A Novel Time Domain Reflectometry (TDR) System for Water Content Estimation in Soils: Development and Application
Abstract
:Highlights
- Development of a low-cost TDR.
- Consistent and reliable performance.
- Possibility to build the device on one’s own.
- It makes TDR suitable for monitoring soil water status with acceptable accuracy
Abstract
1. Introduction
2. TDR Technique: Theoretical Background and Measurement Principles
3. Materials and Methods
3.1. Hardware Description
3.2. Soil Characterization and Experimental Setup
3.3. Statistical Indices for Sensor Performance Evaluation
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Supplementary Information
Appendix A.1. Board Fabrication Files Folder
- (a)
- The Gerber files (PKTDR.kicad_pcb.zip);
- (b)
- The Centroid files (PKTDR-bottom-pos.cvs, PKTDR-top-pos.csv);
- (c)
- The Bill of Materials (BoMs: PKTDR_BoM.xls).
Appendix A.2. MATPKTDR Software Folder
- (a)
- mainMATPKTDR: the primary MATLAB file (the source code) dedicated to calculating bulk dielectric permittivity and volumetric water content (specifically developed for the PKTDR + Hantek 6254BD system);
- (b)
- User guide: a practical guide for using the MATPKTDR Code;
- (c)
- General Trace Information Library folder: a repository with templates for input files (useful when using commercial TDR devices or PKTDR);
- (d)
- TDRExample file: a .csv file containing an example of the TDR probe (to be used with the General Trace Information 4096 file);
- (e)
- The TDROUT file: a .txt file that records the time and date of the TDR analysis along with the estimated εb and θ values;
- (f)
- The Plot file: a .png file, which contains the graphical output of the TDR trace analysis.
Appendix A.3. 3D Printing Materials Folder
- (a)
- PKTDR Box Folder: .stl files for printing the external box for the PKTDR device.
Appendix A.4. How to Assemble the PKTDR System
References
- Comegna, V.; Coppola, A.; Basile, A.; Comegna, A. A Review of Approaches for Measuring Soil Hydraulic Properties and Assessing the Impacts of Spatial Dependence on the Results. In Hydrogeology—A Global Perspective; InTech: Shanghai, China, 2012. [Google Scholar] [CrossRef]
- Villoro, A.; Latorre, B.; Tormo, J.; Jiménez, J.J.; López, M.V.; Nicolau, J.M.; Vicente, J.; Gracia, R.; Moret-Fernández, D. A TDR wireless device for volumetric water content sensing. Comput. Electron. Agric. 2021, 181, 105939. [Google Scholar] [CrossRef]
- Comegna, A.; Dragonetti, G.; Kodesova, R.; Coppola, A. Impact of olive mill wastewater (OMW) on the soil hydraulic and solute transport properties. Int. J. Environ. Sci. Technol. 2022, 19, 7079–7092. [Google Scholar] [CrossRef]
- Comegna, A.; Coppola, A.; Dragonetti, G.; Sommella, A. Estimating non-aqueous phase liquid (NAPL) content in variable saturated soils using time domain reflectometry (TDR). Vadose Zone J. 2016, 15, 1–11. [Google Scholar] [CrossRef]
- Prajapati, T.A.; Helambe, S.N. Low Frequency TDR for Measurement of Cable Length. In Proceedings of the International Conference on Emanations in Modern Technology and Engineering (ICEMTE-2017), Rajasthan, India, 4–5 March 2017; Volume 5. ISSN 2321-8169. [Google Scholar]
- Comegna, A.; Severino, G.; Coppola, A. A review of new TDR applications for measuring non-aqueous phase liquids (NAPLs) in soils. Environ. Adv. 2022, 9, 100296. [Google Scholar] [CrossRef]
