz, Q.; Verly, J.G.; Van Droogenbroeck, M. Multi-Timescale Drowsiness Characterization Based on a Video of a Driver’s Face. Sensors 2018, 18, 2801. [Google Scholar] [CrossRef]
- Killian, J.M.; Radin, R.M.; Gardner, C.L.; Kasuske, L.; Bashirelahi, K.; Nathan, D.; Keyser, D.O.; Cellucci, C.J.; Darmon, D.; Rapp, P.E. Alternative Devices for Heart Rate Variability Measures: A Comparative Test–Retest Reliability Study. Behav. Sci. 2021, 11, 68. [Google Scholar] [CrossRef]
- Teyeb, I.; Snoun, A.; Jemai, O.; Zaied, M. Fuzzy Logic Decision Support System for Hypovigilance Detection Based on CNN Feature Extractor and WN Classifier. J. Comput. Sci. 2018, 14, 1546–1564. [Google Scholar] [CrossRef]
- Guo, J.M.; Markoni, H. Driver Drowsiness Detection Using Hybrid Convolutional Neural Network and Long Short-Term Memory. Multimed. Tools Appl. 2019, 78, 29059–29087. [Google Scholar] [CrossRef]
- Deng, W.; Wu, R. Real-Time Driver-Drowsiness Detection System Using Facial Features. IEEE Access 2019, 7, 118727–118738. [Google Scholar] [CrossRef]
- Essel, E.; Lacy, F.; Albalooshi, F.; Elmedany, W.; Ismail, Y. Drowsiness Detection in Drivers Using Facial Feature Analysis. Appl. Sci. 2024, 15, 20. [Google Scholar] [CrossRef]
- Obeidat, Y.M.; Alqudah, A.M. An Embedded System Based on Raspberry Pi for Effective Electrocardiogram Monitoring. Appl. Sci. 2023, 13, 8273. [Google Scholar] [CrossRef]
- Ross, G.M.S.; Zhao, Y.; Bosman, A.J.; Geballa-Koukoula, A.; Zhou, H.; Elliott, C.T.; Nielen, M.W.F.; Rafferty, K.; Salentijn, G.I. Best Practices and Current Implementation of Emerging Smartphone-Based (Bio)Sensors—Part 1: Data Handling and Ethics. TrAC Trends Anal. Chem. 2023, 161, 116986. [Google Scholar] [CrossRef]
- Sarmadi, H.; Entezami, A.; Yuen, K.V.; Behkamal, B. Review on Smartphone Sensing Technology for Structural Health Monitoring. Measurement 2023, 223, 113716. [Google Scholar] [CrossRef]
- Kulkarni, P.; Kirkham, R.; McNaney, R. Opportunities for Smartphone Sensing in E-Health Research: A Narrative Review. Sensors 2022, 22, 3893. [Google Scholar] [CrossRef] [PubMed]
- Cornet, V.P.; Holden, R.J. Systematic Review of Smartphone-Based Passive Sensing for Health and Wellbeing. J. Biomed. Informatics 2018, 77, 120–132. [Google Scholar] [CrossRef]
- Sheikh, M.; Qassem, M.; Kyriacou, P.A. Wearable, Environmental, and Smartphone-Based Passive Sensing for Mental Health Monitoring. Front. Digit. Health 2021, 3, 662811. [Google Scholar] [CrossRef]
- Yuan, L.; Yuan, Y.; Zhou, Z.; Bai, Y.; Wu, S. A Fetal ECG Monitoring System Based on the Android Smartphone. Sensors 2019, 19, 446. [Google Scholar] [CrossRef]
- Haxha, S.; Nwibor, C.; Ali, M.; Sakel, M.; Saunders, K.; Dyo, V.; Nabakooza, S. Effect of Skin Pigmentation and Finger Choice on Accuracy of Oxygen Saturation Measurement in an IoT-Based Pulse Oximeter. Sensors 2024, 24, 3301. [Google Scholar] [CrossRef]
- Amini Gougeh, R.; Zilic, Z. Systematic Review of IoT-Based Solutions for User Tracking: Towards Smarter Lifestyle, Wellness and Health Management. Sensors 2024, 24, 5939. [Google Scholar] [CrossRef]
- Zhang, M.; Cui, X.; Li, N. Smartphone-Based Mobile Biosensors for the Point-of-Care Testing of Human Metabolites. Mater. Today Bio 2022, 14, 100254. [Google Scholar] [CrossRef] [PubMed]
- Kurz, M.; Gstoettner, R.; Sonnleitner, E. Smart Rings vs. Smartwatches: Utilizing Motion Sensors for Gesture Recognition. Appl. Sci. 2021, 11, 2015. [Google Scholar] [CrossRef]
- Mahajan, H.B.; Rashid, A.S.; Junnarkar, A.A.; Uke, N.; Deshpande, S.D.; Futane, P.R.; Alkhayyat, A.; Alhayani, B. Integration of Healthcare 4.0 and Blockchain into Secure Cloud-Based Electronic Health Records Systems. Appl. Nanosci. 2023, 13, 2329–2342. [Google Scholar] [CrossRef] [PubMed]
- Botros, J.; Mourad-Chehade, F.; Laplanche, D. Explainable Multimodal Data Fusion Framework for Heart Failure Detection: Integrating CNN and XGBoost. Biomed. Signal Process. Control. 2025, 100, 106997. [Google Scholar] [CrossRef]
- Warnecke, J.M.; Lasenby, J.; Deserno, T.M. Robust In-Vehicle Heartbeat Detection Using Multimodal Signal Fusion. Sci. Rep. 2023, 13, 20864. [Google Scholar] [CrossRef]
