Colorimetric 3D microPAD for Multiplexed Detection of Paracetamol and Aspirin in Urine and Saliva
Abstract
:Highlights
- Novel colorimetric 3D microPAD for multiplex analysis of paracetamol and aspirin
- 3D microPAD chemosensor combined with digitization using a smartphone camera
- Rapid, sensitive and accurate determination of drugs in urine and saliva
- Potential application as a point-of-care testing for in situ drug screening
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Solvents
2.2. Instrumentation and Materials
2.3. Data Processing
2.4. Design and Fabrication of 3D μPADs
2.5. Experimental Procedure for the Determination of Aspirin and Paracetamol
2.6. Preparation of Synthetic Saliva and Urine Samples
2.7. Fundamentals of the Colorimetric Reactions
3. Results and Discussion
3.1. Optimization of Experimental Parameters
3.1.1. Selection of the Study Channel
3.1.2. Drying Temperature of the Colorimetric Reagents
3.1.3. Digitalization and Processing Conditions
3.1.4. Type of Cellulose Substrate
3.1.5. Effect of the Digitation Time
3.1.6. Design of the 3D μPAD: Reservoir and Channel Sizes
3.1.7. Effect of Sample Volume
3.1.8. Effect of FeCl3 Concentration
3.1.9. Effect of K3[Fe(CN)6] Concentration
3.2. Effect of Interferences
3.3. Comparison of Different Smartphones and Different Methods for Paracetamol and Aspirin Quantification
3.4. Analytical Characteristics
3.5. Application of the Proposed Method to Clinical Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2D | two dimensional |
3D | three dimensional |
AOAC | Association of Official Analytical Chemists |
CMYK | cyan, magenta, yellow, key |
CRM | certified reference materials |
DAD | diode array detector |
ePAD | electrochemical paper-based analytical device |
ePAD-RGO-CuNP/GCE | glassy carbon electrode modified with reduced graphene oxide doped with copper nanoparticles electrochemical paper analytical device |
ePAD/BCF | electrochemical paper-based device modified with functionalized bamboo-derived biochar |
EV | exposure value |
FDA | Food and Drug Administration |
FeSA | tetraacuosalicylate-Fe(III) ion |
HPLC | high-performance liquid chromatography |
HSL | hue, saturation, lightness |
HSV | hue, saturation, value |
ISO | International Organization for Standardization |
IUPAC | International Union of Pure and Applied Chemistry |
LC | liquid chromatographic |
LOD | limit of detection |
LOQ | limit of quantification |
MS | mass spectrometry |
PAD | paper-based analytical device |
μPAD | microfluidic paper-based analytical device |
PoCT | point-of-care testing |
PoP-PAD | pen-on-paper paper-based analytical device |
RGB | red, green, blue |
RSD | relative standard deviation |
UV | ultraviolet |
VA-DLLME-DIC | vortex-assisted dispersive liquid–liquid microextraction with smartphone-based digital image colorimetry |
WB | white balance |
Appendix A
Parameter | Value | |
---|---|---|
Paracetamol | Aspirin | |
Linear range (mM) | LOQ—0.07 | LOQ—0.85 |
LOD (mM) | 0.004 | 0.013 |
LOQ (mM) | 0.013 | 0.045 |
Repeatability (RSD, %) (n = 6) | 5.9 (0.02 mM) | 3.7 (0.3 mM) |
3.8 (0.05 mM) | 3.3 (0.85 mM) | |
Reproducibility (RSD, %) (n = 6) | 6.1 (0.02 mM) | 5.0 (0.3 mM) |
4.0 (0.05 mM) | 3.5 (0.85 mM) |
References
