Research on EV Crawler-Type Soil Sample Robot Using GNSS Information
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field of the Experiment
2.2. EV Crawler-Type Soil Sampling Robot
2.3. Equipment Used in Autonomous Driving System
2.4. Autonomous Driving System
2.5. Create the Route Map
ptALLH = [A_lat,A_lon,A_hight]; ptBLLH = [B_lat,B_lon,B_hight]; ptBenu = lla2enu(ptBLLH,ptALLH,’flat’); ptA = [0, 0]’; ptB = [ptBenu(1),ptBenu(2)]’; vAB = ptB − ptA; nAB = norm(vAB); ptNums = floor(nAB/10); %10 is the space of point to point eAB = vAB/nAB; ex = eAB(1); ey = eAB(2); mapPoint = zeros(firstpointnumber,lastpointnumber); [m,n,z] = size (mapPoint); for i = 1:n newpt = [(i − 3) × 10, 0, 0]’; % 3 is total number of pathes mapPoint(:,i) = newpt; end formatted_points = sprintf(‘%.10f,%.10f,%.10f¥n’, mapPoint.’); rot = [ex, -ey,0; ey, ex,0; 0,0,1]; mapPoint = rot × mapPoint; mapPoint1 = mapPoint’; dxdydz = [0,9,0]’; dxdydz = rot × dxdydz; [m,n,z] = size(mapPoint1); dxdydzOffset = ones(m,n,z). × dxdydz’; mapPoint2 = mapPoint1 + dxdydzOffset; mapPoint3 = mapPoint2 + dxdydzOffset; llhpath1 = enu2lla(mapPoint1,ptALLH,’flat’); llhpath2 = enu2lla(mapPoint2,ptALLH,’flat’); llhpath3 = enu2lla(mapPoint3, ptALLH,’flat’); xyzENU = lla2enu([A_lat,A_lon,A_hight],[ B_lat,B_lon,B_hight],’flat’) |
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statistics on Agricultural Labor Force: Ministry of Agriculture, Forestry and Fisheries. Available online: https://www.maff.go.jp/j/tokei/sihyo/data/08.html (accessed on 23 July 2024).
- Fertilizer Economics Research Institute (Fertilizer Times, Fertilizer Database, Fertilizer Improvement Information). Available online: http://www.hi-kei-ken.jp/05_1kakaku.html (accessed on 23 July 2024).
- Gotou, I.; Murakami, K. 4. Excessive Soil Phosphate Promotes Soil-Borne Diseases (Fertilizer Management and Disease Occurrence) (Summary of the 2003 Kanagawa Symposium). Jpn. J. Soil Fertil. Sci. 2004, 75, 402–403. [Google Scholar] [CrossRef]
- Gyawali, A.J.; Neely, H.; Foster, J.; Neely, C.; Lewis, K.; Pintar, J.; Bekewe, P.; Smith, A.P. Sampling for Biological Indicators of Soil Health: How Does Sampling Methodology Affect Research Results? Geoderma 2023, 435, 116513. [Google Scholar] [CrossRef]
- Fan, X.; Fan, N.; Qin, C.-Z.; Zhao, F.-H.; Zhu, L.-J.; Zhu, A.-X. Large-Area Soil Mapping Based on Environmental Similarity with Adaptive Consideration of Spatial Distance to Samples. Geoderma 2023, 439, 116683. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.; Cai, Y.; Huang, H.; Shi, J.; Zhou, C. A Multiple Soil Properties Oriented Representative Sampling Strategy for Digital Soil Mapping. Geoderma 2022, 406, 115531. [Google Scholar] [CrossRef]
- Zhang, M.-W.; Sun, X.-L.; Wang, X.-Q.; Yang, H.-L.; Wang, H.-L.; Huang, Z.-G.; Jiang, D.-H.; Wu, Y.-J. The Roles of Sampling Depth, Lateral Profile Density and Vertical Sampling Density in 3D Digital Soil Mapping of Soil Organic Carbon. Geoderma 2024, 445, 116840. [Google Scholar] [CrossRef]
- Qu, L.; Lu, H.; Tian, Z.; Schoorl, J.M.; Huang, B.; Liang, Y.; Qiu, D.; Liang, Y. Spatial Prediction of Soil Sand Content at Various Sampling Density Based on Geostatistical and Machine Learning Algorithms in Plain Areas. CATENA 2024, 234, 107572. [Google Scholar] [CrossRef]
