Recent Progress in Flexible Piezoelectric Tactile Sensors: Materials, Structures, Fabrication, and Application
Abstract
:1. Introduction
2. Piezoelectric Materials
2.1. Inorganic Piezoelectric Materials
2.1.1. Low-Dimensional Materials
2.1.2. Polycrystalline Materials
2.2. Organic Piezoelectric Materials—PVDF and Its Copolymers
2.2.1. PVDF
2.2.2. PVDF Copolymers
Material | Method | Substrate | Electrode | Sensor Size | Sensor Performance | Reference |
---|---|---|---|---|---|---|
ZnO p-n | Spin coating | PEN | Ag | / | Current sensitivity: 82.6 nA/MPa | [61] |
BaTiO3 | Hydrothermal | PDMS | Ti/Au | Area: 3 * 2 cm2 | Open-circuit voltage: 14 V short-circuit current density: 190 nA cm−2 | [89] |
Al-ZnO | Spin coating | PDMS | MWCNTs | / | Linear: 0.995 Output voltage is increased by 216 percent | [62] |
ZnO | Hydrothermal | PDMS | Cu | / | Sensitivity: 1.42 V/N | [60] |
AlN | Sputtering | Silicon | Cr-Au | Area: 13,700 μm2 | GF: 1340 | [64] |
PZT | Mixing technology | PC | Ag | Area: 5 cm * 4 cm2 | Power density: 81.25 W/cm3 | [78] |
Sm: PMN-PT | Sol–gel process | PDMS | / | / | Force sensitivity: 5.86 V/N Current density: 150 μA/cm2 | [68] |
PVDF | Pour curing | PDMS | / | Thickness: 28 μm Area: 16 * 16 mm2 | Sensitivity: 35.6 mV/N Detection range: 1–11 N | [81] |
PVDF | Spin coating | PET | Cu | / | Sensitivity: 35.6 mV/N Detection limit: 175 Pa Response time: 150 ms | [82] |
PVDF | / | PET | / | / | Sensitivity: 5.17 mV/kPa Responsive time: 150 ms | [69] |
PVDF | Spin coating | PDMS | Al | Area: 2 * 2 μm2 | Sensitivity: 12 mV/kPa Responsive time: 2 ms | [90] |
PVDF | 3D printing | Conductive sponge | Conductive cloth | Area: 3 * 3 cm2 | Detection range is 0.1–15 N Responsive time: 80 ms | [91] |
PVDF-TrFE | 3D printing | PET | Ag | Area: 32 * 10 mm2 | Sensitivity: 1.47 V/kPa peak power density: 478 μW/cm2 | [88] |
PVDF-TrFE | Spin coating | PI | Al | / | Power density: 4.96 nW/mm2 | [87] |
PVDF-TrFE | Electrostatic spinning | PDMS | Ag | / | Sensitivity: 51.5 mV/N Responsive time: 78 ms (x-axis) 46 ms(y-axis) | [70] |
MoS2-PVDF | Milling and coating | PDMS | Cu | Area: 2 * 2 cm2 | Power density: 3.2 mW/m2 Output: 47 Vpp and 0.12 μA, | [92] |
PVDF/ZnO | Electrostatic spinning | PU | Ag | / | Sensitivity: 3.12 mV/kPa Tr/Tf times: 55/75 ms | [16] |
PVDF/ZnO | Spinning | PU | Cu | / | Sensitivity: 4.4 mVdeg−1, 0.33 V/kPa Response time: 76 ms, 16 ms | [93] |
PAN-PVDF hydrogel | / | PDMS | Cu | 30 * 8 * 1 mm3 and 20 * 20 * 2 mm3 | Response time: 31 ms Output: 30 mV, 2.8 μA | [94] |
Composite hydrogels | One-pot thermoforming, solution exchange | Hydrogels | Conductive tape | / | GF: 19.3 Response time: 63.2 ms | [95] |
Silk protein hydrogel | / | PET | Ag | Area: 5 * 5 mm2 | Power density: 1 mW/cm2 | [72] |
2.3. Composite Materials
2.3.1. Composites of Organic and Inorganic Materials
2.3.2. Piezoelectric Hydrogels
3. Structure of Tactile Sensors
3.1. Millimetre Structure
3.2. Micron/Nano-Scale Structures
Structure | Specificities | Advantages | Disadvantages | |
---|---|---|---|---|
Millimeter | Fork-finger structure | Usually has multiple branch-like structures. | Increase contact area and sensitivity. | The complexity of the structure leads to high costs. |
Suitable for application scenarios with large contact areas. | Sensitive to changes in loading points. | |||
Island–bridge structure | Connecting rigid electronic components (islands) to flexible parts (bridges). | Significantly improves the stretchability of the sensor. | The design and manufacturing process is more complex. | |
Strong stability and increased life expectancy. | More sensitive to temperature changes. | |||
Micron/ Nano-scale | Micro-dome structure | Improvement of sensor sensitivity and performance through the introduction of micro-nanostructures. | Fast response/recovery characteristics | Micro-nano structures are costly and technically complex. |
Wide bandwidth and linear force detection range | Relatively homogeneous structure, which does not allow for a hierarchical structural design. | |||
Pyramid structure | Capable of detecting a wide range of touches (pressure, shear, and torsion). | Increase contact area and sensitivity. | More complex design required for large range measurements | |
Suitable for application scenarios with large contact areas. | Sensitive to temperature changes, signal stability and accuracy need to be improved |
4. Fabrication of Tactile Sensors
4.1. Electrostatic Spinning
4.2. 3D Printing
4.3. Screen Printing
4.4. Spray/Spin Coating
Technology | Advantages | Disadvantages | Costs |
---|---|---|---|
Electrostatic spinning | Preparation of materials with high surface area and porous structure. | Low mechanical flexibility. | ★★★ |
Enhanced physical performance of the sensor. | High cost and poor stability. | ||
3D printing | Rapid production of complex shapes. | Limited choice of materials. | ★★★★ |
Material and process flexibility. | The connection is prone to problems. | ||
Screen printing | Large batch size, high efficiency, and low cost. | Thick-film high-precision printing still needs further improvement. | ★ |
Multilayer alignment is easier to achieve. | Ink may pass through the screen and cause unclear patterns. | ||
Spray/spin coating | Fast realization of large coating areas. | There are certain requirements for the viscosity and solids content of the solution. | ★★ |
Easy operation. | May produce uneven thickness |
5. Principal Applications
5.1. Human Health Monitoring