- González-Peña, O.I.; López-Zavala, M.Á.; Cabral-Ruelas, H. Pharmaceuticals Market, Consumption Trends and Disease Incidence Are Not Driving the Pharmaceutical Research on Water and Wastewater. Int. J. Environ. Res. Public Health 2021, 18, 2532. [Google Scholar] [CrossRef] [PubMed]
- Dale, C.; Aulaqi, A.A.M.; Baker, J.; Hobbs, R.C.; Tan, M.E.L.; Tovey, C.; Walker, I.A.L.; Henry, J.A. Assessment of a Point-of-Care Test for Paracetamol and Salicylate in Blood. QJM 2005, 98, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Apata, J.; Pennap, D.D.; Mosholder, A.D. The Use of Analgesics for Intentional Self-Poisoning: Trends in U.S. Poison Center Data. J. Psychiatr. Res. 2023, 163, 402–405. [Google Scholar] [CrossRef] [PubMed]
- FDA. FDA Warning about Paracetamol Overdose and Liver Damage. React. Weely 1994, 2, 381. [Google Scholar] [CrossRef]
- Abbasi, S.; Haeri, S.A.; Sajjadifar, S. Bio-Dispersive Liquid Liquid Microextraction Based on Nano Rhamnolipid Aggregates Combined with Molecularly Imprinted-Solid Phase Extraction for Selective Determination of Paracetamol in Human Urine Samples Followed by HPLC. Microchem. J. 2019, 146, 106–114. [Google Scholar] [CrossRef]
- Ulusoy, H.İ.; Yılmaz, E.; Soylak, M. Magnetic Solid Phase Extraction of Trace Paracetamol and Caffeine in Synthetic Urine and Wastewater Samples by a Using Core Shell Hybrid Material Consisting of Graphene Oxide/Multiwalled Carbon Nanotube/Fe3O4/SiO2. Microchem. J. 2019, 145, 843–851. [Google Scholar] [CrossRef]
- Salem-Rizk, M.; Sultan, M.; Mohamed, D.; MoussaTony, R. Simultaneous Determination of Dantrolene and Paracetamol in Human Plasma by Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1179, 122816. [Google Scholar] [CrossRef]
- Lecoeur, M.; Rabenirina, G.; Schifano, N.; Odou, P.; Ethgen, S.; Lebuffe, G.; Foulon, C. Determination of Acetaminophen and Its Main Metabolites in Urine by Capillary Electrophoresis Hyphenated to Mass Spectrometry. Talanta 2019, 205, 120108. [Google Scholar] [CrossRef]
- Cheng, S.; Xu, X.; Kong, X.; Jiang, Y.; Mo, L.; Li, M.; Jin, Y.; Han, Y.; Li, X.L.; Jin, T.; et al. Monitoring of Salicylic Acid Content in Human Saliva and Its Relationship with Plasma Concentrations. J. Pharm. Biomed. Anal. 2022, 219, 114961. [Google Scholar] [CrossRef]
- Shafiei-Navid, S.; Hosseinzadeh, R.; Ghani, M. Solid-Phase Extraction of Nonsteroidal Anti-Inflammatory Drugs in Urine and Water Samples Using Acidic Calix[4]Arene Intercalated in LDH Followed by Quantification via HPLC-UV. Microchem. J. 2022, 183, 107985. [Google Scholar] [CrossRef]
- Abaimov, D.A.; Spavronskaya, L.R.; Shabalina, A.A.; Tanashyan, M.M.; Sariev, A.K. Use of Gas Chromatomass Spectroscopy for Analysis of Salicylate Contents in Plasma from Patients with Cerebrovascular Diseases Taking Aspirin as Antiaggregant Therapy. Pharm. Chem. J. 2019, 53, 65–70. [Google Scholar] [CrossRef]
- Mohammadi, P.; Masrournia, M.; Es’haghi, Z.; Pordel, M. Hollow Fiber Coated Fe3O4@Maleamic Acid-Functionalized Graphene Oxide as a Sorbent for Stir Bar Sorptive Extraction of Ibuprofen, Aspirin, and Venlafaxine in Human Urine Samples before Determining by Gas Chromatography–Mass Spectrometry. J. Iran. Chem. Soc. 2021, 18, 2249–2259. [Google Scholar] [CrossRef]
