Recent Advance and Application of Wearable Inertial Sensors in Motion Analysis
Author Contributions
Funding
Conflicts of Interest
List of Contributions
- Castiglia, S.F.; Trabassi, D.; Conte, C.; Ranavolo, A.; Coppola, G.; Sebastianelli, G.; Abagnale, C.; Barone, F.; Bighiani, F.; De Icco, R.; et al. Multiscale Entropy Algorithms to Analyze Complexity and Variability of Trunk Accelerations Time Series in Subjects with Parkinson’s Disease. Sensors 2023, 23, 4983. https://doi.org/10.3390/s23104983.
- Suau, Q.; Bianchini, E.; Bellier, A.; Chardon, M.; Milane, T.; Hansen, C.; Vuillerme, N. Current Knowledge about ActiGraph GT9X Link Activity Monitor Accuracy and Validity in Measuring Steps and Energy Expenditure: A Systematic Review. Sensors 2024, 24, 825. https://doi.org/10.3390/s24030825.
- Rekant, J.; Ortmeyer, H.; Giffuni, J.; Friedman, B.; Addison, O. Physical Functioning, Physical Activity, and Variability in Gait Performance during the Six-Minute Walk Test. Sensors 2024, 24, 4656. https://doi.org/10.3390/s24144656.
- Ortega-Bastidas, P.; Gómez, B.; Aqueveque, P.; Luarte-Martínez, S.; Cano-de-la-Cuerda, R. Instrumented Timed Up and Go Test (ITUG)—More Than Assessing Time to Predict Falls: A Systematic Review. Sensors 2023, 23, 3426. https://doi.org/10.3390/s23073426.
- Huang, C.; Fukushi, K.; Wang, Z.; Nihey, F.; Kajitani, H.; Nakahara, K. Method for Estimating Temporal Gait Parameters Concerning Bilateral Lower Limbs of Healthy Subjects Using a Single In-Shoe Motion Sensor through a Gait Event Detection Approach. Sensors 2022, 22, 351. https://doi.org/10.3390/s22010351.
- Yang, S.; Koo, B.; Lee, S.; Jang, D.J.; Shin, H.; Choi, H.J.; Kim, Y. Determination of Gait Events and Temporal Gait Parameters for Persons with a Knee–Ankle–Foot Orthosis. Sensors 2024, 24, 964. https://doi.org/10.3390/s24030964.
- Wang, Y.; Fehr, K.H.; Adamczyk, P.G. Impact-Aware Foot Motion Reconstruction and Ramp/Stair Detection Using One Foot-Mounted Inertial Measurement Unit. Sensors 2024, 24, 1480. https://doi.org/10.3390/s24051480.
- Dziadzko, M.; Péneaud, A.; Bouvet, L.; Robert, T.; Fradet, L.; Desseauve, D. The Potential Role of Wearable Inertial Sensors in Laboring Women with Walking Epidural Analgesia. Sensors 2024, 24, 1904. https://doi.org/10.3390/s24061904.
- Nierwińska, K.; Myśliwiec, A.; Konarska-Rawluk, A.; Lipowicz, A.; Małecki, A.; Knapik, A. SMART System in the Assessment of Exercise Tolerance in Adults. Sensors 2023, 23, 9624. https://doi.org/10.3390/s23249624.
- Khan, A.; Galarraga, O.; Garcia-Salicetti, S.; Vigneron, V. Phase-Based Gait Prediction after Botulinum Toxin Treatment Using Deep Learning. Sensors 2024, 24, 5343. https://doi.org/10.3390/s24165343.
- McCreath Frangakis, A.L.; Lemaire, E.D.; Burger, H.; Baddour, N. L Test Subtask Segmentation for Lower-Limb Amputees Using a Random Forest Algorithm. Sensors 2024, 24, 4953. https://doi.org/10.3390/s24154953.
- Ajdaroski, M.; Esquivel, A. Can Wearable Sensors Provide Accurate and Reliable 3D Tibiofemoral Angle Estimates during Dynamic Actions? Sensors 2023, 23, 6627. https://doi.org/10.3390/s23146627.
- Cerfoglio, S.; Capodaglio, P.; Rossi, P.; Conforti, I.; D’Angeli, V.; Milani, E.; Galli, M.; Cimolin, V. Evaluation of Upper Body and Lower Limbs Kinematics through an IMU-Based Medical System: A Comparative Study with the Optoelectronic System. Sensors 2023, 23, 6156. https://doi.org/10.3390/s23136156.
- García-Arrabé, M.; Giménez, M.J.; Moriceau, J.; Fevre, A.; Roy, J.S.; González-de-la-Flor, Á.; de la Plaza San Frutos, M. Assessing the Impact of COVID-19 on Amateur Runners’ Performance: An Analysis through Monitoring Devices. Sensors 2024, 24, 2635. https://doi.org/10.3390/s24082635.
- Presley, B.M.; Sklar, J.C.; Hazelwood, S.J.; Berg-Johansen, B.; Klisch, S.M. Balance Assessment Using a Smartwatch Inertial Measurement Unit with Principal Component Analysis for Anatomical Calibration. Sensors 2023, 23, 4585. https://doi.org/10.3390/s23104585.
- Belalcazar-Bolaños, E.A.; Torricelli, D.; Pons, J.L. Automatic Detection of Magnetic Disturbances in Magnetic Inertial Measurement Unit Sensors Based on Recurrent Neural Networks. Sensors 2023, 23, 9683. https://doi.org/10.3390/s23249683.
- Deprez, K.; De Baecke, E.; Tijskens, M.; Schoeters, R.; Velghe, M.; Thielens, A. A Circular, Wireless Surface-Electromyography Array. Sensors 2024, 24, 1119. https://doi.org/10.3390/s24041119.
- Mohamed, S.A.; Martinez-Hernandez, U. A Light-Weight Artificial Neural Network for Recognition of Activities of Daily Living. Sensors 2023, 23, 5854. https://doi.org/10.3390/s23135854.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gastaldi, L.; Digo, E. Recent Advance and Application of Wearable Inertial Sensors in Motion Analysis. Sensors 2025, 25, 818. https://doi.org/10.3390/s25030818
Gastaldi L, Digo E. Recent Advance and Application of Wearable Inertial Sensors in Motion Analysis. Sensors. 2025; 25(3):818. https://doi.org/10.3390/s25030818
Chicago/Turabian StyleGastaldi, Laura, and Elisa Digo. 2025. "Recent Advance and Application of Wearable Inertial Sensors in Motion Analysis" Sensors 25, no. 3: 818. https://doi.org/10.3390/s25030818
APA StyleGastaldi, L., & Digo, E. (2025). Recent Advance and Application of Wearable Inertial Sensors in Motion Analysis. Sensors, 25(3), 818. https://doi.org/10.3390/s25030818