Assessing the Adhesiveness and Long-Term Behaviour of Piezoresistive Strain Sensor Materials for Application in Structural Health Monitored Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Layout
2.2. Specimen Preparation
2.3. Assessing the Adhesiveness of Sensor Materials on Lacquered Substrates
2.4. Sensor Material Distribution
2.5. Strain Sensing Characterisation
3. Results
3.1. Adhesive Properties
3.2. Sensor Material Distribution
3.3. Piezoresistive Response Under Quasi-Static Stretch and Release Cycles
3.4. Dynamic Durability of the Sensor Materials Under Extensive Fatigue Loading
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vanlanduit, S.; Sorgente, M.; Zadeh, A.R.; Güemes, A.; Faisal, N. Strain Monitoring. In Structural Health Monitoring Damage Detection Systems for Aerospace; Sause, M.G.R., Jasiūnienė, E., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 219–241. [Google Scholar] [CrossRef]
- Kimpfbeck, D.; Gschoßmann, S.; Wagner, J.; Schagerl, M. Optimizing the electrical conductivity of CNT embedded thin films printed with industrial inkjet technology for strain sensing applications. In Proceedings of the Smarte Strukturen und Systeme: Tagungsband des 4SMARTS-Symposiums, Darmstadt, Germany, 22–23 May 2019; Wiedemann, M., Melz (Hrsg.), T., Eds.; Shaker Verlag: Düren, Germany, 2019; pp. 339–350. [Google Scholar]
- Sause, M.G.R.; Jasiūnienė, E.; Pullin, R. Introduction. In Structural Health Monitoring Damage Detection Systems for Aerospace; Sause, M.G.R., Jasiūnienė, E., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Enser, H.; Sell, J.K.; Hilber, W.; Jakoby, B. Printed strain sensors in organic coatings: In depth analysis of sensor signal effects. Sens. Actuators A Phys. 2018, 281, 258–263. [Google Scholar] [CrossRef]
- Knite, M.; Teteris, V.; Kiploka, A.; Kaupuzs, J. Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials. Sens. Actuators A Phys. 2004, 110, 142–149. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Q.; Chen, P. Flexible Strain Sensor Based on Carbon Black/Silver Nanoparticles Composite for Human Motion Detection. Materials 2018, 11, 1836. [Google Scholar] [CrossRef]
- Kanoun, O.; Müller, C.; Benchirouf, A.; Sanli, A.; Dinh, T.N.; Al-Hamry, A.; Bu, L.; Gerlach, C.; Bouhamed, A. Flexible Carbon Nanotube Films for High Performance Strain Sensors. Sensors 2014, 14, 10042–10071. [Google Scholar] [CrossRef]
- Cortés, A.; Sánchez-Romate, X.F.; Jiménez-Suárez, A.; Campo, M.; Ureña, A.; Prolongo, S.G. Mechanical and Strain-Sensing Capabilities of Carbon Nanotube Reinforced Composites by Digital Light Processing 3D Printing Technology. Polymers 2020, 12, 975. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Wang, Y.; Qu, L.; Zhu, S.; Han, G.; Zhang, X.; Zhou, Q.; Du, M.; Chi, S. Electromechanical deformation sensors based on polyurethane/polyaniline electrospinning nanofibrous mats. Synth. Met. 2016, 219, 11–19. [Google Scholar] [CrossRef]
- Hong, J.; Pan, Z.; Wang, Z.; Yao, M.; Chen, J.; Zhang, Y. A large-strain weft-knitted sensor fabricated by conductive UHMWPE/PANI composite yarns. Sens. Actuators A Phys. 2016, 238, 307–316. [Google Scholar] [CrossRef]
- Choi, D.Y.; Kim, M.H.; Oh, Y.S.; Jung, S.H.; Jung, J.H.; Sung, H.J.; Lee, H.W.; Lee, H.M. Highly Stretchable, Hysteresis-Free Ionic Liquid-Based Strain Sensor for Precise Human Motion Monitoring. ACS Appl. Mater. Interfaces 2017, 9, 1770–1780. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.G.; Park, B.J.; Chang, S.T. Highly sensitive microfluidic strain sensors with low hysteresis using a binary mixture of ionic liquid and ethylene glycol. Sens. Actuators A Phys. 2017, 254, 1–8. [Google Scholar] [CrossRef]