- Akyazi, T.; Basabe-Desmonts, L.; Benito-Lopez, F. Review on Microfluidic Paper-Based Analytical Devices towards Commercialisation. Anal. Chim. Acta 2018, 1001, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Cate, D.M.; Adkins, J.A.; Mettakoonpitak, J.; Henry, C.S. Recent Developments in Paper-Based Microfluidic Devices. Anal. Chem. 2015, 87, 19–41. [Google Scholar] [CrossRef]
- Da Silva, M.K.L.; Barreto, F.C.; Sousa, G.d.S.; Simões, R.P.; Ahuja, G.; Dutta, S.; Mulchandani, A.; Cesarino, I. Development of an Electrochemical Paper-Based Device Modified with Functionalized Biochar for the Screening of Paracetamol in Substandard Medicines. Molecules 2024, 29, 5468. [Google Scholar] [CrossRef]
- Pagkali, V.; Stavra, E.; Soulis, D.; Economou, A. Development of a High-Throughput Low-Cost Approach for Fabricating Fully Drawn Paper-Based Analytical Devices Using Commercial Writing Tools. Chemosensors 2021, 9, 178. [Google Scholar] [CrossRef]
- Miglione, A.; Raucci, A.; Cristiano, F.; Mancini, M.; Gioia, V.; Frugis, A.; Cinti, S. Paper-Based 2D Configuration for the Electrochemical and Facile Detection of Paracetamol in Wastewaters. Electrochim. Acta 2024, 488, 144255. [Google Scholar] [CrossRef]
- Petroni, J.M.; Lucca, B.G.; da Silva Júnior, L.C.; Barbosa Alves, D.C.; Souza Ferreira, V. Paper-Based Electrochemical Devices Coupled to External Graphene-Cu Nanoparticles Modified Solid Electrode through Meniscus Configuration and Their Use in Biological Analysis. Electroanalysis 2017, 29, 2628–2637. [Google Scholar] [CrossRef]
- Moreira, N.S.; Pinheiro, K.M.P.; Sousa, L.R.; Garcia, G.D.S.; Figueredo, F.; Coltro, W.K.T. Distance-Based Detection of Paracetamol in Microfluidic Paper-Based Analytical Devices for Forensic Application. Anal. Methods 2023, 16, 33–39. [Google Scholar] [CrossRef]
- Mohammednur, N.; Hussen, A.; Zewge, F. Development of Paper-Based Microfluidic Analytical Device (ΜPAD) for the Determination of Paracetamol in Water Samples: Optimization Using Response Surface Methodology (RSM). Appl. Water Sci. 2024, 14, 252. [Google Scholar] [CrossRef]
- Jain, B.; Jain, R.; Jha, R.R.; Bajaj, A.; Sharma, S. A Green Analytical Approach Based on Smartphone Digital Image Colorimetry for Aspirin and Salicylic Acid Analysis. Green Anal. Chem. 2022, 3, 100033. [Google Scholar] [CrossRef]
- Placer, L.; Lavilla, I.; Pena-Pereira, F.; Bendicho, C. A 3D Microfluidic Paper-Based Analytical Device with Smartphone-Assisted Colorimetric Detection for Iodine Speciation in Seaweed Samples. Sens. Actuators B 2023, 377, 133109. [Google Scholar] [CrossRef]
- Arvidson, K.; Cunnar Johansson, E.; Arv’idson, K. Galvanic Currents between Dental Alloys in Vitro. Scand. J. Dent. Res. 1985, 93, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Krämer, N.; Möhwald, M.; Lücker, S.; Domann, E.; Zorzin, J.I.; Rosentritt, M.; Frankenberger, R. Effect of Microparticulate Silver Addition in Dental Adhesives on Secondary Caries in Vitro. Clin. Oral Investig. 2015, 19, 1673–1681. [Google Scholar] [CrossRef]
- Li, A.; Wen, X.; Ma, H.; Yang, X.; Jiang, H.; Teng, P.; Zhang, B.; Li, K.; Sivanathan, S.; Ali Roula, M. Smartphone-Based Selective and Sensitive Detection of Vitamin B1 in Synthetic Urine Using U-Bend SPR Optical Fiber Probe. Opt. Fiber Technol. 2024, 84, 103769. [Google Scholar] [CrossRef]
