Advanced Predictive Analytics for Fetal Heart Rate Variability Using Digital Twin Integration
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Data Acquisition
3.2. Development of Digital Twin Model
3.3. Preprocessing
3.4. Dataset Partition
3.5. Approximate Entropy
- (1)
- Construct vectors:
- (2)
- Calculate the Chebyshev distance between vectors:
- (3)
- Calculate for each , :
- (4)
- Compute :
- (5)
- Calculate the approximate entropy:
3.6. Correlation Computation
3.7. Hidden Markov Model (HMM) Construction
3.7.1. Hidden States
3.7.2. Observed States
- Decrease (D): Differences less than or equal to −2 bpm;
- Stable (S): Differences between −2 bpm and 2 bpm;
- Increase (I): Differences greater than or equal to 2 bpm.
3.7.3. HMM Parameters
3.7.4. Parameter Estimation
3.7.5. Training and Decoding
Algorithm 1: Baum–Welch algorithm |
Input: Initial parameters: Observation sequence: Output: Updated parameters = that maximize the likelihood of the probability . 1. Initialization: 2. repeat 3. Expectation step (E step) 4. Forward–Backward recursion: 5. Compute state transition probability and state occurrence probability : 6. Maximization step (M step) 7. Calculate updated model parameters: Transition probability: Emission probability: Initial probability: 8. Set 9. until the change in likelihood between iteration is stable. |
Algorithm 2: Viterbi algorithm |
Input: Trained parameters with hidden states Observation sequence: Output: The most probable sequence of hidden states . 1. Initialization: . 2. Recursion: For 3. Termination: 4. Path backtracking: 5. return the most probable sequence |
4. Experimental Results and Discussion
4.1. Dataset
4.2. Entropy Analysis
4.3. Correlation Analysis Outcome
4.4. Hidden Markov Model (HMM) Evaluation
4.5. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montalvo-Jaramillo, C.I.; Pliego-Carrillo, A.C.; Peña-Castillo, M.Á.; Echeverría, J.C.; Becerril-Villanueva, E.; Pavón, L.; Ayala-Yáñez, R.; González-Camarena, R.; Berg, K.; Wessel, N.; et al. Comparison of fetal heart rate variability by symbolic dynamics at the third trimester of pregnancy and low-risk parturition. Heliyon 2020, 6, e03485. [Google Scholar] [CrossRef] [PubMed]
- Tao, Q.; Liu, S.; Zhang, J.; Jiang, J.; Jin, Z.; Huang, Y.; Liu, X.; Lin, S.; Zeng, X.; Li, X.; et al. Clinical applications of smart wearable sensors. iScience 2023, 26, 107485. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.S.; Saber, S. Machine Learning and Predictive Analytics: Advancing Disease Prevention in Healthcare. J. Contemp. Healthc. Anal. 2023, 7, 53–71. [Google Scholar]
- Lwin, T.C.; Zin, T.T.; Tin, P.; Ikenoue, T.; Kino, E. Enhancing Fetal Heart Rate Monitoring Through Digital Twin Technology. In Proceedings of the 2024 IEEE Gaming, Entertainment, and Media Conference (GEM), Turin, Italy, 5–7 June 2004; pp. 1–4. [Google Scholar]
- van Willigen, B.G.; van der Hout-van, M.B.; Huberts, W.; van de Vosse, F.N. A review study of fetal circulatory models to develop a digital twin of a fetus in a perinatal life support system. Front. Pediatr. 2022, 10, 915846. [Google Scholar] [CrossRef]
- Zizzo, A.R.; Kirkegaard, I.; Uldbjerg, N.; Hansen, J.; Mølgaard, H. Towards better reliability in fetal heart rate variability using time domain and spectral domain analyses. A new method for assessing fetal neurological state? PLoS ONE 2022, 17, e0263272. [Google Scholar] [CrossRef]
- Kasahara, Y.; Yoshida, C.; Saito, M.; Kimura, Y. Assessments of Heart Rate and Sympathetic and Parasympathetic Nervous Activities of Normal Mouse Fetuses at Different Stages of Fetal Development Using Fetal Electrocardiography. Front. Physiol. 2021, 12, 652828. [Google Scholar] [CrossRef]