- Zhang, S.; Tu, T.; Li, T.; Cai, Y.; Wang, Z.; Zhou, Y.; Wang, D.; Fang, L.; Ye, X.; Liang, B. 3D MXene/PEDOT:PSS Composite Aerogel with a Controllable Patterning Property for Highly Sensitive Wearable Physical Monitoring and Robotic Tactile Sensing. ACS Appl. Mater. Interfaces 2022, 14, 23877–23887. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, C.W.; Malinao, M.G.; Rafeedi, T.A.; Rodriquez, D.; Tan, S.T.M.; Root, N.B.; Skelil, K.; Ramírez, J.; Polat, B.; Root, S.E.; et al. Electropneumotactile Stimulation: Multimodal Haptic Actuators Enabled by a Stretchable Conductive Polymer on Inflatable Pockets. Adv. Mater. Technol. 2020, 5, 1901119. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Duan, S.; Zhang, L.; Wang, Z.; Li, C. Three-dimensional porous stretchable and conductive polymer composites based on graphene networks grown by chemical vapour deposition and PEDOT:PSS coating. Chem. Commun. 2015, 51, 3169–3172. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lim, E.G.; Hoettges, K.; Song, P. A Review of Carbon Nanotubes, Graphene and Nanodiamond Based Strain Sensor in Harsh Environments. C 2023, 9, 108. [Google Scholar] [CrossRef]
- Goh, G.L.; Agarwala, S.; Yeong, W.Y. Directed and On-Demand Alignment of Carbon Nanotube: A Review toward 3D Printing of Electronics. Adv. Mater. Interfaces 2019, 6, 1801318. [Google Scholar] [CrossRef]
- Åkerfeldt, M.; Strååt, M.; Walkenström, P. Electrically conductive textile coating with a PEDOT-PSS dispersion and a polyurethane binder. Text. Res. J. 2013, 83, 618–627. [Google Scholar] [CrossRef]
- Zhao, Y.; Schagerl, M.; Viechtbauer, C.; Loh, K.J. Characterizing the Conductivity and Enhancing the Piezoresistivity of Carbon Nanotube-Polymeric Thin Films. Materials 2017, 10, 724. [Google Scholar] [CrossRef]
- Jehn, J.; Oser, P.; Courrau, M.A.M.; Kaiser, M.; Wu, D.; Grosse, C.U.; Moosheimer, U.; Ruediger, A.; Schindler, C. Fully Inkjet-Printed Carbon Nanotube-PDMS-Based Strain Sensor: Temperature Response, Compressive and Tensile Bending Properties, and Fatigue Investigations. IEEE Access 2021, 9, 72207–72216. [Google Scholar] [CrossRef]
- Wagner, J.; Gschoßmann, S.; Schagerl, M. On the Capability of Measuring Actual Strain Values With Electrical Impedance Tomography Using Planar Silkscreen Printed Elastoresistive Sensors. IEEE Sens. J. 2021, 21, 5798–5808. [Google Scholar] [CrossRef]
- Izdebska, J. Printing on Polymers: Theory and Practice. In Printing on Polymers; Izdebska, J., Thomas, S., Eds.; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 1–20. [Google Scholar] [CrossRef]
- Kimpfbeck, D. Characterisation of the Strain-Sensing Capability of Carbon-Nanotube Embedded Polymeric Thin Films Manufactured with an Industrial Ink-Jet Printer. Master’s Thesis, Johannes Kepler Universität Linz, Linz, Austria, 2020. [Google Scholar]
- Wang, S.; Zhang, Y.; Abidi, N.; Cabrales, L. Wettability and Surface Free Energy of Graphene Films. Langmuir 2009, 25, 11078–11081. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Kim, H.C.; Kim, H.Y. Roles of Work of Adhesion between Carbon Blacks and Thermoplastic Polymers on Electrical Properties of Composites. J. Colloid Interface Sci. 2002, 255, 145–149. [Google Scholar] [CrossRef]
- Kaelble, D.H. Dispersion-Polar Surface Tension Properties of Organic Solids. J. Adhes. 1970, 2, 66–81. [Google Scholar] [CrossRef]
- Podoleanu, A.G. Optical coherence tomography. Br. J. Radiol. 2014, 78, 976–988. [Google Scholar] [CrossRef]
- Zhao, Y.; Ren, M.; Shang, Y.; Li, J.; Wang, S.; Zhai, W.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Ultra-sensitive and durable strain sensor with sandwich structure and excellent anti-interference ability for wearable electronic skins. Compos. Sci. Technol. 2020, 200, 108448. [Google Scholar] [CrossRef]