- Moret-Fernandez, D.; Lera, F.; Latorre, B.; Tormo, J.; Revilla, J. Testing of a commercial vector network analyzer as low-cost TDR device to measure soil moisture and electrical conductivity. Catena 2022, 218, 106540. [Google Scholar] [CrossRef]
- Pérez, M.; Mendez, D.; Avellaneda, D.; Fajardo, A.; Páez-Rueda, C.I. Time-domain transmission sensor system for on-site dielectric permittivity measurements in soil: A compact, low-cost and stand-alone solution. HardwareX 2023, 13, e00398. [Google Scholar] [CrossRef]
- Lin, C.P.; Tang, S.H.; Lin, C.H.; Chung, C.C. An improved modeling of TDR signal propagation for measuring complex dielectric permittivity. J. Earth Sci. 2015, 26, 827–834. [Google Scholar] [CrossRef]
- Coppola, A.; Chaali, N.; Dragonetti, G.; Lamaddalena, N.; Comegna, A. Root uptake under non-uniform root-zone salinity. Ecohydrology 2015, 8, 1363–1379. [Google Scholar] [CrossRef]
- Saeed, A.; Comegna, A.; Dragonetti, G.; Lamaddalena, N.; Sommella, A.; Coppola, A. Soil electrical conductivity estimated by time domain reflectometry and electromagnetic induction sensors: Accounting for the different sensor observation volumes. J. Agric. Eng. 2017, 48, 223–234, ISSN 1974-7071. [Google Scholar] [CrossRef]
- Coppola, A.; Comegna, A.; Dragonetti, G.; Dyck, M.; Basile, A.; Lamaddalena, N.; Comegna, V. Solute transport scales in an unsaturated stony soil. Adv. Water Resour. 2011, 34, 747–759. [Google Scholar] [CrossRef]
- Coppola, A.; Dragonetti, G.; Comegna, A.; Lamaddalena, N.; Caushi, B.; Haikal, M.A.; Basile, A. Measuring and modeling water content in stony soils. Soil Tillage Res. 2013, 128, 9–22. [Google Scholar] [CrossRef]
- Severino, G.; Scarfato, M.; Comegna, A. Stochastic analysis of unsaturated steady flows above the water table. Water Resour. Res. 2017, 53, 6687–6708. [Google Scholar] [CrossRef]
- García, L.; Parra, L.; Jimenez, J.M.; Lloret, J.; Lorenz, P. IoT-Based Smart Irrigation Systems: An Overview on the Recent Trends on Sensors and IoT Systems for Irrigation in Precision Agriculture. Sensors 2020, 20, 1042. [Google Scholar] [CrossRef]
- Satriani, A.; Belviso, C.; Lovelli, S.; di Prima, S.; Coppola, A.; Hassan, S.B.M.; Rivelli, A.R.; Comegna, A. Impact of a synthetic zeolite mixed with soils of different pedological characteristics on soil physical quality indices. Geoderma 2024, 451, 117084. [Google Scholar] [CrossRef]
- Dragonetti, G.; Comegna, A.; Ajeel, A.; Deidda, G.; Lamaddalena, N.; Rodriguez, G.; Vignoli, G.; Coppola, A. Calibrating electromagnetic induction conductivities with time-domain reflectometry measurements. Hydrol. Earth Syst. Sci. 2018, 22, 1509–1523. [Google Scholar] [CrossRef]
- Saeed, I.A.; Wang, M.; Ren, Y.; Shi, Q.; Malik, M.H.; Tao, S.; Cai, Q.; Gao, W. Performance analysis of dielectric soil moisture sensor. Soil Water Res. 2019, 14, 195–199. [Google Scholar] [CrossRef]
- Corwin, D.L.; Scudiero, E. Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Belviso, C.; Satriani, A.; Lovelli, S.; Comegna, A.; Coppola, A.; Dragonetti, G.; Cavalcante, F.; Rivelli, A.R. Impact of Zeolite from Coal Fly Ash on Soil Hydrophysical Properties and Plant 285 Growth. Agriculture 2022, 12, 356. [Google Scholar] [CrossRef]