- Yuzugullu, O.; Fajraoui, N.; Don, A.; Liebisch, F. Satellite-Based Soil Organic Carbon Mapping on European Soils Using Available Datasets and Support Sampling. Sci. Remote Sens. 2024, 9, 100118. [Google Scholar] [CrossRef]
- Safaee, S.; Libohova, Z.; Kladivko, E.J.; Brown, A.; Winzeler, E.; Read, Q.; Rahmani, S.; Adhikari, K. Influence of Sample Size, Model Selection, and Land Use on Prediction Accuracy of Soil Properties. Geoderma Reg. 2024, 36, e00766. [Google Scholar] [CrossRef]
- Hengl, T.; Sorenson, P.; Parente, L.; Cornish, K.; Battigelli, J.; Bonannella, C.; Gorzelak, M.; Nichols, K.; Geiss, C.E. Assessment of Soil Organic Carbon Stocks in Alberta Using 2-Scale Sampling and 3D Predictive Soil Mapping. FACETS 2023, 8, 1–17. [Google Scholar] [CrossRef]
- Costa, J.J.F.; Giasson, É.; da Silva, E.B.; Coblinski, J.A.; Tiecher, T. Use of Color Parameters in the Grouping of Soil Samples Produces More Accurate Predictions of Soil Texture and Soil Organic Carbon. Comput. Electron. Agric. 2020, 177, 105710. [Google Scholar] [CrossRef]
- Glavič-Cindro, D.; Bruggeman, M.; Črnič, B.; Nečemer, M.; Petrovič, T.; Prem, P.; Vodenik, B.; Zorko, B. Comparison of Different Approaches of Soil Sampling Uncertainty Determination. Appl. Radiat. Isot. 2023, 194, 110676. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, B.; Yu, W.; Gao, X. Estimation and Mapping of Soil Organic Matter Content at a National Scale Based on Grid Soil Samples, a Soil Map and DEM Data. Ecol. Inform. 2021, 66, 101487. [Google Scholar] [CrossRef]
- Zhang, M.-W.; Hao, C.; Wang, X.; Sun, X.-L. Application of Generalized Linear Geostatistical Model for Regional Soil Organic Matter Mapping: The Effect of Sampling Density. Geoderma 2023, 433, 116446. [Google Scholar] [CrossRef]
- Klopfenstein, H.B.; Lussier Desbiens, A. Terra-22: An Aerial Soil Sampling in Densely Compacted Agricultural Fields. Drone Syst. Appl. 2024, 12, 1–14. [Google Scholar] [CrossRef]
- Yun, C.; Kim, H.-J.; Jeon, C.-W.; Gang, M.; Lee, W.S.; Han, J.G. Stereovision-Based Ridge-Furrow Detection and Tracking for Auto-Guided Cultivator. Comput. Electron. Agric. 2021, 191, 106490. [Google Scholar] [CrossRef]
- Yun, C.; Kim, H.-J.; Jeon, C.-W.; Kim, J.-H. Stereovision-Based Guidance Line Detection Method for Auto-Guidance System on Furrow Irrigated Fields. IFAC-PapersOnLine 2018, 51, 157–161. [Google Scholar] [CrossRef]
- Sauer, T.; Gorks, M.; Spielmann, L.; Hepp, N.; Zindler, K.; Jumar, U. AI-Based Control Approaches for Lateral Vehicle Guidance of Industrial Trucks. IFAC-PapersOnLine 2023, 56, 3477–3482. [Google Scholar] [CrossRef]
- Bochtis, D.D.; Sørensen, C.G.; Vougioukas, S.G. Path Planning for In-Field Navigation-Aiding of Service Units. Comput. Electron. Agric. 2010, 74, 80–90. [Google Scholar] [CrossRef]
- Nguyen, N.V.; Cho, W. Performance Evaluation of a Typical Low-Cost Multi-Frequency Multi-GNSS Device for Positioning and Navigation in Agriculture—Part 2: Dynamic Testing. AgriEngineering 2023, 5, 127–140. [Google Scholar] [CrossRef]
- Easterly, D.R.; Adamchuk, V.I.; Kocher, M.F.; Hoy, R.M. Using a Vision Sensor System for Performance Testing of Satellite-Based Tractor Auto-Guidance. Comput. Electron. Agric. 2010, 72, 107–118. [Google Scholar] [CrossRef]
- Perez-Ruiz, M.; Slaughter, D.C.; Gliever, C.; Upadhyaya, S.K. Tractor-Based Real-Time Kinematic-Global Positioning System (RTK-GPS) Guidance System for Geospatial Mapping of Row Crop Transplant. Biosyst. Eng. 2012, 111, 64–71. [Google Scholar] [CrossRef]