- Shooshtari, M.; Salehi, A.; Vollebregt, S. Effect of Humidity on Gas Sensing Performance of Carbon Nanotube Gas Sensors Operated at Room Temperature. IEEE Sens. J. 2021, 21, 5763–5770. [Google Scholar] [CrossRef]
- Yoo, K.P.; Lim, L.T.; Min, N.K.; Lee, M.J.; Lee, C.J.; Park, C.W. Novel resistive-type humidity sensor based on multiwall carbon nanotube/polyimide composite films. Sens. Actuators B Chem. 2010, 145, 120–125. [Google Scholar] [CrossRef]
- Kim, J.; Jung, J.; Lee, D.; Joo, J. Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth. Met. 2002, 126, 311–316. [Google Scholar] [CrossRef]
- Nardes, A.M.; Janssen, R.A.J.; Kemerink, M. A Morphological Model for the Solvent-Enhanced Conductivity of PEDOT:PSS Thin Films. Adv. Funct. Mater. 2008, 18, 865–871. [Google Scholar] [CrossRef]
- Mochizuki, T.; Takigami, Y.; Kondo, T.; Okuzaki, H. Fabrication of flexible transparent electrodes using PEDOT:PSS and application to resistive touch screen panels. J. Appl. Polym. Sci. 2018, 135, 45972. [Google Scholar] [CrossRef]
- Dul, S.; Pegoretti, A.; Fambri, L. Fused Filament Fabrication of Piezoresistive Carbon Nanotubes Nanocomposites for Strain Monitoring. Front. Mater. 2020, 7, 12. [Google Scholar] [CrossRef]
- de Rijk, T.M.; Schewzow, S.; Schander, A.; Lang, W. Unidirectional Electron-Tunnelling Flexible PDMS Strain Sensor with Aligned Carbon Nanotubes. Sensors 2023, 23, 8606. [Google Scholar] [CrossRef]
- Wagner, J.; Kralovec, C.; Kimpfbeck, D.; Heinzlmeier, L.; Schagerl, M. Framework for Strain Measurements at Cyclic Loaded Structures with Planar Elastoresistive Sensors Applying Electrical Impedance Tomography. In European Workshop on Structural Health Monitoring; Rizzo, P., Milazzo, A., Eds.; Springer: Cham, Switzerland, 2023; pp. 805–815. [Google Scholar]
- Suzuki, K.; Yataka, K.; Okumiya, Y.; Sakakibara, S.; Sako, K.; Mimura, H.; Inoue, Y. Rapid-Response, Widely Stretchable Sensor of Aligned MWCNT/Elastomer Composites for Human Motion Detection. ACS Sens. 2016, 1, 817–825. [Google Scholar] [CrossRef]
- Gao, S.l.; Zhuang, R.C.; Zhang, J.; Liu, J.W.; Mäder, E. Glass Fibers with Carbon Nanotube Networks as Multifunctional Sensors. Adv. Funct. Mater. 2010, 20, 1885–1893. [Google Scholar] [CrossRef]
- Santos, A.; Amorim, L.; Nunes, J.P.; Rocha, L.A.; Silva, A.F.; Viana, J.C. A Comparative Study between Knocked-Down Aligned Carbon Nanotubes and Buckypaper-Based Strain Sensors. Materials 2019, 12, 2013. [Google Scholar] [CrossRef] [PubMed]
- Beyer, S.T.; Walus, K. Controlled Orientation and Alignment in Films of Single-Walled Carbon Nanotubes Using Inkjet Printing. Langmuir 2012, 28, 8753–8759. [Google Scholar] [CrossRef] [PubMed]
- ISO 2409:2020-12; Paints and Varnishes—Cross-Cut Test. ISO: Geneva, Switzerland, 2020. [CrossRef]
- Wang, L.; Wang, H.; Wan, Q.; Gao, J. Recent development of conductive polymer composite-based strain sensors. J. Polym. Sci. 2023, 61, 3167–3185. [Google Scholar] [CrossRef]
- Flandin, L.; Chang, A.; Nazarenko, S.; Hiltner, A.; Baer, E. Effect of strain on the properties of an ethylene–octene elastomer with conductive carbon fillers. J. Appl. Polym. Sci. 2000, 76, 894–905. [Google Scholar] [CrossRef]
- Zhao, J.; Dai, K.; Liu, C.; Zheng, G.; Wang, B.; Liu, C.; Chen, J.; Shen, C. A comparison between strain sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene electrically conductive composites. Compos. Part A Appl. Sci. Manuf. 2013, 48, 129–136. [Google Scholar] [CrossRef]