- Castronuovo, D.; Satriani, A.; Rivelli, A.R.; Comegna, A.; Belviso, C.; Coppola, A.; Di Prima, S.; Cavalcante, F.; Lovelli, S. Effects of Zeolite and Deficit Irrigation on Sweet Pepper Growth. Horticulturae 2023, 9, 1230. [Google Scholar] [CrossRef]
- Comegna, A.; Belviso, C.; Rivelli, A.R.; Coppola, A.; Dragonetti, G.; Sobhani, A.; Di Prima, S.; Satriani, A.; Cavalcante, F.; Lovelli, S. Analysis of critical water flow and solute transport parameters in different soils mixed with a synthetic zeolite. Catena 2023, 228, 107150. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Topp, G.C.; Ferré, P.A. Water content. In Methods of Soil Analysis, Part 4, Physical Methods; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 2002; pp. 417–446. [Google Scholar]
- Mohamed, A.M.O. Principles and applications of time domain electrometry in geoenvironmental engineering. In Developments in Arid Region Research; Taylor and Francis: Oxfordshire, UK, 2006; Volume 5. [Google Scholar]
- Comegna, A.; Coppola, A.; Dragonetti, G.; Sommella, A. A soil non-aqueous phase liquid (NAPL) flushing laboratory experiment based on measuring the dielectric properties of soil-organic mixtures via time domain reflectometry (TDR). Hydrol. Earth Syst. Sci. 2019, 23, 3593–3602, ISSN 1027-5606. [Google Scholar] [CrossRef]
- Kuncham, N.V. Sensors for managing water resources in agriculture. J. Electron. Commun. Eng. 2014, 9, 145–163. [Google Scholar] [CrossRef]
- Coppola, A.; Dragonetti, G.; Sengouga, A.; Lamaddalena, N.; Comegna, A.; Basile, A.; Noviello, N.; Nardella, L. Identifying Optimal Irrigation Water Needs at District Scale by Using a Physically Based Agro-Hydrological Model. Water 2019, 11, 841. [Google Scholar] [CrossRef]
- Sasot, A.S. Study of the Development of an IoT-Based Sensor Platform for E-Agriculture. Master’s Thesis, Universitat Politecnica de Catalunya, Department of Engineering Electronics, Barcelona, Spain, 2020. [Google Scholar]
- Placidi, P.; Villani Delle Vergini, C.; Papini, N.; Cecconi, M.; Mezzanotte, P.; Scorzoni, A. Low-Cost and Low-Frequency Impedance Meter for Soil Water Content Measurement in the Precision Agriculture Scenario. IEEE Trans. Instrum. Meas. 2013, 72, 9511613. [Google Scholar] [CrossRef]
- Wang, X.; Gui, J.Q.; Pan, Y.; Hu, R.; Zhang, Y.; Tedeschi, A.; Basile, A.; Comegna, A.; Coppola, A.; de Mascellis, R. Comparison of hydraulic behaviour of unvegetated and vegetation-stabilized sand dunes in arid desert ecosystems. Ecohydrology 2013, 6, 264–274, ISSN 1936-0584. [Google Scholar] [CrossRef]
- Di Prima, S.; Fernandes, G.; Marras, E.; Giadrossich, F.; Stewart, R.D.; Abou Najm, M.R.; Winiarski, T.; Mourier, B.; Angulo-Jaramillo, R.; Comegna, A.; et al. Evaluating subsurface flow connectivity in a pine-covered hillslope with stemflow infiltration and ground-penetrating radar surveys. J. Hydrol. 2023, 620, 129527. [Google Scholar] [CrossRef]
- Zhen, X.; Changjun, S.; Hua, Y.; Shirui, Z. Research and design of soil water content sensor based on high frequency capacitive. Sens. Transducers 2018, 26, 56–60. [Google Scholar]
- Peddinti, S.R.; Hopmans, J.W.; Abou Najm, M.; Kisekka, I. Assessing Effects of Salinity on the Performance of a Low-Cost Wireless Soil Water Sensor. Sensors 2020, 20, 7041. [Google Scholar] [CrossRef] [PubMed]
- Comegna, A.; Hassan, S.B.M.; Coppola, A. Development and Application of an IoT-Based System for Soil Water Status Monitoring in a Soil Profile. Sensors 2024, 24, 2725. [Google Scholar] [CrossRef] [PubMed]
