Liquid Metal-Based Frequency and Pattern Reconfigurable Yagi Antenna for Pressure Sensing
Abstract
:1. Introduction
2. Antenna Design and Performance
2.1. Antenna Topology
2.2. LM Switch Design
2.3. Performance
2.4. Parametric Study
3. Experimental Results and Discussion
4. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shereen, M.K.; Khattak, M.I.; Al-Hasan, M. A hybrid reconfigurability structure for a novel 5G monopole antenna for future mobile communication. Frequenz 2020, 75, 71–82. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, P.; Sharma, M. Reconfigurable Antenna and Performance Optimization Approach. Wirel. Pers. Commun. 2020, 112, 2187–2212. [Google Scholar] [CrossRef]
- Shereen, M.K.; Khattak, M.I. A hybrid reconfigurability structure for a novel 5G monopole antenna for future mobile communications at 28/38 GHz. Arab. J. Sci. Eng. 2021, 47, 2745–2753. [Google Scholar] [CrossRef]
- Palsokar, A.A.; Lahudkar, S.L. Frequency and pattern reconfigurable rectangular patch antenna using single PIN diode. Aeu-Int. J. Electron. Commun. 2020, 125, 153370. [Google Scholar] [CrossRef]
- Abdulraheem, Y.I.; Oguntala, G.A.; Abdullah, A.S.; Mohammed, H.J.; Ali, R.A.; Abd-Alhameed, R.A.; Noras, J.M. Design of frequency reconfigurable multiband compact antenna using two PIN diodes for WLAN/ WiMAX applications. IET Microw. Antennas Propag. 2017, 11, 1098–1105. [Google Scholar] [CrossRef]
- Yang, G.; Li, J.; Wei, D.; Zhou, S. Pattern reconfigurable microstrip antenna with multi-directional beam for wireless communication. IEEE Trans. Antennas Propag. 2019, 67, 1910–1915. [Google Scholar] [CrossRef]
- Shrivastava, M.; Agrawal, R.; Tapashetti, P. Design and development of reconfigurable antenna using MEMS. In Proceedings of the 2018 International Conference on Advanced Computation and Telecommunication, Bhopal, India, 28–29 December 2018; pp. 1–5. [Google Scholar]
- Tang, S.C.; Wang, X.Y.; Chen, J.X. Low-Profile frequency-reconfigurable dielectric patch antenna and array based on new varactor-loading scheme. IEEE Trans. Antennas Propag. 2021, 69, 5469–5478. [Google Scholar] [CrossRef]
- Dubal, S.; Chaudhari, A. Mechanisms of Reconfigurable Antenna: A Review. In Proceedings of the 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 29–31 January 2020; pp. 576–580. [Google Scholar]
- Parchin, N.O.; Basherlou, H.J.; Al-Yasir, Y.I.A.; Abdulkhaleq, A.M.; Abd-Alhameed, R.A. Reconfigurable antennas switching techniques—A survey. Electronics 2020, 9, 336. [Google Scholar] [CrossRef]
- He, J.F.; Liang, S.T.; Li, F.J.; Yang, Q.B.; Huang, M.J.; He, Y.; Fan, X.N.; Wu, M.L. Recent Development in Liquid Metal Materials. Chemistryopen 2021, 10, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.Y.; Tabor, C.; Kalantar-Zadeh, K.; Dickey, M.D. Gallium Liquid Metal: The Devil’s Elixir. Annu. Rev. Mater. Res. 2021, 51, 381–408. [Google Scholar] [CrossRef]
- Dickey, M.D.; Chiechi, R.C.; Larsen, R.J.; Weiss, E.A.; Weitz, D.A.; Whitesides, G.M. Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 2008, 18, 1097–1104. [Google Scholar] [CrossRef]
- Shah, S.I.H.; Lim, S. Microfluidically frequency-reconfigurable Quasi-Yagi dipole antenna. Sensors 2018, 18, 2935. [Google Scholar] [CrossRef] [PubMed]
- Alqurashi, K.Y.; Kelly, J.R.; Wang, Z.P.; Crean, C.; Mittra, R.; Khalily, M.; Gao, Y. Liquid metal bandwidth-reconfigurable antenna. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 218–222. [Google Scholar] [CrossRef]