- Kaivosoja, J.; Linkolehto, R. GNSS Error Simulator for Farm Machinery Navigation Development. Comput. Electron. Agric. 2015, 119, 166–177. [Google Scholar] [CrossRef]
- Yin, X.; Du, J.; Geng, D.; Jin, C. Development of an Automatically Guided Rice Transplanter Using RTK-GNSS and IMU. PapersOnLine 2018, 51, 374–378. [Google Scholar] [CrossRef]
- Kameyama, K.; Kakitani, Y.; Kimura, S.; Murashima, K. Development of the Soil Sampler for the Small Moving Robot. In Proceedings of the JSME Annual Conference on Robotics and Mechatronics (Robomec), Fukusima, Japan, 10–13 May 2017; pp. 1A1-B01(1)–1A1-B01(3). [Google Scholar] [CrossRef]
- Noguchi, N. Current Status and Future Prospects for Vehicle Robotics on Agriculture. J. Jpn. Soc. Precis. Eng. 2015, 81, 22–25. [Google Scholar] [CrossRef]
Specification | EV Crawler-Type Soil Sample Robot |
---|---|
Weight | 700 kg |
Number of motors | 2 |
Motor output | 1 kw × 2 |
Communication method | CAN communication |
Driving type | Differential two wheels |
Drive voltage | 48 V |
Battery | HS-DL48V100Ah |
Specification | Motor |
---|---|
Model number | CHFM-5107P-SV-B-30 |
Ratio | 30 |
Volts | 25 V |
Rating | 3.15 N·m |
r/min | 3000 |
Output | 1 kw |
Specification | Motor Driver |
---|---|
Model number | AG120D4-2A000 HW2.2 FW 2.3.1 |
Input voltage | DC48 V–DC60 V |
Output current | 46 Arms–140 Arms (2s) |
Communication method | CAN communication (CANopen) |
Specification | Motor Driver |
---|---|
Model number | HS-DL48V100Ah |
Nominal voltage | 48 V |
Capacity @ 20 | 300 min |
Energy | 4800 Wh |
Specification | Electric Hydraulic Cylinder |
---|---|
Model number | MMP5-B1B350AA |
DC motor power | 250 W |
Relief valve setting pressure | 7.1 MPa |
Power supply | DC12 V |
Cylinder size | φ40~φ20 |
Cylinder stroke | 350 mm |
Soil sampler model number | DIK-102A |
Soil sampler diameter | φ30 mm |
Item | Model | Specification |
---|---|---|
Laptop PC | Inspiron14 | Memory: 16 GB CPU: 12th Gen Intel(R) Core (TM) i7-1255U/1.70 GHz |
Android terminal | FZ-N1 | Memory: 4 GB CPU: Qualcomm® SDM660 64bit |
RTK-GNSS | DG-PRO1RWS | Horizontal position accuracy at RTK Fix: Horizontal: 0.02 m 2DRMS Vertical: 0.03 m 2DRMS |
IMU | VN-100T-CR | Range (Heading/Yaw, Roll): 180° Range (Pitch): 90° Heading (Magnetic): 2.0° RMS Pitch/Roll (Dynamic): 1.0° RMS |
Path 1 | Path 2 | Path 3 | |
---|---|---|---|
Standard deviation [m] | 0.032 | 0.076 | 0.012 |
Path 1 | Path 2 | Path 3 | |
---|---|---|---|
Standard deviation [m] | 0.030 | 0.043 | 0.046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Tomioka, C.; Hoshino, Y.; Kamata, S.; Kikuchi, S. Research on EV Crawler-Type Soil Sample Robot Using GNSS Information. Sensors 2025, 25, 604. https://doi.org/10.3390/s25030604
Yang L, Tomioka C, Hoshino Y, Kamata S, Kikuchi S. Research on EV Crawler-Type Soil Sample Robot Using GNSS Information. Sensors. 2025; 25(3):604. https://doi.org/10.3390/s25030604
Chicago/Turabian StyleYang, Liangliang, Chiaki Tomioka, Yohei Hoshino, Sota Kamata, and Shunsuke Kikuchi. 2025. "Research on EV Crawler-Type Soil Sample Robot Using GNSS Information" Sensors 25, no. 3: 604. https://doi.org/10.3390/s25030604
APA StyleYang, L., Tomioka, C., Hoshino, Y., Kamata, S., & Kikuchi, S. (2025). Research on EV Crawler-Type Soil Sample Robot Using GNSS Information. Sensors, 25(3), 604. https://doi.org/10.3390/s25030604