- Visconti, P.; de Fazio, R.; Primiceri, P.; Cafagna, D.; Strazzella, S.; Giannoccaro, N.L. A Solar-Powered Fertigation System Based on Low-Cost Wireless Sensor Network Remotely Controlled by Farmer for Irrigation Cycles and Crops Growth Optimization. Int. J. Electron. Telecommun. 2016, 66, 59–68. [Google Scholar] [CrossRef]
- Chowdhury, S.; Sen, S.; Janardhanan, S. Comparative Analysis and Calibration of Low Cost Resistive and Capacitive Soil Moisture Sensor. arXiv 2022, arXiv:2210.03019v1. [Google Scholar]
- Hassan, S.B.M.; Dragonetti, G.; Comegna, A.; Lamaddalena, N.; Coppola, A. Analyzing the role of soil and vegetation spatial variability in modelling hydrological processes for irrigation optimization at large scale. Irrig. Sci. 2023, 42, 249–267. [Google Scholar] [CrossRef]
- Robinson, D.A.; Friedman, S.P. The effective permittivity of dense packing of glass beads, quartz sand and their mixtures immersed in different dielectric backgrounds. J. Non-Cryst. Solids 2002, 305, 261–267. [Google Scholar] [CrossRef]
- Ferré, P.A.; Rudolph, D.L.; Kachaniski, R.G. Spatial averaging of water content by time domain reflectometry: Implications for twin rod probes with and without dielectric coatings. Water Resour. Res. 1996, 32, 271–279. [Google Scholar] [CrossRef]
- Lin, C.P.; Chung, C.C.; Tang, S.H. Accurate TDR measurement of electrical conductivity accounting for cable resistance and recording time. Soil Sci. Soc. Am. J. 2007, 71, 1278–1287. [Google Scholar] [CrossRef]
- Comegna, A.; Coppola, A.; Dragonetti, G.; Severino, G.; Sommella, A. Interpreting TDR signal propagation through soils with distinct layers of nonaqueous-phase liquid and water content. Vadose Zone J. 2017, 16, 1–11, ISSN 1539-1663. [Google Scholar] [CrossRef]
- Comegna, A.; Coppola, A.; Dragonetti, G. Time domain reflectometry for dielectric characterization of olive mill wastewater contaminated soils. J. Agric. Eng. 2020, 51, 248–254, ISSN 1974-7071. [Google Scholar] [CrossRef]
- Or, D.; Jones, S.B.; Van Shaar, J.R.; Humphries, S.; Koberstein, L. WINTDR Soil Analysis Software: User’s Guide; Utah State University: Logan, UT, USA, 2004. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2006. A Framework for International Classification, Correlation and Communication, 2nd ed.; World Soil Resources Reports; FAO: Rome, Italy, 2006; Volume 103. [Google Scholar]
- Day, P.R. Particle fractionation and particle-size analysis. In Methods of Soil Analysis, Part 1; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 545–567. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Particle density. In Methods of Soil Analysis, Part 1, 2nd ed.; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 377–381. [Google Scholar]
- Eckert, D.J. Soil pH. In Recommended Chemical Soil Test Procedures for the North Central Region; Dahnke, W.C., Ed.; Fargo: North Dakota Agricultural Experiment Station Bulletin No. 221 (Revised); University of Missouri: Columbia, MO, USA, 1988; pp. 6–8. [Google Scholar]
- Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Goovaerts, P.; AvRuskin, G.; Meliker, J.; Slotnick, M.; Jacquez, G.; Nriagu, J. Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resour. Res. 2005, 41, W07013. [Google Scholar] [CrossRef]