5.2. Motion Monitoring
5.3. Human–Computer Interaction
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, C.E.; Liu, C.; Shang, F.F.; Niu, S.Y.; Ke, L.A.; Zhang, N.; Ma, B.B.; Li, R.Z.; Sun, X.; Zhang, S. Tactile sensing technology in bionic skin: A review. Biosens. Bioelectron. 2023, 220, 18. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Tan, Y.J.; Chen, G.; Wang, Z.; Susanto, G.J.; See, H.H.; Yang, Z.; Lim, Z.W.; Yang, L.; Tee, B.C.K. Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins. Nat. Commun. 2020, 11, 5747. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liu, Y.; Sun, Y.; Zhang, Y.; Ding, G. Recent Advances in Resistive Sensor Technology for Tactile Perception: A Review. IEEE Sens. J. 2022, 22, 15635–15649. [Google Scholar] [CrossRef]
- Pyo, S.; Lee, J.; Kim, W.; Jo, E.; Kim, J. Multi-Layered, Hierarchical Fabric-Based Tactile Sensors with High Sensitivity and Linearity in Ultrawide Pressure Range. Adv. Funct. Mater. 2019, 29, 1902484. [Google Scholar] [CrossRef]
- Luo, Y.; Li, Y.; Sharma, P.; Shou, W.; Wu, K.; Foshey, M.; Li, B.; Palacios, T.; Torralba, A.; Matusik, W. Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 2021, 4, 193–201. [Google Scholar] [CrossRef]
- Xu, J.; Li, X.; Chang, H.; Zhao, B.; Tan, X.; Yang, Y.; Tian, H.; Zhang, S.; Ren, T.-L. Electrooculography and Tactile Perception Collaborative Interface for 3D Human–Machine Interaction. ACS Nano 2022, 16, 6687–6699. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, S.; Yin, H.; Weisbecker, H.; Tran, H.T.; Guo, Z.; Han, T.; Wang, Y.; Liu, Y.; Wu, Y.; et al. Skin-inspired, sensory robots for electronic implants. Nat. Commun. 2024, 15, 4777. [Google Scholar] [CrossRef]
- Qin, J.; Yin, L.J.; Hao, Y.N.; Zhong, S.L.; Zhang, D.L.; Bi, K.; Zhang, Y.X.; Zhao, Y.; Dang, Z.M. Flexible and Stretchable Capacitive Sensors with Different Microstructures. Adv. Mater. 2021, 33, 31. [Google Scholar] [CrossRef]
- Pang, C.; Koo, J.H.; Nguyen, A.; Caves, J.M.; Kim, M.G.; Chortos, A.; Kim, K.; Wang, P.J.; Tok, J.B.H.; Bao, Z.A. Highly Skin-Conformal Microhairy Sensor for Pulse Signal Amplification. Adv. Mater. 2015, 27, 634–640. [Google Scholar] [CrossRef]
- Li, S.; Chen, S.; Yang, L.; Guo, Y.; Tan, K.; Liu, S.; Qiu, J.; Yuan, B.; Yu, J. Bimodal capacitive tactile sensor assisted by shield effect of triboelectric nanogenerator. Nano Energy 2023, 118, 108946. [Google Scholar] [CrossRef]
- Xie, X.; Wang, Q.; Zhao, C.; Sun, Q.; Gu, H.; Li, J.; Tu, X.; Nie, B.; Sun, X.; Liu, Y.; et al. Neuromorphic Computing-Assisted Triboelectric Capacitive-Coupled Tactile Sensor Array for Wireless Mixed Reality Interaction. Acs Nano 2024, 18, 17041–17052. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.; Tripathi, B.; Jain, A.; Shehata, N. Vibrational energy harvesting and tactile sensing applications based on PVDF-TPU piezoelectric nanofibers. J. Mater. Sci. Mater. Electron. 2024, 35, 1–21. [Google Scholar] [CrossRef]
- Meng, Z.; Zhang, H.; Zhu, M.; Wei, X.; Cao, J.; Murtaza, I.; Ali, M.U.; Meng, H.; Xu, J. Lead Zirconate Titanate (a piezoelectric ceramic)-Based thermal and tactile bimodal organic transistor sensors. Org. Electron. 2020, 80, 105673. [Google Scholar] [CrossRef]
- Lee, T.I.; Jang, W.S.; Lee, E.; Kim, Y.S.; Wang, Z.L.; Baik, H.K.; Myoung, J.M. Ultrathin self-powered artificial skin. Energy Environ. Sci. 2014, 7, 3994–3999. [Google Scholar] [CrossRef]
- Alam, M.M.; Sultana, A.; Mandal, D. Biomechanical and Acoustic Energy Harvesting from TiO2 Nanoparticle Modulated PVDF Nanofiber Made High Performance Nanogenerator. ACS Appl. Energy Mater. 2018, 1, 3103–3112. [Google Scholar] [CrossRef]
- Yang, T.; Pan, H.; Tian, G.; Zhang, B.; Xiong, D.; Gao, Y.; Yan, C.; Chu, X.; Chen, N.; Zhong, S.; et al. Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics. Nano Energy 2020, 72, 104706. [Google Scholar] [CrossRef]
- Dong, K.; Peng, X.; An, J.; Wang, A.C.; Luo, J.; Sun, B.; Wang, J.; Wang, Z.L. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, T.; Cai, J.; Xu, L.; He, T.; Wang, T.; Tian, Y.; Li, L.; Peng, Y.; Lee, C. Wearable Triboelectric Sensors Enabled Gait Analysis and Waist Motion Capture for IoT-Based Smart Healthcare Applications. Adv. Sci. 2021, 9, 2103694. [Google Scholar] [CrossRef]
- Wei, X.; Li, H.; Yue, W.; Gao, S.; Chen, Z.; Li, Y.; Shen, G. A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter 2022, 5, 1481–1501. [Google Scholar] [CrossRef]
- Wei, C.; Cheng, R.; Ning, C.; Wei, X.; Peng, X.; Lv, T.; Sheng, F.; Dong, K.; Wang, Z.L. A Self-Powered Body Motion Sensing Network Integrated with Multiple Triboelectric Fabrics for Biometric Gait Recognition and Auxiliary Rehabilitation Training. Adv. Funct. Mater. 2023, 33, 2303562. [Google Scholar] [CrossRef]
- Fang, Y.; Zou, Y.; Xu, J.; Chen, G.; Zhou, Y.; Deng, W.; Zhao, X.; Roustaei, M.; Hsiai, T.K.; Chen, J. Ambulatory Cardiovascular Monitoring Via a Machine-Learning-Assisted Textile Triboelectric Sensor. Adv. Mater. 2021, 33, e2104178. [Google Scholar] [CrossRef] [PubMed]
- Sam-Daliri, O.; Faller, L.-M.; Farahani, M.; Roshanghias, A.; Araee, A.; Baniassadi, M.; Oberlercher, H.; Zangl, H. Impedance analysis for condition monitoring of single lap CNT-epoxy adhesive joint. Int. J. Adhes. Adhes. 2019, 88, 59–65. [Google Scholar] [CrossRef]
- Sam-Daliri, O.; Farahani, M.; Faller, L.-M.; Zangl, H. Structural health monitoring of defective single lap adhesive joints using graphene nanoplatelets. J. Manuf. Process. 2020, 55, 119–130. [Google Scholar] [CrossRef]