- Canali, S.; Schiaffonati, V.; Aliverti, A. Challenges and Recommendations for Wearable Devices in Digital Health: Data Quality, Interoperability, Health Equity, Fairness. PLoS Digit. Health 2022, 1, e0000104. [Google Scholar] [CrossRef]
- Vila, G.; Godin, C.; Charbonnier, S.; Campagne, A. Real-Time Quality Index to Control Data Loss in Real-Life Cardiac Monitoring Applications. Sensors 2021, 21, 5357. [Google Scholar] [CrossRef]
- Thiebaud, R.S.; Funk, M.D.; Patton, J.C.; Massey, B.L.; Shay, T.E.; Schmidt, M.G.; Giovannitti, N. Validity of Wrist-Worn Consumer Products to Measure Heart Rate and Energy Expenditure. Digit. Health 2018, 4, 205520761877032. [Google Scholar] [CrossRef]
- Meseguer, J.E.; Calafate, C.T.; Cano, J.C. On the Correlation Between Heart Rate and Driving Style in Real Driving Scenarios. Mob. Netw. Appl. 2018, 23, 128–135. [Google Scholar] [CrossRef]
- Deng, Z.; Guo, L.; Chen, X.; Wu, W. Smart Wearable Systems for Health Monitoring. Sensors 2023, 23, 2479. [Google Scholar] [CrossRef]
- Mahajan, H.B. Emergence of Healthcare 4.0 and Blockchain into Secure Cloud-Based Electronic Health Records Systems: Solutions, Challenges, and Future Roadmap. Wirel. Pers. Commun. 2022, 126, 2425–2446. [Google Scholar] [CrossRef]
- Wang, W.; Chen, J.; Hu, Y.; Liu, H.; Chen, J.; Gadekallu, T.R.; Garg, L.; Guizani, M.; Hu, X. Integration of Artificial Intelligence and Wearable Internet of Things for Mental Health Detection. Int. J. Cogn. Comput. Eng. 2024, 5, 307–315. [Google Scholar] [CrossRef]
- Prakashan, D.; Kaushik, A.; Gandhi, S. Smart Sensors and Wound Dressings: Artificial Intelligence-Supported Chronic Skin Monitoring—A Review. Chem. Eng. J. 2024, 497, 154371. [Google Scholar] [CrossRef]
Attributes | Electrochemical | Pressure | Optical | Ultrasound | Magnetic |
---|---|---|---|---|---|
User comfort rate | Moderate | Moderate | High | Moderate | High |
Portability rate | Moderate | High | Very High | Low | High |
Set-up time, minutes | 15–60+ | 1–5 | 15–45 | 3–15 | 1–5 |
Process time, sec. | 1–60+ | 0.1–1 | 0.1–1 | 10–60+ | 0.1–1 |
Long-term stability, years | 1–5 | 5–15 | 5–20 | 5–10 | 10–30 |
Data sensitivity rate | High | High | High | Moderate | Moderate |
Signal-to-noise Ratios, dB | 50–80 | 60–100 | 70–120 | 60–110 | 4–80 |
Anti-interference rate | Moderate | High | High | Moderate | Low |
Cost, dollars | 10–500 | 5–300 | 10–1000+ | 100–10,000+ | 5–500+ |
Region | Relevant Regulations | Key Requirements |
---|---|---|
USA | FMCSA, HIPAA, BIPA (Illinois), CCPA (California) | Obtain driver consent, ensure data security, avoid discrimination. |
EU | GDPR, EU Mobility Package | Require explicit consent, justify necessity, protect personal data. |
UK | UK GDPR, Health & Safety Act | Same as GDPR, must align with worker protection laws. |
Canada | PIPEDA (Federal), Provincial Privacy Laws | Consent required, data encryption mandatory. |
Australia | Privacy Act 1988, Workplace Safety Laws | Strict regulations on biometric data collection. |
China | PIPL (Personal Information Protection Law) | Government approval may be required for biometric data use. |
The Goal | Experimental Set-Up | Results | Health Indices | Ref., Year |
---|---|---|---|---|
To develop finger-wearable cutaneous device | Device is composed of a static platform that houses two servomotors, two pulleys, and a belt | 20% improvement in performance and a 47% improvement in perceived effectiveness for time and effort completion | Finger tracking | [70] 2016 |
To enable real-time monitoring of patient health data via an online site | ESP8266 microcontroller OLED module MAX30100 oximeter module | Provided a low-cost device and platform with accurate readings | HR SpO2 | [75] 2022 |
To extend healthcare from hospital to portable devices | ZigBee module MSP430FG437 processer LM35 sensor | Created system allows portable real-time continuous patient monitoring | SpO2 Body temperature | [76] 2012 |
To present pulse oximeter for diagnostic algorithms |