- Sarigul, N.; Korkmaz, F.; Kurultak, İ. A New Artificial Urine Protocol to Better Imitate Human Urine. Sci. Rep. 2019, 9, 20159. [Google Scholar] [CrossRef]
- Abed, S.S. Determination of Micro Amount Of Paracetamol In Pharmaceutical Preparations By Molecular Spectrophotometric Method. J. Al-Nahrain Univ. 2009, 12, 46–53. [Google Scholar] [CrossRef]
- Pourkarim, F.; Rahimpour, E.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Gharakhani, A.; Jouyban, A. Validation of a Colorimetric Method for Determination of Paracetamol in Exhaled Breath Condensate. Chem. Pap. 2021, 75, 2901–2906. [Google Scholar] [CrossRef]
- World Health Organization; United Nations Environment Programme; International Labour Organisation. Basic Analytical Toxicology; International Programme on Chemical Safety; World Health Organization: Geneva, Switzerland, 1995. [Google Scholar]
- Villarino, N.; Lavilla, I.; Pena-Pereira, F.; Bendicho, C. Silver Nanocluster-Based Colorimetric/Fluorimetric Dual-Mode Sensor for the Detection of Bromide and Sulfite in Waters and Wastewaters. Microchem. J. 2024, 196, 109685. [Google Scholar] [CrossRef]
- Vidal, E.; Lorenzetti, A.S.; Lista, A.G.; Domini, C.E. Micropaper-Based Analytical Device (ΜPAD) for the Simultaneous Determination of Nitrite and Fluoride Using a Smartphone. Microchem. J. 2018, 143, 467–473. [Google Scholar] [CrossRef]
- Kong, T.; You, J.B.; Zhang, B.; Nguyen, B.; Tarlan, F.; Jarvi, K.; Sinton, D. Accessory-Free Quantitative Smartphone Imaging of Colorimetric Paper-Based Assays. Lab Chip 2019, 19, 1991–1999. [Google Scholar] [CrossRef] [PubMed]
- Issa, M.M.; Nejem, R.M.; El-Abadla, N.S.; Al-Kholy, M.; Saleh, A.A. Novel Atomic Absorption Spectrometric and Rapid Spectrophotometric Methods for the Quantitation of Paracetamol in Saliva: Application to Pharmacokinetic Studies. Indian J. Pharm. Sci. 2008, 70, 344–350. [Google Scholar] [CrossRef]
- Demkowska, I.; Polkowska, Z.; Namieśnik, J. Application of Ion Chromatography for the Determination of Inorganic Ions, Especially Thiocyanates in Human Saliva Samples as Biomarkers of Environmental Tobacco Smoke Exposure. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 875, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; Kaseda, M.; Yamamoto, T.; Yamada, S.; Itabashi, H. Capillary Ion Electrophoresis-Capacitively Coupled Contactless Conductivity Detection of Inorganic Cations in Human Saliva on a Polyvinyl Alcohol-Coated Capillary. Anal. Bioanal. Chem. 2012, 402, 2425–2430. [Google Scholar] [CrossRef]
- Ghaderinezhad, F.; Ceylan Koydemir, H.; Tseng, D.; Karinca, D.; Liang, K.; Ozcan, A.; Tasoglu, S. Sensing of Electrolytes in Urine Using a Miniaturized Paper-Based Device. Sci. Rep. 2020, 10, 13620. [Google Scholar] [CrossRef]
- Amin, M.; Oktavia, B.; Sedyohutomo, A.; Wah Lim, L.; Takeuchi, T. Dual-Column Switching Ion Chromatography for the Simultaneous Determination of Inorganic Cations and Anions (Particularly Thiocyanate) in Human Urine and Saliva Samples to Identify Smokers Types. J. Phys. Conf. Ser. 2018, 1095, 012022. [Google Scholar] [CrossRef]