- Duan, L.; D’Hooge, D.R.; Cardon, L. Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application. Prog. Mater. Sci. 2020, 114, 100617. [Google Scholar] [CrossRef]
- Sun, T.; Tasnim, F.; McIntosh, R.T.; Amiri, N.; Solav, D.; Anbarani, M.T.; Sadat, D.; Zhang, L.; Gu, Y.; Karami, M.A.; et al. Decoding of facial strains via conformable piezoelectric interfaces. Nat. Biomed. Eng. 2020, 4, 954–972. [Google Scholar] [CrossRef]
- Xu, Q.Q.; Tao, Y.; Wang, Z.X.; Zeng, H.M.; Yang, J.X.; Li, Y.; Zhao, S.F.; Tang, P.Y.; Zhang, J.X.; Yan, M.Y.; et al. Highly Flexible, High-Performance, and Stretchable Piezoelectric Sensor Based on a Hierarchical Droplet-Shaped Ceramics with Enhanced Damage Tolerance. Adv. Mater. 2024, 36, 13. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, Y.; Qiao, M.; Ai, L.; Sun, K.; Mi, Q.; Zang, S.; Zuo, Y.; Yuan, X.; Wang, Q. Human motion monitoring in sports using wearable graphene-coated fiber sensors. Sens. Actuators A Phys. 2018, 274, 132–140. [Google Scholar] [CrossRef]
- Luo, J.; Zhang, L.; Wu, T.; Song, H.; Tang, C. Flexible piezoelectric pressure sensor with high sensitivity for electronic skin using near-field electrohydrodynamic direct-writing method. Extrem. Mech. Lett. 2021, 48, 101279. [Google Scholar] [CrossRef]
- Jia, C.; Zhu, Y.; Sun, F.; Zhao, T.; Xing, R.; Mao, Y.; Zhao, C. A Flexible and Stretchable Self-Powered Nanogenerator in Basketball Passing Technology Monitoring. Electronics 2021, 10, 2584. [Google Scholar] [CrossRef]
- Han, M.; Wang, H.; Yang, Y.; Liang, C.; Bai, W.; Yan, Z.; Li, H.; Xue, Y.; Wang, X.; Akar, B.; et al. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electron. 2019, 2, 26–35. [Google Scholar] [CrossRef]
- Du, S.; Zhou, N.; Gao, Y.; Xie, G.; Du, H.; Jiang, H.; Zhang, L.; Tao, J.; Zhu, J. Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing. Nano Res. 2020, 13, 2525–2533. [Google Scholar] [CrossRef]
- Chen, S.; Wu, N.; Ma, L.; Lin, S.; Yuan, F.; Xu, Z.; Li, W.; Wang, B.; Zhou, J. Noncontact Heartbeat and Respiration Monitoring Based on a Hollow Microstructured Self-Powered Pressure Sensor. ACS Appl. Mater. Interfaces 2018, 10, 3660–3667. [Google Scholar] [CrossRef] [PubMed]
- Petritz, A.; Karner-Petritz, E.; Uemura, T.; Schäffner, P.; Araki, T.; Stadlober, B.; Sekitani, T. Imperceptible energy harvesting device and biomedical sensor based on ultraflexible ferroelectric transducers and organic diodes. Nat. Commun. 2021, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Long, Z.; Zhong, T.; Liang, S.; Xing, L. A self-powered intelligent glove for real-time human-machine gesture interaction based on piezoelectric effect of T-ZnO/PVDF film. J. Phys. D Appl. Phys. 2022, 55, 194004. [Google Scholar] [CrossRef]
- Zhao, S.; Xie, L.; Song, Y.; Tang, Y.; Li, Z.; Shi, P.; Chen, C.; Liu, J. Flexible Skin Electrodes Based on Conductive Hydrogel for Hand Electromyography Sensing and Gesture Recognition: Exploring Conductivity and Mechanical Properties. IEEE Syst. Man. Cybern. Mag. 2024, 10, 28–40. [Google Scholar] [CrossRef]
- Xu, P.; Liu, J.; Liu, X.; Wang, X.; Zheng, J.; Wang, S.; Chen, T.; Wang, H.; Wang, C.; Fu, X.; et al. A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception. NPJ Flex. Electron. 2022, 6, 25. [Google Scholar] [CrossRef]
- Wang, S.; Xu, P.; Wang, X.; Zheng, J.; Liu, X.; Liu, J.; Chen, T.; Wang, H.; Xie, G.; Tao, J.; et al. Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception. Nano Energy 2022, 97, 107210. [Google Scholar] [CrossRef]
- Kong, K.; Wang, L.; Wu, H.; Le, Z.; Zhang, Y.; Wang, Z.; Yu, Z.; Wu, X.; Li, L.; Li, W.; et al. Skin-inspired multimodal tactile sensor aiming at smart space extravehicular multi-finger operations. Chem. Eng. J. 2024, 498, 154870. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Y.; Zhou, L. Novel Flexible PVDF-TrFE and PVDF-TrFE/ZnO Pressure Sensor: Fabrication, Characterization and Investigation. Micromachines 2021, 12, 602. [Google Scholar] [CrossRef]
- Du, Y.; Shen, P.; Liu, H.; Zhang, Y.; Jia, L.; Pu, X.; Yang, F.; Ren, T.; Chu, D.; Wang, Z.; et al. Multi-receptor skin with highly sensitive tele-perception somatosensory. Sci. Adv. 2024, 10, eadp8681. [Google Scholar] [CrossRef]
- Kang, K.; Jung, H.; An, S.; Baac, H.W.; Shin, M.; Son, D. Skin-like Transparent Polymer-Hydrogel Hybrid Pressure Sensor with Pyramid Microstructures. Polymers 2021, 13, 3272. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Parida, K.; Zhang, H.; Wang, X.; Li, Y.; Zhou, X.; Morris, S.A.; Liew, W.H.; Wang, H.; Li, T.; et al. Bond engineering of molecular ferroelectrics renders soft and high-performance piezoelectric energy harvesting materials. Nat. Commun. 2022, 13, 5607. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.-X.; Li, L.-W.; Huang, Y.-Z.; Rao, W.-X.; Jiang, H.-W.; Wang, J.; Zhang, H.-H.; He, H.-Z.; Qu, J.-P. Self-poled piezoelectric polymer composites via melt-state energy implantation. Nat. Commun. 2024, 15, 819. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Li, W.; Cheng, X.; Zhou, Y.; Yang, S.; Zhang, X.; Chen, C.; Yang, T.; Pan, H.; Xie, G.; et al. High-performance piezoelectric composites via β phase programming. Nat. Commun. 2022, 13, 4867. [Google Scholar] [CrossRef]
- Hua, Q.; Sun, J.; Liu, H.; Bao, R.; Yu, R.; Zhai, J.; Pan, C.; Wang, Z.L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 244. [Google Scholar] [CrossRef]