- Li, X.; Zheng, D.; Zhou, S.; Tang, D.; Wang, C.; Wu, G. Approximate entropy of fetal heart rate variability as a predictor of fetal distress in women at term pregnancy. Acta Obstet. Gynecol. Scand. 2005, 84, 837–843. [Google Scholar] [CrossRef]
- Kozuma, S.; Watanade, T.; Bennet, L.; Green, L.; Hanson, M. The efffect of carotid sinus denervation on fetal heart rate variation in normoxia, hypoxia and post-hypoxia in fetal sleep. Br. J. Obstet. Gynaecol. 1997, 104, 460. [Google Scholar] [CrossRef]
- Cerritelli, F.; Frasch, M.G.; Antonelli, M.C.; Viglione, C.; Vecchi, S.; Chiera, M.; Manzotti, A. A Review on the Vagus Nerve and Autonomic Nervous System During Fetal Development: Searching for Critical Windows. Front. Neurosci. 2021, 15, 721605. [Google Scholar] [CrossRef]
- Zin, T.T.; Lwin, T.C.; Tin, P. A Novel Stochastic Model for Analyzing Heart Rate Variability in the Heart-Brain Signal Communication System. In Proceedings of the RISP International Workshop on Nonlinear Circuits, Communications and Signal Processing, Honolulu, HI, USA, 27 February–1 March 2024. [Google Scholar]
- Fairchild, K.D.; O’Shea, T.M. Heart Rate Characteristics: Physiomarkers for Detection of Late-Onset Neonatal Sepsis. Clin. Perinatol. 2010, 37, 581–598. [Google Scholar] [CrossRef]
- Tindle, J.; Tadi, P. Neuroanatomy, Parasympathetic Nervous System; StatPearls Publisher: Treasure Island, FL, USA, 2024. [Google Scholar]
- Valderrama, C.E.; Ketabi, N.; Marzbanrad, F.; Rohloff, P.; Clifford, G.D. A review of fetal cardiac monitoring, with a focus on low- and middle-income countries. Physiol. Meas. 2020, 41, 11TR01. [Google Scholar] [CrossRef] [PubMed]
- Tarvonen, M.J.; Lear, C.A.; Andersson, S.; Gunn, A.J.; Teramo, K.A. Increased variability of fetal heart rate during labour: A review of preclinical and clinical studies. BJOG Int. J. Obstet. Gynaecol. 2022, 129, 2070–2081. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.; Stenson, B.J. Use of umbilical cord blood gas analysis in the assessment of the newborn. Arch. Dis. Child. Fetal Neonatal Ed. 2007, 92, F430–F434. [Google Scholar] [CrossRef] [PubMed]
- Antończyk, A.; Ochota, M.; Niżański, W. Umbilical Cord Blood Gas Parameters and Apgar Scoring in Assessment of New-Born Dogs Delivered by Cesarean Section. Animals 2021, 11, 685. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, P. Umbilical cord pH, blood gases, and lactate at birth: Normal values, interpretation, and clinical utility. Am. J. Obstet. Gynecol. 2023, 228, S1222–S1240. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, X.; Wu, X.; Liu, H.; Qi, L.; Liu, X. The value of umbilical artery blood gas analysis in the diagnosis and prognosis evaluation of fetal distress. Am. J. Transl. Res. 2022, 14, 4821–4829. [Google Scholar]
- Rabiner, L. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 1989, 77, 257–286. [Google Scholar] [CrossRef]
- Westgate, J.; Garibaldi, J.M.; Greene, K.R. Umbilical cord blood gas analysis at delivery: A time for quality data. BJOG Int. J. Obstet. Gynaecol. 1994, 101, 1054–1063. [Google Scholar] [CrossRef]
- van Laar, J.O.; Warmerdam, G.J.; Verdurmen, K.M.; Vullings, R.; Peters, C.H.; Houterman, S.; Wijn, P.F.; Andriessen, P.; van Pul, C.; Oei, S.G. Fetal heart rate variability during pregnancy, obtained from non-invasive electrocardiogram recordings. Acta Obstet. Gynecol. Scand. 2014, 93, 93–101. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Spilka, J.; Chudáček, V.; Koucký, M.; Lhotská, L.; Huptych, M.; Janků, P.; Georgoulas, G.; Stylios, C. Using nonlinear features for fetal heart rate classification. Biomed. Signal Process Control. 2012, 7, 350–357. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005, 71, 021906. [Google Scholar] [CrossRef] [PubMed]