- Ferrão, A.R.; Pestana, P.; Borges, L.; Palmeira-de-Oliveira, R.; Palmeira-de-Oliveira, A.; Martinez-de-Oliveira, J. Quantification of Ions in Human Urine—A Review for Clinical Laboratories. Biomedicines 2024, 12, 1848. [Google Scholar] [CrossRef]
- Aguiar, J.I.S.; Rangel, A.O.S.S.; Mesquita, R.B.R. Salivary Calcium Determination with a Specially Developed Microfluidic Paper-Based Device for Point-of-Care Analysis. Talanta 2023, 8, 100254. [Google Scholar] [CrossRef]
- Su, Y.X.; Zhang, K.; Ke, Z.F.; Zheng, G.S.; Chu, M.; Liao, G.Q. Increased Calcium and Decreased Magnesium and Citrate Concentrations of Submandibular/Sublingual Saliva in Sialolithiasis. Arch. Oral Biol. 2010, 55, 15–20. [Google Scholar] [CrossRef]
- Chen, Z.F.; Darvell, B.W.; Leung, V.W.H. Human Salivary Anionic Analysis Using Ion Chromatography. Arch. Oral Biol. 2004, 49, 863–869. [Google Scholar] [CrossRef]
- Bardow, A.; Madsen, J.; Nauntofte, B. The Bicarbonate Concentration in Human Saliva Does Not Exceed the Plasma Level under Normal Physiological Conditions. Clin. Oral. Investig. 2000, 4, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zheng, J.; Chen, M.; Liu, B.; Liu, Z.; Gong, L. Simultaneous Determination of Oxalate and Citrate in Urine and Serum of Calcium Oxalate Kidney Stone Rats by IP-RP LC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022, 1208, 123395. [Google Scholar] [CrossRef] [PubMed]
- Fry, I.D.R.; Starkey’, B.J. The Determination of Oxalate in Urine and Plasma by High Performance Liquid Chromatography. Ann. Clin. Biochem. 1991, 28, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Politi, L.; Chiaraluce, R.; Consalvi, I.V.; Cerulli, N.; Scandurra, R. Oxalate, Phosphate and Sulphate Determination in Serum and Urine by Ion Chromatography. Clin. Chim. Acta 1989, 184, 155–166. [Google Scholar] [CrossRef]
- Huo, J.; Li, D.; McKay, C.; Hoke, M.; Worcester, E.; Coe, F. Relative Contributions of Urine Sulfate, Titratable Urine Anion, and GI Anion to Net Acid Load and Effects of Age. Physiol. Rep. 2021, 9, e14870. [Google Scholar] [CrossRef]
- Matyus, S.P.; Wolak-Dinsmore, J.; Garcia, E.; Young, R.M.; Connelly, M.A. Connelly Vantera Mediated Quantification of Urine Citrate and Creatinine: A New Technology to Assess Risk of Nephrolithiasis. Diagnostics 2022, 12, 2606. [Google Scholar] [CrossRef]
Potential Interference | Studied Range (mM) | Reported Levels in Saliva (mM) | Reported Level in Urine (mM) | Refs. |
---|---|---|---|---|
Na+ | 300 | 0.002–18.8 | 0.53–220 | [34,35,36,37,38] |
K+ | 150 | 0.010–19.2 | 3.03–125 | [34,35,36,37,38] |
Mg2+ | 50 | 0.001–0.3 | 0.18–15 | [34,35,36,37,38] |
Ca2+ | 50 | 0.002–1.03 | 0.44–10 | [36,37,38,39,40] |
Cl− | 300 | 0.003–18.8 | 0.32–250 | [34,38,41] |
HPO42− | 50 | 0.001–0.24 | 4.82–22.81 | [34,41] |
HCO3− | 100 | 1–60 | n.a | [42] |
Citric acid | 50 | 0.001–0.024 | n.a | [40] |
NH4+ | 100 | n.a | 0.17–70 | [37] |
C2O42− | 50 | n.a | 0.109–0.497 | [43,44] |
SO42− | 100 | n.a | 10–40 | [45,46] |
Citrate | 50 | n.a | 0.49–2.55 | [43,47] |
Uric acid | 50 | n.a | 0.42–5.95 | [46] |
Urea | 750 | n.a | 333–582.75 | [46] |
Creatinine | 50 | n.a | 5.23–29.2 | [43,47] |
App | RGB Color Detector | Image J | Trigit | Color Grab | ||||
---|---|---|---|---|---|---|---|---|
Device | Paracetamol | Aspirin | Paracetamol | Aspirin | Paracetamol | Aspirin | Paracetamol | Aspirin |