Microcontroller Printed circuit LED module Signal sampling | Shows potential of using research platforms for the extraction of new physiological parameters | PPG | [77] 2011 |
To design a device on a finger, allowing all biosignals to be captured directly on the fingertips | STM32L432KC microcontroller Three data process buses MAX30102 waveform sensor MPU6050 digital sensor BLE communication protocol | Perceived changes between rest and exercise conditions, also assessing them to individual physiological status | ECG PPG GSR Motion signal | [79] 2024 |
To develop a new wearable device and method for differentiating alternating from a synchronous rest tremor pattern using inertial data |
ISP-1807 module nRF52840 microcontroller LM6DSL IMU 32 KHZ and 32 MHZ crystal clocks BLE antenna | First ever attempt to characterize muscle behaviors, commonly assessed by electromyographic approaches using inertial data and the combination of such data in ML | Rest tremor | [81] 2023 |
To develop a prototype from a wearable biomedical device, which is capable of acquiring synchronous signals | GSR-MIKROE2860 and MAX30102 ring-shaped sensor probe SMT32-F446RE a microcontroller-based system | System demonstrated to be efficacious in the monitoring of physiological states and the assessment of emotional arousal and oxygen saturation | PPG GSR HR SpO2 GSR | [84] 2023 |
Sample Size | Type of Sensors | Indices | Applications/Devices/Techniques | The Goal | Limitations | Reference, Year |
---|---|---|---|---|---|---|
Three healthy male volunteers | Lactate sensor, ECG sensor | Lactate ECG | Custom-made hybrid device | To set up a more comprehensive fitness monitoring system than physical or electrophysiological sensors alone | Data-related problems, mainly to data loss and sweating | [43] 2016 |
Seventy-six records | Smartwatch | Driver state assessment Benchmark performance Driver assistance systems Detection of driving events | Five-stage methodological framework | To evaluate the extent to which smartwatches have been incorporated into driving-related research | Collect data on long-term health, such as sleep, resting, and physical activity HR | [68] 2024 |
Five different biomarkers | Amperometric biosensor | Uric acid Creatinine Glucose Lactate | Biosensor was screen-printed directly onto soft bandage fabric, followed by functionalization of the working electrode | To develop a wireless smart bandage biosensor for uric acid | Operational stability of smart bandage exposed to 400 μM over 8 h | [80] 2015 |
Twenty-five drivers | Eye-tracking glasses | Electrocardiogram blood pressure The eye movement | The experimental route was 26.6 km and included urban freeways, arterials, collectors, and intersections | To collect driver’s physiological data to assess driving risk during lane changes | Data outside the range of the training dataset cannot be processed by the proposed model | [82] 2019 |
Fifty drivers | Empatica E4 wristband Polar H10 chest band Netatmo device | Driving stress Temperature Humidity Carbon Dioxide (CO2) level | 25 min drive using a simulator | To analyze how driver’s mental state elements and CO2 concentration inside the vehicle affect driving | It did not consider variables such as personality, gender, education level, or driver history | [87] 2020 |
Eight healthy volunteers | PPG inertial measurement unit | Stress events | Three different kinds of experimental driving scenarios: urban, interstate, and rural | To predict driver stress level by evaluating the steering wheel’s motion pattern | During the driving test, participants cannot change the position of their hands on the steering wheel | [88] 2018 |
Fourteen healthy participants | Four heart rate sensor devices | Seven measures of heart rate variability in five behavioral conditions | Simultaneous recording of ECG via 4 pathways | To evaluate ECG data measurements between different devices | The behavior of an injured or diseased central nervous system can be highly variable | [89] 2021 |