- Bae, G.Y.; Han, J.T.; Lee, G.; Lee, S.; Kim, S.W.; Park, S.; Kwon, J.; Jung, S.; Cho, K. Pressure/Temperature Sensing Bimodal Electronic Skin with Stimulus Discriminability and Linear Sensitivity. Adv. Mater. 2018, 30, e1803388. [Google Scholar] [CrossRef]
- Shao, B.; Lu, M.-H.; Wu, T.-C.; Peng, W.-C.; Ko, T.-Y.; Hsiao, Y.-C.; Chen, J.-Y.; Sun, B.; Liu, R.; Lai, Y.-C. Large-area, untethered, metamorphic, and omnidirectionally stretchable multiplexing self-powered triboelectric skins. Nat. Commun. 2024, 15, 1–14. [Google Scholar] [CrossRef]
- Costa Cornellà, A.; Hardman, D.; Costi, L.; Brancart, J.; Van Assche, G.; Iida, F. Variable sensitivity multimaterial robotic e-skin combining electronic and ionic conductivity using electrical impedance tomography. Sci. Rep. 2023, 13, 20004. [Google Scholar] [CrossRef]
- Xiao, T.; Qian, C.; Yin, R.X.; Wang, K.M.; Gao, Y.; Xuan, F.Z. 3D Printing of Flexible Strain Sensor Array Based on UV-Curable Multiwalled Carbon Nanotube/Elastomer Composite. Adv. Mater. Technol. 2021, 6, 10. [Google Scholar] [CrossRef]
- Khamis, H.; Xia, B.; Redmond, S.J. A novel optical 3D force and displacement sensor—Towards instrumenting the PapillArray tactile sensor. Sens. Actuators A Phys. 2019, 291, 174–187. [Google Scholar] [CrossRef]
- John, R.A.; Tiwari, N.; Bin Patdillah, M.I.; Kulkarni, M.R.; Tiwari, N.; Basu, J.; Bose, S.K.; Ankit; Yu, C.J.; Nirmal, A.; et al. Self healable neuromorphic memtransistor elements for decentralized sensory signal processing in robotics. Nat. Commun. 2020, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Liu, T.; Meng, X.; Luo, B.; Yuan, J.; Liu, Y.; Zhang, S.; Cai, C.; Gao, C.; Wang, J.; et al. Wearable Triboelectric Visual Sensors for Tactile Perception. Adv. Mater. 2023, 35, e2209117. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wang, B.; Wu, Z.; Wang, Z.L. An Open-Environment Tactile Sensing System: Toward Simple and Efficient Material Identification. Adv. Mater. 2022, 34, e2203073. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.L.; Zhou, Y.H.; Libanori, A.; Chen, G.R.; Yang, W.Q.; Chen, J. Piezoelectric nanogenerators for personalized healthcare. Chem. Soc. Rev. 2022, 51, 3380–3435. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, R.; Jia, Y.; Lu, W.; Mao, A. Flexible Piezoelectric Devices and Their Wearable Applications. J. Inorg. Mater. 2023, 38, 717–730. [Google Scholar]
- Zheng, P.; Wei, W.; Liang, Z.; Qin, B.; Tian, J.; Wang, J.; Qiao, R.; Ren, Y.; Chen, J.; Huang, C.; et al. Universal epitaxy of non-centrosymmetric two-dimensional single-crystal metal dichalcogenides. Nat. Commun. 2023, 14, 592. [Google Scholar] [CrossRef]
- Wu, W.Z.; Wen, X.N.; Wang, Z.L. Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active and Adaptive Tactile Imaging. Science 2013, 340, 952–957. [Google Scholar] [CrossRef]
- Park, J.; Ghosh, R.; Song, M.S.; Hwang, Y.; Tchoe, Y.; Saroj, R.K.; Ali, A.; Guha, P.; Kim, B.; Kim, S.-W.; et al. Individually addressable and flexible pressure sensor matrixes with ZnO nanotube arrays on graphene. NPG Asia Mater. 2022, 14, 1–13. [Google Scholar] [CrossRef]
- Song, M.; Liu, Y.; Yu, A.; Zhang, Y.; Zhai, J.; Wang, Z.L. Flexible Li-doped ZnO piezotronic transistor array for in-plane strain mapping. Nano Energy 2019, 55, 341–347. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, L.; Xiang, Y.; Li, M. Sensitivity enhancement of the tactile sensor based on hydrothermally grown ZnO nanorods modified by catalytic Au nanoparticles. Mater. Res. Express 2022, 9, 045004. [Google Scholar] [CrossRef]
- Deng, W.; Huang, L.; Zhang, H.; Tian, G.; Wang, S.; Yang, T.; Xiong, D.; Jin, L.; Yang, W. Discrete ZnO p-n homojunction piezoelectric arrays for self-powered human motion monitoring. Nano Energy 2024, 124, 109462. [Google Scholar] [CrossRef]
- Jiang, S.; Zhao, X.; Zhang, J.; Fang, B.; Chen, H.; Ma, L.; Ding, Z.; Wei, J.; Hao, N. Metal-doped functional zinc oxide nanosheets as flexible piezoelectric generator for self-powered mechanical sensing. Sens. Actuators A Phys. 2024, 371, 115337. [Google Scholar] [CrossRef]
- Ma, S.H.; Kumaresan, Y.; Dahiya, A.S.; Lorenzelli, L.; Dahiya, R.S. Flexible Tactile Sensors Using AlN and MOSFETs Based Ultra-Thin Chips. IEEE Sens. J. 2023, 23, 23988–23994. [Google Scholar] [CrossRef]
- Zhu, M.J.; Inomata, N.; Adachi, N.; Sakurai, A.; Nomura, M.; Ono, T. High-Gauge Factor Strain Sensor Based on Piezoelectric Aluminum Nitride Coupled to MOSFET. IEEE Sens. J. 2019, 19, 3626–3632. [Google Scholar] [CrossRef]
- You, J.; Wang, L.; Zhang, Y.; Lin, D.; Wang, B.; Han, Z.; Zhang, N.; Miao, T.; Liu, M.; Jiang, Z.; et al. Simulating tactile and visual multisensory behaviour in humans based on an MoS2 field effect transistor. Nano Res. 2023, 16, 7405–7412. [Google Scholar] [CrossRef]
- Sadaf, M.U.K.; Sakib, N.U.; Pannone, A.; Ravichandran, H.; Das, S. A bio-inspired visuotactile neuron for multisensory integration. Nat. Commun. 2023, 14, 1–12. [Google Scholar] [CrossRef]
- Ma, K.; Su, D.; Qin, B.; Li, J.; Zhong, J.; Zhang, C.; Deng, F.; Shen, G.; Yang, W.; Xin, Y.; et al. Ultra-sensitive and stable All-Fiber iontronic tactile sensors under high pressure for human movement monitoring and rehabilitation assessment. Chem. Eng. J. 2024, 486, 150017. [Google Scholar] [CrossRef]
- Lv, P.; Qian, J.; Yang, C.; Liu, T.; Wang, Y.; Wang, D.; Huang, S.; Cheng, X.; Cheng, Z. Flexible all-inorganic Sm-doped PMN-PT film with ultrahigh piezoelectric coefficient for mechanical energy harvesting, motion sensing, and human-machine interaction. Nano Energy 2022, 97, 107182. [Google Scholar] [CrossRef]