- Jung, S.; Drnevich, V.P.; Abou Najm, M.R. New methodology for density and water content by time domain reflectometry. J. Geotech. Geoenviron. Eng. 2013, 139, 659–670. [Google Scholar] [CrossRef]
- Comegna, A.; Coppola, A.; Dragonetti, G.; Chaali, N.; Sommella, A. Time domain reflectometry-measuring dielectric permittivity to detect soil non-acqeous phase liquids contamination-decontamination processes. J. Agric. Eng. 2013, 44, 833–838, ISSN 1974-7071. [Google Scholar] [CrossRef]
- Comegna, A.; Coppola, A.; Dragonetti, G.; Severino, G.; Sommella, A.; Basile, A. Dielectric properties of a tilled sandy volcanic vesuvian soil with moderate andic features. Soil Tillage Res. 2013, 133, 93–100. [Google Scholar] [CrossRef]
Footprint Assignment | Designator | Quantity | Footprint Specification (Kikad) | Mounting Type |
---|---|---|---|---|
C1 | Capacitor 100 nF | 1 | THT:C_Disc_D8.0 mm_W5.0 mm_P5.00 mm | THT * |
C2 | Capacitor 47 pF | 1 | THT:C_Disc_D8.0 mm_W5.0 mm_P5.00 mm | THT |
D1 | Led (3 mm) | 1 | LED_THT:LED_D3.0 mm | THT |
J1 | BNC Connector | 1 | BNC_TEConnectivity_1478204_Vertical | THT |
J3 | Connector | 1 | PinHeader_2.54 mm:PinHeader_1 x02_P2.54 mm_Vertical | THT |
R1 | Resistor 6.8 kΩ | 1 | THT:R_Axial_DIN0207_L6.3 mm_D2.5 mm_P10.16 mm_Horizontal | THT |
R2-R6 | Resistor 220 Ω | 5 | THT:R_Axial_DIN0207_L6.3 mm_D2.5 mm_P10.16 mm_Horizontal | THT |
U1 | Inverter 74 HC14 | 1 | Package_DIP:DIP-14_W7.62 mm | THT |
Soil ID | Depth (cm) | Soil Texture and Classification (USDA) | ρb (g/cm3) | pH | |||
---|---|---|---|---|---|---|---|
Texture | Sand (%) | Silt (%) | Clay (%) | ||||
SALO | 0–20 | sandy loam | 57.43 | 31.95 | 10.62 | 1.02 | 7.7 |
SILO | 0–20 | silty loam | 15 | 72.7 | 11.6 | 1.02 | 8.4 |
LOAM | 0–20 | loam | 27.5 | 46.1 | 26.4 | 1.02 | 7.2 |
SAND | 0–20 | sand | 98 | 1.5 | 0.5 | 1.02 | 7.9 |
Soil | PKTDR | TDR100 | PKTDR | TDR100 | PKTDR | TDR100 | PKTDR | TDR100 |
---|---|---|---|---|---|---|---|---|
MBE | ME (%) | MAE (%) | σε | |||||
SALO | 0.0104 | 0.0087 | 2.52 | 3.0 | 1.45 | 0.95 | 0.0158 | 0.0140 |
SAND | −0.0043 | −0.0103 | 0.78 | 1.09 | 0.69 | 1.57 | 0.0131 | 0.0126 |
LOAM | −0.0048 | 0.0023 | 0.69 | 1.91 | 0.82 | 1.03 | 0.0149 | 0.0139 |
SILO | −0.0099 | −0.0112 | 1.28 | 0.40 | 1.42 | 1.27 | 0.0164 | 0.0150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comegna, A.; Di Prima, S.; Hassan, S.B.M.; Coppola, A. A Novel Time Domain Reflectometry (TDR) System for Water Content Estimation in Soils: Development and Application. Sensors 2025, 25, 1099. https://doi.org/10.3390/s25041099
Comegna A, Di Prima S, Hassan SBM, Coppola A. A Novel Time Domain Reflectometry (TDR) System for Water Content Estimation in Soils: Development and Application. Sensors. 2025; 25(4):1099. https://doi.org/10.3390/s25041099
Chicago/Turabian StyleComegna, Alessandro, Simone Di Prima, Shawcat Basel Mostafa Hassan, and Antonio Coppola. 2025. "A Novel Time Domain Reflectometry (TDR) System for Water Content Estimation in Soils: Development and Application" Sensors 25, no. 4: 1099. https://doi.org/10.3390/s25041099
APA StyleComegna, A., Di Prima, S., Hassan, S. B. M., & Coppola, A. (2025). A Novel Time Domain Reflectometry (TDR) System for Water Content Estimation in Soils: Development and Application. Sensors, 25(4), 1099. https://doi.org/10.3390/s25041099