Twelve drivers | Two algorithms: static and adaptive thresholding | Eye closure and mouth aperture ratios | Two algorithms: a static and adaptive frame threshold | To design efficient, real-time drowsiness detection algorithms leveraging behavioral parameters | Future research will explore the integration of blockchain to enhance privacy and secure communications in (IoT) networks | [93] 2024 |
Pregnant woman | Low-energy portable fetal ECG collector | Fetal ECG Maternal ECG Abdominal mixed signals | Real-time display of fetal ECG waveform and fetal heart rate by implementing the fetal ECG extraction algorithm on the smartphone software | To develop an Android smartphone-based ECG monitoring system | Segment of the fetal ECG signal that was obtained by the algorithm was seriously contaminated by noise | [100] 2019 |
Aspect | Wearable Technology | Remote Technology |
---|---|---|
User comfort | Advantage when using in sports | Limited by water permeability |
Portability | Highly portable; worn directly on the body and designed for continuous wear | Not typically worn; can be portable (e.g., remote controls, smartphones) or fixed in a location (e.g., security cameras) |
Long-term stability in real driving scenarios | Sensors may degrade; battery life decreases Limited by hardware and integration with vehicles Must withstand physical wear and tear, requires regular charging and potential repairs | Requires consistent connectivity and updates Dependent on vehicle hardware and software |
Data sensitivity | Can be affected by poor skin contact, motion artifacts (sports) and skin tone, Sensitive to ambient conditions (e.g., light, temperature) | Data transmitted over long distances can be affected by signal interference or loss, latency or delays in data transmission, and power failures can disrupt data collection |
Signal-to-noise ratios | Dependent on user behavior and sensor placement | Dependent on electromagnetic interference, signal attenuation, environmental factors |
Anti-interference capabilities | Shielding, advanced algorithms, improved sensor design, redundant sensors | Error correction, frequency hopping, shielding, redundant systems |
Cost | Can range from affordable fitness trackers to high-end smartwatches | Varies widely, remote controls are inexpensive, while biosensors prices came up in recent years |
Sensing range | From centimeters up to a few meters (e.g., proximity to the skin or body) | Can cover a broader range depending on the type (from meters to kilometers) |
Battery life | From a few days to a week | From weeks to months or even years |
Data storage and analysis | Data are stored locally on the device or synced periodically to a mobile device | Data are often stored remotely, in the cloud or on a server |
Material and component availability | Flexible materials like conductive fabrics, flexible printed circuit board (PCB), silicone, and soft plastics | Metal enclosures, robust plastics, and non-flexible PCB |
Real-time data accuracy | Provides instant feedback to users | Feedback is often not immediate to the user but may be relayed to a central monitoring system or a control center in real time |
Data acquisition and processing | Edge processing is common, meaning data are processed on the wearable device or transferred to a mobile app or a nearby device for processing (e.g., using onboard microprocessors) | Usually send raw data to a centralized processing system (cloud, server, or local control center) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melders, L.; Smigins, R.; Birkavs, A. Recent Advances in Vehicle Driver Health Monitoring Systems. Sensors 2025, 25, 1812. https://doi.org/10.3390/s25061812
Melders L, Smigins R, Birkavs A. Recent Advances in Vehicle Driver Health Monitoring Systems. Sensors. 2025; 25(6):1812. https://doi.org/10.3390/s25061812
Chicago/Turabian StyleMelders, Lauris, Ruslans Smigins, and Aivars Birkavs. 2025. "Recent Advances in Vehicle Driver Health Monitoring Systems" Sensors 25, no. 6: 1812. https://doi.org/10.3390/s25061812
APA StyleMelders, L., Smigins, R., & Birkavs, A. (2025). Recent Advances in Vehicle Driver Health Monitoring Systems. Sensors, 25(6), 1812. https://doi.org/10.3390/s25061812