- Ahn, S.; Cho, Y.; Park, S.; Kim, J.; Sun, J.; Ahn, D.; Lee, M.; Kim, D.; Kim, T.; Shin, H.; et al. Wearable multimode sensors with amplified piezoelectricity due to the multi local strain using 3D textile structure for detecting human body signals. Nano Energy 2020, 74, 104932. [Google Scholar] [CrossRef]
- Tang, C.-Y.; Zhao, X.; Jia, J.; Wang, S.; Zha, X.-J.; Yin, B.; Ke, K.; Bao, R.-Y.; Liu, Z.-Y.; Wang, Y.; et al. Low-entropy structured wearable film sensor with piezoresistive-piezoelectric hybrid effect for 3D mechanical signal screening. Nano Energy 2021, 90, 106603. [Google Scholar] [CrossRef]
- Kim, J.; Jang, M.; Jeong, G.; Yu, S.; Park, J.; Lee, Y.; Cho, S.; Yeom, J.; Lee, Y.; Choe, A.; et al. MXene-enhanced β-phase crystallization in ferroelectric porous composites for highly-sensitive dynamic force sensors. Nano Energy 2021, 89, 106409. [Google Scholar] [CrossRef]
- Gogurla, N.; Roy, B.; Kim, S. Self-powered artificial skin made of engineered silk protein hydrogel. Nano Energy 2020, 77, 105242. [Google Scholar] [CrossRef]
- Tang, T.X.; Shen, Z.H.; Wang, J.; Xu, S.Q.; Jiang, J.X.; Chang, J.H.; Guo, M.F.; Fan, Y.J.; Xiao, Y.; Dong, Z.H.; et al. Stretchable polymer composites with ultrahigh piezoelectric performance. Natl. Sci. Rev. 2023, 10, nwad177. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Sun, Y.; Tian, H.; Li, D.; Liu, H. Functional gradient piezoelectric composite nanogenerator for self-powered touch sensor. Phys. Scr. 2023, 98, 125917. [Google Scholar] [CrossRef]
- Nassar, H.; Khandelwal, G.; Chirila, R.; Karagiorgis, X.; Ginesi, R.E.; Dahiya, A.S.; Dahiya, R. Fully 3D printed piezoelectric pressure sensor for dynamic tactile sensing. Addit. Manuf. 2023, 71, 103601. [Google Scholar] [CrossRef]
- Waga, M.; Matsubara, T.; Konyo, M.; Takeshita, T.; Takei, Y.; Kobayashi, T.; Tadokoro, S. Representing Fine Texture of Pencil Hardness by High-Frequency Vibrotactile Equivalence Conversion Using Ultra-Thin PZT-MEMS Vibrators. IEEE Trans. Haptics 2024, 17, 8–13. [Google Scholar] [CrossRef]
- Shankhdhar, S.; Arora, D.; Rahman, H.; Kumar, R.; Ranjan, B.; Kaushlendra, K.; Kaur, D. Harnessing the mechanical and magnetic energy with PMN-PT/Ni-Mn-In-based flexible piezoelectric nanogenerator. Nano Energy 2025, 133, 110441. [Google Scholar] [CrossRef]
- Niu, X.; Jia, W.; Qian, S.; Zhu, J.; Zhang, J.; Hou, X.; Mu, J.; Geng, W.; Cho, J.; He, J.; et al. High-Performance PZT-Based Stretchable Piezoelectric Nanogenerator. ACS Sustain. Chem. Eng. 2018, 7, 979–985. [Google Scholar] [CrossRef]
- Zhang, J.J.; Wang, X.Q.; Chen, X.H.; Xia, X.D.; Weng, G.J. Piezoelectricity enhancement in graphene/polyvinylidene fluoride composites due to graphene-induced α → β crystal phase transition. Energy Conv. Manag. 2022, 269, 15. [Google Scholar] [CrossRef]
- Qi, F.; Xu, L.; He, Y.; Yan, H.; Liu, H. PVDF-Based Flexible Piezoelectric Tactile Sensors: Review. Cryst. Res. Technol. 2023, 58, 2300119. [Google Scholar] [CrossRef]
- Huang, X.; Ma, Z.; Xia, W.; Hao, L.; Wu, Y.; Lu, S.; Luo, Y.; Qin, L.; Dong, G. A high-sensitivity flexible piezoelectric tactile sensor utilizing an innovative rigid-in-soft structure. Nano Energy 2024, 129, 110019. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, J.; Zhang, C.; Sun, M.; Han, S.; Zhang, R.; Liang, N.; Sun, D.; Liu, H. Energy-efficient, fully flexible, high-performance tactile sensor based on piezotronic effect: Piezoelectric signal amplified with organic field-effect transistors. Nano Energy 2020, 76, 105050. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, S.; Li, L.; Wang, L.; Cui, S.; Wang, S.; Lou, Z.; Shen, G. All-Flexible Artificial Reflex Arc Based on Threshold-Switching Memristor. Adv. Funct. Mater. 2022, 32, 2200241. [Google Scholar] [CrossRef]
- Adhikary, P.; Biswas, A.; Mandal, D. Improved sensitivity of wearable nanogenerators made of electrospun Eu3+ doped P(VDF-HFP)/graphene composite nanofibers for self-powered voice recognition. Nanotechnology 2016, 27, 495501. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, B.; Hasan, M.T.; Martin, A.; Mahbub, R.; Shield, J.E.; Rangari, V. Fabrication and magnetoelectric investigation of flexible PVDF-TrFE/cobalt ferrite nanocomposite films. Mater. Res. Express 2022, 9, 046302. [Google Scholar] [CrossRef]
- Chun, K.-Y.; Seo, S.; Han, C.-S. Self-Powered, Stretchable, and Wearable Ion Gel Mechanoreceptor Sensors. ACS Sens. 2021, 6, 1940–1948. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, J.; Xu, F.; Wang, Q.; Liu, W.; Chen, Q.; Wang, C.; Zhang, X.; Zhu, G. VDF-content-guided selection of piezoelectric P(VDF-TrFE) films in sensing and energy harvesting applications. Energy Conv. Manag. 2020, 211, 112771. [Google Scholar] [CrossRef]
- Yuan, X.; Gao, X.; Shen, X.; Yang, J.; Li, Z.; Dong, S. A 3D-printed, alternatively tilt-polarized PVDF-TrFE polymer with enhanced piezoelectric effect for self-powered sensor application. Nano Energy 2021, 85, 105985. [Google Scholar] [CrossRef]
- Zhang, G.; Liao, Q.; Zhang, Z.; Liang, Q.; Zhao, Y.; Zheng, X.; Zhang, Y. Novel Piezoelectric Paper-Based Flexible Nanogenerators Composed of BaTiO3 Nanoparticles and Bacterial Cellulose. Adv. Sci. 2015, 3, 1500257. [Google Scholar] [CrossRef]
- Lu, K.; Huang, W.; Guo, J.; Gong, T.; Wei, X.; Lu, B.-W.; Liu, S.-Y.; Yu, B. Ultra-Sensitive Strain Sensor Based on Flexible Poly(vinylidene fluoride) Piezoelectric Film. Nanoscale Res. Lett. 2018, 13, 83. [Google Scholar] [CrossRef]