- Ocak, H. A Medical Decision Support System Based on Support Vector Machines and the Genetic Algorithm for the Evaluation of Fetal Well-Being. J. Med. Syst. 2013, 37, 9913. [Google Scholar] [CrossRef]
- Georgoulas, G.; Stylios, D.; Groumpos, P. Predicting the risk of metabolic acidosis for newborns based on fetal heart rate signal classification using support vector machines. IEEE Trans. Biomed. Eng. 2006, 53, 875–884. [Google Scholar] [CrossRef]
- Ponsiglione, A.M.; Cosentino, C.; Cesarelli, G.; Amato, F.; Romano, M. A Comprehensive Review of Techniques for Processing and Analyzing Fetal Heart Rate Signals. Sensors 2021, 21, 6136. [Google Scholar] [CrossRef]
- Stanculescu, I.; Williams, C.K.I.; Freer, Y. Autoregressive Hidden Markov Models for the Early Detection of Neonatal Sepsis. IEEE J. Biomed. Heal. Inform. 2014, 18, 1560–1570. [Google Scholar] [CrossRef]
- Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine 2018, 51, 1016–1022. [Google Scholar] [CrossRef]
- Bruynseels, K.; Santoni de Sio, F.; van den Hoven, J. Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm. Front. Genet. 2018, 9, 31. [Google Scholar] [CrossRef]
- Corral-Acero, J.; Margara, F.; Marciniak, M.; Rodero, C.; Loncaric, F.; Feng, Y.; Gilbert, Y.; Fernandes, J.F.; Bukhari, H.A.; Wajdan, A.; et al. The ‘Digital Twin’ to enable the vision of precision cardiology. Eur. Heart J. 2020, 41, 4556–4564. [Google Scholar] [CrossRef]
- Frasch, M.G.; Xu, Y.; Stampalija, T.; Durosier, L.D.; Herry, C.; Wang, X.; Casati, D.; Seely, A.J.; Alfirevic, Z.; Gao, X.; et al. Correlating multidimensional fetal heart rate variability analysis with acid-base balance at birth. Physiol. Meas. 2014, 35, L1–L12. [Google Scholar] [CrossRef] [PubMed]
- DiPietro, J.A.; Costigan, K.A.; Voegtline, K.M. Studies in Fetal Behavior: Revisited, Renewed, and Reimagined. Monogr. Soc. Res. Child Dev. 2015, 80, 1–151. [Google Scholar] [CrossRef]
- Lwin, T.C.; Zin, T.T.; Kyaw, P.P.; Tin, P.; Kino, E.; Ikenoue, T. Enhancing Fetal Monitoring through Digital Twin Technology and Entropy-based Fetal Heart Rate Variability Analysis. Int. J. Innov. Comput. Inf. Control. IJICIC 2025, 21, 185–196. [Google Scholar] [CrossRef]
- Islam, S.M.R.; Kwak, D.; Kabir, M.H.; Hossain, M.; Kwak, K.-S. The Internet of Things for Health Care: A Comprehensive Survey. IEEE Access 2015, 3, 678–708. [Google Scholar] [CrossRef]
- Banerjee, A.; Chakraborty, C.; Rathi, M. Chapter 8—Medical Imaging, Artificial Intelligence, Internet of Things, Wearable Devices in Terahertz Healthcare Technologies. In Terahertz Biomedical and Healthcare Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 145–165. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inform. 2019, 15, 2405–2415. [Google Scholar] [CrossRef]
- Calcaterra, V.; Pagani, V.; Zuccotti, G. Maternal and fetal health in the digital twin era. Front. Pediatr. 2023, 11, 1251427. [Google Scholar] [CrossRef]
- Network, F.T.P.; Shuffrey, L.C.; Myers, M.M.; Odendaal, H.J.; Elliott, A.J.; du Plessis, C.; Groenewald, C.; Burd, L.; Angal, J.; Nugent, J.D.; et al. Fetal heart rate, heart rate variability, and heart rate/movement coupling in the Safe Passage Study. J. Perinatol. 2019, 39, 608–618. [Google Scholar] [CrossRef]
- Yugar, L.B.T.; Yugar-Toledo, J.C.; Dinamarco, N.; Sedenho-Prado, L.G.; Moreno, B.V.D.; Rubio, T.d.A.; Fattori, A.; Rodrigues, B.; Vilela-Martin, J.F.; Moreno, H. The Role of Heart Rate Variability (HRV) in Different Hypertensive Syndromes. Diagnostics 2023, 13, 785. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy (ApEn) as a complexity measure. Chaos 1995, 5, 110–117. [Google Scholar] [CrossRef]