- Ramalingame, R.; Bautista-Quijano, J.R.; Alves, D.d.F.; Kanoun, O. Temperature Self-Compensated Strain Sensors based on MWCNT-Graphene Hybrid Nanocomposite. J. Compos. Sci. 2019, 3, 96. [Google Scholar] [CrossRef]
- Guziak, M.A.; Nishizaki, T.; Honma, Y.; Watanabe, K.; Sasaki, T. Electrical Conductivity of PEDOT:PSS Film Prepared through Organic Compound Addition. Trans. Mater. Res. Soc. Jpn. 2013, 38, 363–367. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, C.A.; Wang, P.; Sumita, M. Temperature dependence of electrical resistivity for carbon black filled ultra-high molecular weight polyethylene composites prepared by hot compaction. Carbon 2005, 43, 2544–2553. [Google Scholar] [CrossRef]
- Heinzlmeier, L.; Wagner, J.; Kimpfbeck, D.; Sieberer, S.; Kralovec, C.; Schagerl, M. Damage Evaluation in Plain-Woven CFRP Plate with Circular Hole under Cyclic Tensile Loading Using Electrical Impedance Tomography. Preprints 2024. [Google Scholar] [CrossRef]
- Ke, K.; Pötschke, P.; Wiegand, N.; Krause, B.; Voit, B. Tuning the Network Structure in Poly(vinylidene fluoride)/Carbon Nanotube Nanocomposites Using Carbon Black: Toward Improvements of Conductivity and Piezoresistive Sensitivity. ACS Appl. Mater. Interfaces 2016, 8, 14190–14199. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, H.; Yu, Q.; Hu, Y.; Cui, X.; Zhu, Y.; Jiang, W. Strain sensing behaviors of stretchable conductive polymer composites loaded with different dimensional conductive fillers. Compos. Sci. Technol. 2018, 168, 388–396. [Google Scholar] [CrossRef]
- Luo, S.; Liu, T. SWCNT/Graphite Nanoplatelet Hybrid Thin Films for Self-Temperature-Compensated, Highly Sensitive, and Extensible Piezoresistive Sensors. Adv. Mater. 2013, 25, 5650–5657. [Google Scholar] [CrossRef]
CNT—Airbrush | CNT—Inkjet | CB | PEDOT:PSS | |||||
---|---|---|---|---|---|---|---|---|
Pre-Fatigue | Post-Fatigue | Pre-Fatigue | Post-Fatigue | Pre-Fatigue | Post-Fatigue | Pre-Fatigue | Post-Fatigue | |
FACC | 0.29 | 0.22 | 0.24 | 0.06 | 0.96 | 0.94 | 0.79 | 0.71 |
TIGER | 0.36 | 0.28 | 0.07 | 0.07 | 0.92 | 0.88 | 0.18 | 0.74 |
PRO | 0.21 | 0.21 | 0.31 | 0.14 | 0.97 | 0.91 | 0.15 | 0.43 |
Average | 0.28 | 0.24 | 0.21 | 0.09 | 0.95 | 0.91 | 0.37 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimpfbeck, D.; Enser, H.; Wagner, J.; Heinzlmeier, L.; Buchroithner, B.; Kulha, P.; Heise, B.; Hannesschläger, G.; Kralovec, C.; Schagerl, M. Assessing the Adhesiveness and Long-Term Behaviour of Piezoresistive Strain Sensor Materials for Application in Structural Health Monitored Structures. Sensors 2025, 25, 1659. https://doi.org/10.3390/s25061659
Kimpfbeck D, Enser H, Wagner J, Heinzlmeier L, Buchroithner B, Kulha P, Heise B, Hannesschläger G, Kralovec C, Schagerl M. Assessing the Adhesiveness and Long-Term Behaviour of Piezoresistive Strain Sensor Materials for Application in Structural Health Monitored Structures. Sensors. 2025; 25(6):1659. https://doi.org/10.3390/s25061659
Chicago/Turabian StyleKimpfbeck, Daniel, Herbert Enser, Jonas Wagner, Lukas Heinzlmeier, Boris Buchroithner, Pavel Kulha, Bettina Heise, Günther Hannesschläger, Christoph Kralovec, and Martin Schagerl. 2025. "Assessing the Adhesiveness and Long-Term Behaviour of Piezoresistive Strain Sensor Materials for Application in Structural Health Monitored Structures" Sensors 25, no. 6: 1659. https://doi.org/10.3390/s25061659
APA StyleKimpfbeck, D., Enser, H., Wagner, J., Heinzlmeier, L., Buchroithner, B., Kulha, P., Heise, B., Hannesschläger, G., Kralovec, C., & Schagerl, M. (2025). Assessing the Adhesiveness and Long-Term Behaviour of Piezoresistive Strain Sensor Materials for Application in Structural Health Monitored Structures. Sensors, 25(6), 1659. https://doi.org/10.3390/s25061659