- Wang, Z.; Leng, H.; Li, N.; Yao, T. Investigation of Slip Sensing Technology Based on the Conductive Sponge-PVDF. Adv. Mater. Technol. 2022, 7, 2200260. [Google Scholar] [CrossRef]
- Nardekar, S.S.; Krishnamoorthy, K.; Pazhamalai, P.; Sahoo, S.; Jae Kim, S. MoS2 quantum sheets-PVDF nanocomposite film based self-poled piezoelectric nanogenerators and photovoltaically self-charging power cell. Nano Energy 2022, 93, 106869. [Google Scholar] [CrossRef]
- Deng, W.; Yang, T.; Jin, L.; Yan, C.; Huang, H.; Chu, X.; Wang, Z.; Xiong, D.; Tian, G.; Gao, Y.; et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy 2019, 55, 516–525. [Google Scholar] [CrossRef]
- Fu, R.; Tu, L.; Zhou, Y.; Fan, L.; Zhang, F.; Wang, Z.; Xing, J.; Chen, D.; Deng, C.; Tan, G.; et al. A Tough and Self-Powered Hydrogel for Artificial Skin. Chem. Mater. 2019, 31, 9850–9860. [Google Scholar] [CrossRef]
- Hu, Z.; Li, J.; Wei, X.; Wang, C.; Cao, Y.; Gao, Z.; Han, J.; Li, Y. Enhancing Strain-Sensing Properties of the Conductive Hydrogel by Introducing PVDF-TrFE. ACS Appl. Mater. Interfaces 2022, 14, 45853–45868. [Google Scholar] [CrossRef]
- Ryu, C.; Hajra, S.; Sahu, M.; Jung, S.I.; Jang, I.R.; Kim, H.J. PVDF-bismuth titanate based self-powered flexible tactile sensor for biomechanical applications. Mater. Lett. 2022, 309, 131308. [Google Scholar] [CrossRef]
- Wang, C.; Li, J.; Fang, Z.Z.; Hu, Z.R.; Wei, X.T.; Cao, Y.; Han, J.; Li, Y.C. Temperature-Stress Bimodal Sensing Conductive Hydrogel-Liquid Metal by Facile Synthesis for Smart Wearable Sensor. Macromol. Rapid Commun. 2022, 43, 11. [Google Scholar] [CrossRef]
- Liu, J.; Bao, S.; Ling, Q.; Fan, X.; Gu, H. Ultra-fast preparation of multifunctional conductive hydrogels with high mechanical strength, self-healing and self-adhesive properties based on Tara Tannin-Fe3+ dynamic redox system for strain sensors applications. Polymer 2022, 240, 124513. [Google Scholar] [CrossRef]
- Zhang, J.-w.; Zhang, Y.; Li, Y.-y.; Ye, X.; Wang, P.; Xu, Y. Fabrication of a Conductive Poly(3,4-ethylenedioxythiophene)-Coated Polyester Nonwoven Fabric and Its Application in Flexible Piezoresistive Pressure Sensors. ACS Appl. Electron. Mater. 2021, 3, 3177–3184. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Liu, T.; Lu, Y.; Shang, C.; Ding, X.; Zhang, J.; Feng, Y.; Xu, F.-J. Wearable, Washable, and Highly Sensitive Piezoresistive Pressure Sensor Based on a 3D Sponge Network for Real-Time Monitoring Human Body Activities. ACS Appl. Mater. Interfaces 2021, 13, 46848–46857. [Google Scholar] [CrossRef]
- Veeralingam, S.; Badhulika, S. Low-density, stretchable, adhesive PVDF-polypyrrole reinforced gelatin based organohydrogel for UV photodetection, tactile and strain sensing applications. Mater. Res. Bull. 2022, 150, 111779. [Google Scholar] [CrossRef]
- Lu, J.; Hu, S.; Li, W.; Wang, X.; Mo, X.; Gong, X.; Liu, H.; Luo, W.; Dong, W.; Sima, C.; et al. A Biodegradable and Recyclable Piezoelectric Sensor Based on a Molecular Ferroelectric Embedded in a Bacterial Cellulose Hydrogel. ACS Nano 2022, 16, 3744–3755. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Sun, Q.; Long, C.; Hu, X.; Wang, N.; Guo, H.; Zeng, W.; Xiong, Y.; Wei, N. Enhanced pressure sensors in supercapacitive–piezoelectric mixed mode with jelly-gel as dielectric layer. J. Mater. Sci. 2022, 57, 3553–3564. [Google Scholar] [CrossRef]
- Shu, S.; Wang, Z.; Chen, P.; Zhong, J.; Tang, W.; Wang, Z.L. Machine-Learning Assisted Electronic Skins Capable of Proprioception and Exteroception in Soft Robotics. Adv. Mater. 2023, 35, e2211385. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, Z.; Xu, L.; Gao, F.; Zhao, B.; Ouyang, T.; Kang, Z.; Liao, Q.; Zhang, Y. Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition. Nano Energy 2021, 85, 106001. [Google Scholar] [CrossRef]
- Yan, C.; Li, X.; Wang, X.; Liu, G.; Yang, Z.; Tian, H.; Wang, C.; Chen, X.; Shao, J. Extremely Stable, Multidirectional, All-in-One Piezoelectric Bending Sensor with Cycle up to Million Level. Adv. Funct. Mater. 2024, 34, 2409093. [Google Scholar] [CrossRef]
- Lin, W.; Wang, B.; Peng, G.; Shan, Y.; Hu, H.; Yang, Z. Skin-Inspired Piezoelectric Tactile Sensor Array with Crosstalk-Free Row+Column Electrodes for Spatiotemporally Distinguishing Diverse Stimuli. Adv. Sci. 2021, 8, 2002817. [Google Scholar] [CrossRef]
- Zhen, L.; Cui, M.; Bai, X.; Jiang, J.; Ma, X.; Wang, M.; Liu, J.; Yang, B. Thin, flexible hybrid-structured piezoelectric sensor array with enhanced resolution and sensitivity. Nano Energy 2024, 131, 110188. [Google Scholar] [CrossRef]
- Shin, Y.E.; Park, Y.J.; Ghosh, S.K.; Lee, Y.; Park, J.; Ko, H. Ultrasensitive Multimodal Tactile Sensors with Skin-Inspired Microstructures through Localized Ferroelectric Polarization. Adv. Sci. 2022, 9, 11. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, H.; Mo, J.; Chen, S.; Xie, Y.; Ma, S.; Chen, R.; Luo, T.; Ling, W.; Qin, L.; et al. Finger-inspired rigid-soft hybrid tactile sensor with superior sensitivity at high frequency. Nat. Commun. 2022, 13, 5076. [Google Scholar] [CrossRef]
- Ge, J.; Wang, X.; Drack, M.; Volkov, O.; Liang, M.; Cañón Bermúdez, G.S.; Illing, R.; Wang, C.; Zhou, S.; Fassbender, J.; et al. A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat. Commun. 2019, 10, 4405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, Q.; He, J.; Huo, Z.; Zhou, R.; Han, X.; Jia, M.; Pan, C.; Wang, Z.L.; Zhai, J. Localizing strain via micro-cage structure for stretchable pressure sensor arrays with ultralow spatial crosstalk. Nat. Commun. 2023, 14, 1252. [Google Scholar] [CrossRef] [PubMed]