S1 * | 100 ± 3 | 99 ± 6 | 97 ± 3 | 97 ± 5 | 100 ± 3 | 99 ± 6 | 102 ± 7 | 105 ± 3 |
S2 * | 94 ± 4 | 102 ± 3 | 94 ± 3 | 102 ± 4 | 100 ± 4 | 99 ± 4 | 94 ± 4 | 95 ± 3 |
S3 * | 99 ± 4 | 95 ± 3 | 99 ± 4 | 100 ± 4 | 96 ± 4 | 94 ± 5 | 105 ± 2 | 98 ± 3 |
Method | Analyte | Sample | LOD (mM) | RSD (%) | Sample Volume (µL) | Analysis Time (min) | Refs. |
---|---|---|---|---|---|---|---|
Chromatographic methods | |||||||
HPLC—UV | Paracetamol | Urine | 2.2 × 10−6 | 3.54 | 20 | 20 | [5] |
HPLC—DAD | Paracetamol | Synthetic urine and wastewater | 21.9 × 10−6 | 2.5 | 10 | 13 | [6] |
HPLC—UV | Aspirin | Saliva | 1.8 × 10−4 | 8.51 | 10 | 20 | [9] |
GC—MS | Aspirin | Urine | 6.6 × 10−7 | 4.7 | 1 | 6 | [12] |
Electrochemical paper-based analytical devices (ePADs) | |||||||
ePAD/BCF | Paracetamol | Pharmaceutical products | 3.5 × 10−9 | 0.25 | 150 | 1 | [15] |
PoP-PAD | Paracetamol | Gin | 0.015 | 4 | 40 | 15 | [16] |
2D ePAD | Paracetamol | Wastewater | 1.5 × 10−9 | 7 | 50 | 1 | [17] |
ePAD-RGO-CuNP/GCE | Paracetamol | Urine | 0.024 | 3.97 | 100 | 10 | [18] |
Colorimetric paper-based analytical devices (PADs) | |||||||
2D µPAD distance measurements | Paracetamol | Whisky | 0.026 | 6 | 17 | 20 | [19] |
2D µPAD | Paracetamol | Water | 2 × 10−4 | <2 | 30 | 10 | [20] |
VA-DLLME-DIC | Aspirin | Urine | 0.049 | <10 | 5 | 30 | [21] |
3D µPAD smartphone—colorimetric detection | Paracetamol | Synthetic urine and synthetic saliva | 0.004 | 5.9 | 20 | 2–4 | This work |
Aspirin | 0.013 | 3.7 |
Sample | Analyte | Spiked Value (mM) | Found Value (mM ± s, n = 3) | Recovery (% ± s, n = 3) |
---|---|---|---|---|
Synthetic urine—1 | Paracetamol | 0.02 | 0.02 ± 0.01 | 99 ± 3 |
0.05 | 0.05 ± 0.01 | 99 ± 2 | ||
Aspirin | 0.3 | 0.28 ± 0.02 | 102 ± 6 | |
0.85 | 0.84 ± 0.05 | 101 ± 6 | ||
Synthetic saliva—1 | Paracetamol | 0.02 | 0.02 ± 0.01 | 100 ± 3 |
0.05 | 0.05 ± 0.01 | 101 ± 4 | ||
Aspirin | 0.3 | 0.28 ± 0.01 | 99 ± 5 | |
0.85 | 0.83 ± 0.03 | 98 ± 3 | ||
Synthetic urine—2 | Paracetamol | 0.02 | 0.02 ± 0.01 | 102 ± 2 |
0.05 | 0.05 ± 0.01 | 100 ± 3 | ||
Aspirin | 0.3 | 0.30 ± 0.02 | 100 ± 2 | |
0.85 | 0.86 ± 0.03 | 103 ± 4 | ||
Synthetic saliva—2 | Paracetamol | 0.02 | 0.02 ± 0.01 | 102 ± 2 |
0.05 | 0.05 ± 0.01 | 98 ± 3 | ||
Aspirin | 0.3 | 0.28 ± 0.03 | 103 ± 4 | |
0.85 | 0.82 ± 0.03 | 101 ± 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abalde-Pujales, A.; Romero, V.; Lavilla, I.; Bendicho, C. Colorimetric 3D microPAD for Multiplexed Detection of Paracetamol and Aspirin in Urine and Saliva. Sensors 2025, 25, 1756. https://doi.org/10.3390/s25061756
Abalde-Pujales A, Romero V, Lavilla I, Bendicho C. Colorimetric 3D microPAD for Multiplexed Detection of Paracetamol and Aspirin in Urine and Saliva. Sensors. 2025; 25(6):1756. https://doi.org/10.3390/s25061756
Chicago/Turabian StyleAbalde-Pujales, Alberto, Vanesa Romero, Isela Lavilla, and Carlos Bendicho. 2025. "Colorimetric 3D microPAD for Multiplexed Detection of Paracetamol and Aspirin in Urine and Saliva" Sensors 25, no. 6: 1756. https://doi.org/10.3390/s25061756
APA StyleAbalde-Pujales, A., Romero, V., Lavilla, I., & Bendicho, C. (2025). Colorimetric 3D microPAD for Multiplexed Detection of Paracetamol and Aspirin in Urine and Saliva. Sensors, 25(6), 1756. https://doi.org/10.3390/s25061756