- Song, L.N.; Gao, W.R.; Chui, C.O.; Rahmat-Samii, Y. Wideband frequency reconfigurable patch antenna with switchable slots based on liquid metal and 3-D printed microfluidics. IEEE Trans. Antennas Propag. 2019, 67, 2886–2895. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Lin, S.; Yu, S.; Liu, G.J.; Denisov, A. Design and analysis of optically controlled pattern reconfigurable planar Yagi–Uda antenna. IET Microw. Antennas Propag. 2018, 12, 2053–2059. [Google Scholar] [CrossRef]
- Kittiyanpunya, C.; Krairiksh, M. A Four-Beam Pattern Reconfigurable Yagi-Uda Antenna. IEEE Trans. Antennas Propag. 2013, 61, 6210–6214. [Google Scholar] [CrossRef]
- Zhou, X.P.; He, Y.; Zeng, J. Liquid metal antenna-based pressure sensor. Smart Mater. Struct. 2019, 28, 025019. [Google Scholar] [CrossRef]
- Low, J.H.; Chee, P.S.; Lim, E.H. Deformable Liquid Metal Patch Antenna for Air Pressure Detection. IEEE Sens. J. 2020, 20, 3963–3970. [Google Scholar] [CrossRef]
- Champion, M.; Jackson, D.; Cumby, B.; Belovich, E. Polarization Reconfigurable Antennas Using a Liquid Metal Switching Mechanism. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9–14 July 2017; pp. 415–416. [Google Scholar]
- Cooper, C.B.; Arutselvan, K.; Liu, Y.; Armstrong, D.; Lin, Y.L.; Khan, M.R.; Genzer, J.; Dickey, M.D. Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers. Adv. Funct. Mater. 2017, 27, 1605630. [Google Scholar] [CrossRef]
- Zolfaghari, N.; Khandagale, P.; Ford, M.J.; Dayal, K.; Majidi, C. Network topologies dictate electromechanical coupling in liquid metal–elastomer composites. Soft Matter 2020, 16, 8818–8825. [Google Scholar] [CrossRef] [PubMed]
State of Antenna | Switch 1 | Switch 2 | Switch 3 | Switch 4 | Reflector/Director A | Reflector/Director B | ||
---|---|---|---|---|---|---|---|---|
State 1 | off | off | off | off | ||||
State 2 | on | on | on | on | ||||
State 3 | on | on | off | off | Reflector | Director | ||
State 4 | off | off | on | on | Director | Reflector |
Measurement Result | Bandwidth | Resonant Frequency | Gain | Radiation Direction |
---|---|---|---|---|
State 1 | 2.32–2.7 GHz | 2.5 GHz | 4.1 dBi | Bidirectional end-shot |
State 2 | 2.17–2.41 GHz | 2.28 GHz | 3.6 dBi | Bidirectional end-shot |
State 3 | 2.24–2.59 GHz | 2.4 GHz | 5.6 dBi | Towards −Y |
State 4 | 2.24–2.58 GHz | 2.4 GHz | 6.0 dBi | Towards +Y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Ma, X.; Yang, J.; Li, Y.; Peng, M.; Zheng, Q. Liquid Metal-Based Frequency and Pattern Reconfigurable Yagi Antenna for Pressure Sensing. Sensors 2025, 25, 1498. https://doi.org/10.3390/s25051498
Yang X, Ma X, Yang J, Li Y, Peng M, Zheng Q. Liquid Metal-Based Frequency and Pattern Reconfigurable Yagi Antenna for Pressure Sensing. Sensors. 2025; 25(5):1498. https://doi.org/10.3390/s25051498
Chicago/Turabian StyleYang, Xiaofeng, Xiang Ma, Jiayi Yang, Yang Li, Meiping Peng, and Qi Zheng. 2025. "Liquid Metal-Based Frequency and Pattern Reconfigurable Yagi Antenna for Pressure Sensing" Sensors 25, no. 5: 1498. https://doi.org/10.3390/s25051498
APA StyleYang, X., Ma, X., Yang, J., Li, Y., Peng, M., & Zheng, Q. (2025). Liquid Metal-Based Frequency and Pattern Reconfigurable Yagi Antenna for Pressure Sensing. Sensors, 25(5), 1498. https://doi.org/10.3390/s25051498