- Seong, J.; Bak, B.U.; Jin, J.; Kim, J. Tribo-piezoelectric synergistic BaTiO3/PDMS micropyramidal structure for high-performance energy harvester and high-sensitivity tactile sensing. Nano Energy 2024, 122, 8. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, Y.; Ma, Z.; He, Q.; He, Y.; Zhou, T.; Zhang, D. Highly Sensitive P(VDF-TrFE)/BTO Nanofiber-Based Pressure Sensor with Dense Stress Concentration Microstructures. ACS Appl. Polym. Mater. 2020, 2, 4399–4404. [Google Scholar] [CrossRef]
- Yu, J.; Hou, X.; Cui, M.; Shi, S.; He, J.; Sun, Y.; Wang, C.; Chou, X. Flexible PDMS-based triboelectric nanogenerator for instantaneous force sensing and human joint movement monitoring. Sci. China-Mater. 2019, 62, 1423–1432. [Google Scholar] [CrossRef]
- Fan, L.; Yang, X.; Sun, H. Pressure Sensors Combining Porous Electrodes and Electrospun Nanofiber-Based Ionic Membranes. ACS Appl. Nano Mater. 2023, 6, 3560–3571. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, L.; Luo, G.; Li, M.; Han, X.; Xia, Y.; Li, Z.; Lin, Q.; Yang, P.; Dai, L.; et al. All electrospun fabrics based piezoelectric tactile sensor. Nanotechnology 2022, 33, 415502. [Google Scholar] [CrossRef]
- Wei, C.; Zhou, H.; Zheng, B.; Zheng, H.; Shu, Q.; Du, H.; Ma, A.; Liu, H. Fully flexible and mechanically robust tactile sensors containing core-shell structured fibrous piezoelectric mat as sensitive layer. Chem. Eng. J. 2023, 476, 146654. [Google Scholar] [CrossRef]
- Lu, L.; Yang, B.; Zhai, Y.; Liu, J. Electrospinning core-sheath piezoelectric microfibers for self-powered stitchable sensor. Nano Energy 2020, 76, 104966. [Google Scholar] [CrossRef]
- Singh, R.K.; Lye, S.W.; Miao, J. Holistic investigation of the electrospinning parameters for high percentage of β-phase in PVDF nanofibers. Polymer 2021, 214, 123366. [Google Scholar] [CrossRef]
- Islam, M.N.; Rupom, R.H.; Adhikari, P.R.; Demchuk, Z.; Popov, I.; Sokolov, A.P.; Wu, H.F.; Advincula, R.C.; Dahotre, N.; Jiang, Y.; et al. Boosting Piezoelectricity by 3D Printing PVDF-MoS2 Composite as a Conformal and High-Sensitivity Piezoelectric Sensor. Adv. Funct. Mater. 2023, 33, 2302946. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Zeng, X.; Huang, J.; Wen, Y.; Brugger, J.; Zhang, X. All-Printed Finger-Inspired Tactile Sensor Array for Microscale Texture Detection and 3D Reconstruction. Adv. Sci. 2024, 11, 2400479. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Huang, X.; Zhang, L.; Zhang, Y.; Yu, Z.; Chen, C.; Ye, Y.; Guo, S. Robust superhydrophobic wearable piezoelectric nanogenerators for self-powered body motion sensors. Nano Energy 2023, 107, 108095. [Google Scholar] [CrossRef]
- Ye, J.; Wilson, D.A.; Tu, Y.; Peng, F. 3D-Printed Micromotors for Biomedical Applications. Adv. Mater. Technol. 2020, 5, 2000435. [Google Scholar] [CrossRef]
- Liu, C.; Huang, N.; Xu, F.; Tong, J.; Chen, Z.; Gui, X.; Fu, Y.; Lao, C. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin. Polymers 2018, 10, 629. [Google Scholar] [CrossRef]
- Hassan, M.S.; Zaman, S.; Dantzler, J.Z.R.; Leyva, D.H.; Mahmud, M.S.; Ramirez, J.M.; Gomez, S.G.; Lin, Y. 3D Printed Integrated Sensors: From Fabrication to Applications-A Review. Nanomaterials 2023, 13, 3148. [Google Scholar] [CrossRef]
- Chen, F.; Shi, S.; Xue, S.; Hu, H.; Zhang, Z.; Fan, X.; Zhang, M.; Wang, X.; Zhao, Z.; Gao, H.; et al. Recent Advances and Challenges in Multi-photon 3D Nanoprinting. Engineering 2024, 9, 28. [Google Scholar] [CrossRef]
- Wei, Y.; Li, B.; Domingos, M.; Qian, Z.; Zhu, Y.; Yan, L.; Ren, L.; Wei, G. Fully 3D printed flexible, conformal and multi-directional tactile sensor with integrated biomimetic and auxetic structure. Commun. Eng. 2023, 2, 80. [Google Scholar] [CrossRef]
- Chang, S.-M.; Hur, S.; Park, J.; Lee, D.-G.; Shin, J.; Kim, H.S.; Song, S.E.; Baik, J.M.; Kim, M.; Song, H.-C.; et al. Optimization of piezoelectric polymer composites and 3D printing parameters for flexible tactile sensors. Addit. Manuf. 2023, 67, 103470. [Google Scholar] [CrossRef]
- Paimard, G.; Ghasali, E.; Baeza, M. Screen-Printed Electrodes: Fabrication, Modification, and Biosensing Applications. Chemosensors 2023, 11, 113. [Google Scholar] [CrossRef]
- Maddipatla, D.; Narakathu, B.B.; Atashbar, M. Recent Progress in Manufacturing Techniques of Printed and Flexible Sensors: A Review. Biosensors 2020, 10, 199. [Google Scholar] [CrossRef] [PubMed]
- Jo, E.-B.; Lee, Y.-A.; Cho, Y.-A.; Günther, P.A.; Gebhardt, S.E.; Neubert, H.; Kim, H.-S. The 0-3 Lead Zirconate-Titanate (PZT)/Polyvinyl-Butyral (PVB) Composite for Tactile Sensing. Sensors 2023, 23, 1649. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Lu, L.; Chen, Y.; Liu, J.; Yang, B. Flexible P(VDF-TrFE) Shared Bottom Electrode Sensor Array Assisted with Machine Learning for Motion Detection. Coatings 2020, 10, 1094. [Google Scholar] [CrossRef]
- Ma, S.; Wang, Z.; Zhu, Y.; Tang, Y.; Fan, G.; Ma, B.; Ye, T.; Wei, L. Micro/nanofiber fabrication technologies for wearable sensors: A review. J. Micromech. Microeng. 2022, 32, 064002. [Google Scholar] [CrossRef]
- Ding, H.; Xin, Z.; Yang, Y.; Luo, Y.; Xia, K.; Wang, B.; Sun, Y.; Wang, J.; Zhang, Y.; Wu, H.; et al. Ultrasensitive, Low-Voltage Operational, and Asymmetric Ionic Sensing Hydrogel for Multipurpose Applications. Adv. Funct. Mater. 2020, 30, 1909616. [Google Scholar] [CrossRef]