- Yentes, J.M.; Hunt, N.; Schmid, K.K.; Kaipust, J.P.; McGrath, D.; Stergiou, N. The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 2013, 41, 349–365. [Google Scholar] [CrossRef]
- Sassi, I.; Anter, S.; Bekkhoucha, A. A graph-based big data optimization approach using hidden Markov model and constraint satisfaction problem. J. Big Data 2021, 8, 93. [Google Scholar] [CrossRef]
- He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
Hidden Class (H) | Condition |
---|---|
H1 | |
H2 | |
H3 | |
H4 |
Observed Class (O) | Conditional Probability |
---|---|
Method | pH | PCO2 | PO2 | HCO3 | BE |
---|---|---|---|---|---|
Downward (Parasympathetic) | 0.164 | 0.067 | 0.052 | 0.104 | 0.057 |
Non-downward (Sympathetic) | 0.098 | 0.054 | 0.011 | 0.064 | 0.032 |
Hidden Class | Category | Total No. of Patient | No. of Training | No. of Testing |
---|---|---|---|---|
H1 | 21 | 15 | 6 | |
H2 | 50 | 40 | 10 | |
H3 | 146 | 102 | 44 | |
H4 | 252 | 180 | 72 |
Actual | Predicted | |||
---|---|---|---|---|
H1 | H2 | H3 | H4 | |
H1 | 5 | 2 | 6 | 2 |
H2 | 4 | 17 | 8 | 11 |
H3 | 0 | 2 | 85 | 15 |
H4 | 0 | 3 | 21 | 156 |
Actual | Predicted | |||
---|---|---|---|---|
H1 | H2 | H3 | H4 | |
H1 | 2 | 1 | 1 | 2 |
H2 | 1 | 1 | 5 | 3 |
H3 | 0 | 2 | 32 | 10 |
H4 | 0 | 1 | 12 | 59 |
Class | Sensitivity | Specificity | Precision | F1-Score | Accuracy |
---|---|---|---|---|---|
H1 | 0.33 | 0.98 | 0.56 | 0.42 | 0.95 |
H2 | 0.43 | 0.97 | 0.71 | 0.53 | 0.91 |
H3 | 0.83 | 0.85 | 0.71 | 0.77 | 0.85 |
H4 | 0.87 | 0.82 | 0.85 | 0.86 | 0.85 |
Overall accuracy | 78% |
Class | Sensitivity | Specificity | Precision | F1-Score | Accuracy |
---|---|---|---|---|---|
H1 | 0.33 | 0.99 | 0.66 | 0.44 | 0.96 |
H2 | 0.10 | 0.96 | 0.20 | 0.13 | 0.90 |
H3 | 0.73 | 0.79 | 0.64 | 0.68 | 0.77 |
H4 | 0.81 | 0.75 | 0.79 | 0.80 | 0.78 |
Overall accuracy | 71% |
Actual | Predicted | |||
---|---|---|---|---|
H1 | H2 | H3 | H4 | |
H1 | 12 | 2 | 1 | 0 |
H2 | 1 | 14 | 0 | 0 |
H3 | 0 | 2 | 12 | 1 |
H4 | 0 | 1 | 1 | 13 |
Actual | Predicted | |||
---|---|---|---|---|
H1 | H2 | H3 | H4 | |
H1 | 4 | 1 | 1 | 0 |
H2 | 1 | 5 | 0 | 0 |
H3 | 0 | 0 | 6 | 0 |
H4 | 1 | 1 | 0 | 4 |
Class | Sensitivity | Specificity | Precision | F1-Score | Accuracy |
---|---|---|---|---|---|
H1 | 0.80 | 0.97 | 0.92 | 0.86 | 0.93 |
H2 | 0.93 | 0.88 | 0.73 | 0.82 | 0.90 |
H3 | 0.80 | 0.95 | 0.85 | 0.82 | 0.91 |
H4 | 0.86 | 0.97 | 0.92 | 0.89 | 0.95 |
Overall accuracy | 85% |
Class | Sensitivity | Specificity | Precision | F1-Score | Accuracy |
---|---|---|---|---|---|
H1 | 0.66 | 0.94 | 0.80 | 0.72 | 0.87 |
H2 | 0.83 | 0.88 | 0.71 | 0.77 | 0.87 |
H3 | 1.00 | 0.94 | 0.85 | 0.92 | 0.96 |
H4 | 0.67 | 1.00 | 1.00 | 0.80 | 0.92 |
Overall accuracy | 79% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lwin, T.C.; Zin, T.T.; Tin, P.; Kino, E.; Ikenoue, T. Advanced Predictive Analytics for Fetal Heart Rate Variability Using Digital Twin Integration. Sensors 2025, 25, 1469. https://doi.org/10.3390/s25051469
Lwin TC, Zin TT, Tin P, Kino E, Ikenoue T. Advanced Predictive Analytics for Fetal Heart Rate Variability Using Digital Twin Integration. Sensors. 2025; 25(5):1469. https://doi.org/10.3390/s25051469
Chicago/Turabian StyleLwin, Tunn Cho, Thi Thi Zin, Pyke Tin, Emi Kino, and Tsuyomu Ikenoue. 2025. "Advanced Predictive Analytics for Fetal Heart Rate Variability Using Digital Twin Integration" Sensors 25, no. 5: 1469. https://doi.org/10.3390/s25051469
APA StyleLwin, T. C., Zin, T. T., Tin, P., Kino, E., & Ikenoue, T. (2025). Advanced Predictive Analytics for Fetal Heart Rate Variability Using Digital Twin Integration. Sensors, 25(5), 1469. https://doi.org/10.3390/s25051469