- Noor, A.; Sun, M.; Zhang, X.; Li, S.; Dong, F.; Wang, Z.; Si, J.; Zou, Y.; Xu, M. Recent advances in triboelectric tactile sensors for robot hand. Mater. Today Phys. 2024, 46, 101496. [Google Scholar] [CrossRef]
- Lv, J.; Luo, L.; Chen, J.; Liu, S.; Chen, M.; Wang, J.; Wei, H.; Lu, Q. Design and Fabrication of Flexible Composite Tactile Sensors for Robotic Soft Grippers. IEEE Sens. J. 2024, 24, 2482–2490. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, C.; Dong, T.; Liu, X.; Chen, P.; Yu, X.; Yue, L.; Wang, Z. Flexible Micro-Nano Fiber Sensors for Tactile Sensing. IEEE Sens. J. 2024, 24, 4458–4463. [Google Scholar] [CrossRef]
- Li, J.; Fang, Z.; Wei, D.; Liu, Y. Flexible Pressure, Humidity, and Temperature Sensors for Human Health Monitoring. Adv. Healthc. Mater. 2024, 13, e2401532. [Google Scholar] [CrossRef]
- Dagdeviren, C.; Su, Y.; Joe, P.; Yona, R.; Liu, Y.; Kim, Y.-S.; Huang, Y.; Damadoran, A.R.; Xia, J.; Martin, L.W.; et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 2014, 5, 4496. [Google Scholar] [CrossRef]
- Zou, Y.; Liao, J.; Ouyang, H.; Jiang, D.; Zhao, C.; Li, Z.; Qu, X.; Liu, Z.; Fan, Y.; Shi, B.; et al. A flexible self-arched biosensor based on combination of piezoelectric and triboelectric effects. Appl. Mater. Today 2020, 20, 100699. [Google Scholar] [CrossRef]
- Yi, Z.; Liu, Z.; Li, W.; Ruan, T.; Chen, X.; Liu, J.; Yang, B.; Zhang, W. Piezoelectric Dynamics of Arterial Pulse for Wearable Continuous Blood Pressure Monitoring. Adv. Mater. 2022, 34, e2110291. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shao, H.-Q.; Liu, Y.; Tang, C.-Y.; Zhao, X.; Ke, K.; Bao, R.-Y.; Yang, M.-B.; Yang, W. Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor. Compos. Sci. Technol. 2021, 202, 108600. [Google Scholar] [CrossRef]
- He, Z.; Hua, H.; Zou, Z.; Shu, L.; Wang, T.; Sun, W.; Xu, X.; Tong, Z. A facilely prepared notch-insensitive nanocomposite organohydrogel-based flexible wearable device for long-term outdoor human motion monitoring and recognition. J. Mater. Chem. C 2023, 11, 2316–2327. [Google Scholar] [CrossRef]
- Liu, W.; Long, Z.; Yang, G.; Xing, L. A Self-Powered Wearable Motion Sensor for Monitoring Volleyball Skill and Building Big Sports Data. Biosensors 2022, 12, 60. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, F.; Jia, C.; Zhao, T.; Mao, Y. A Stretchable and Self-Healing Hybrid Nano-Generator for Human Motion Monitoring. Nanomaterials 2021, 12, 104. [Google Scholar] [CrossRef]
- Yao, D.; Cui, H.; Hensleigh, R.; Smith, P.; Alford, S.; Bernero, D.; Bush, S.; Mann, K.; Wu, H.F.; Chin-Nieh, M.; et al. Achieving the Upper Bound of Piezoelectric Response in Tunable, Wearable 3D Printed Nanocomposites. Adv. Funct. Mater. 2019, 29, 1903866. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, D.; Yan, Y.; Qu, Z.; Zhao, H.; Li, X.; Cao, Y.; Lang, C.; Akram, W.; Sun, Z.; et al. A Self-powered Tennis Training System Based on Micro-Nano Structured Sensing Yarn Arrays. Adv. Funct. Mater. 2024, 35, 2414395. [Google Scholar] [CrossRef]
- Lei, H.; Yin, Z.Y.; Huang, P.H.; Gao, X.; Zhao, C.; Wen, Z.; Sun, X.H.; Wang, S.D. Intelligent Tribotronic Transistors Toward Tactile Near-Sensor Computing. Adv. Funct. Mater. 2024, 2401913. [Google Scholar] [CrossRef]
- Qin, L.; Zhang, Y. Roughness discrimination with bio-inspired tactile sensor manually sliding on polished surfaces. Sens. Actuators A Phys 2018, 279, 433–441. [Google Scholar] [CrossRef]
- Gu, G.; Zhang, N.; Chen, C.; Xu, H.; Zhu, X. Soft Robotics Enables Neuroprosthetic Hand Design. Acs Nano 2023, 17, 9661–9672. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Antwi-Afari, M.F.; Fadaie, S.; Mi, H.-Y.; Anwer, S.; Liu, J. Self-powered wearable Internet of Things sensors for human-machine interfaces: A systematic literature review and science mapping analysis. Nano Energy 2024, 131, 110252. [Google Scholar] [CrossRef]
- Gao, Z.; Chang, L.; Ren, B.; Han, J.; Li, J. Enhanced braille recognition based on piezoresistive and piezoelectric dual-mode tactile sensors. Sens. Actuators A Phys. 2024, 366, 115000. [Google Scholar] [CrossRef]
- Zhu, M.; Sun, Z.; Zhang, Z.; Shi, Q.; He, T.; Liu, H.; Chen, T.; Lee, C. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci. Adv. 2020, 6, eaaz8693. [Google Scholar] [CrossRef]
- Yan, C.; Li, X.; Yang, Z.; Wang, X.; Ran, H.; Zhang, R.; Tian, H.; Wang, C.; Chen, X.; Shao, J. Electrowetting-assisted printing of 3D-architectured microelectrodes inside flexible piezoelectric films for sensitive, robust responses to bending deformation. Mater. Horiz. 2023, 10, 3140–3152. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Li, Y.; Yu, Y.; Hu, Q.; Du, W.; Lin, D. Recent Progress in Flexible Piezoelectric Tactile Sensors: Materials, Structures, Fabrication, and Application. Sensors 2025, 25, 964. https://doi.org/10.3390/s25030964
Tang J, Li Y, Yu Y, Hu Q, Du W, Lin D. Recent Progress in Flexible Piezoelectric Tactile Sensors: Materials, Structures, Fabrication, and Application. Sensors. 2025; 25(3):964. https://doi.org/10.3390/s25030964
Chicago/Turabian StyleTang, Jingyao, Yiheng Li, Yirong Yu, Qing Hu, Wenya Du, and Dabin Lin. 2025. "Recent Progress in Flexible Piezoelectric Tactile Sensors: Materials, Structures, Fabrication, and Application" Sensors 25, no. 3: 964. https://doi.org/10.3390/s25030964
APA StyleTang, J., Li, Y., Yu, Y., Hu, Q., Du, W., & Lin, D. (2025). Recent Progress in Flexible Piezoelectric Tactile Sensors: Materials, Structures, Fabrication, and Application. Sensors, 25(3), 964. https://doi.org/10.3390/s25030964