Next Article in Journal
An Improved DQN Framework with Dual Residual Horizontal Feature Pyramid for Autonomous Fault Diagnosis in Strong-Noise Scenarios
Previous Article in Journal
EEG Sensor-Based Computational Model for Personality and Neurocognitive Health Analysis Under Social Stress
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
Systematic Review

Artificial Intelligence of Things for Next-Generation Predictive Maintenance

by
Taimia Bitam
1,
Aya Yahiaoui
1,
Djallel Eddine Boubiche
1,*,
Rafael Martínez-Peláez
2,3,
Homero Toral-Cruz
4,* and
Pablo Velarde-Alvarado
5
1
LEREESI Laboratory, HNS-RE2SD, Batna 05000, Algeria
2
Unidad Académica de Computación, Universidad Politécnica de Sinaloa, Mazatlán 82199, Mexico
3
Departamento de Ingeniería de Sistemas y Computación, Universidad Católica del Norte, Antofagasta 1270709, Chile
4
Departamento de Ingeniería y Tecnología, Universidad Autónoma del Estado de Quintana Roo, Chetumal 77019, Mexico
5
Unidad Académica de Ciencias Básicas e Ingenierías, Universidad Autónoma de Nayarit, Tepic 63000, Mexico
*
Authors to whom correspondence should be addressed.
Sensors 2025, 25(24), 7636; https://doi.org/10.3390/s25247636
Submission received: 4 November 2025 / Revised: 5 December 2025 / Accepted: 12 December 2025 / Published: 16 December 2025
(This article belongs to the Section Internet of Things)

Abstract

Industry 5.0 introduces a shift toward human-centric, sustainable, and resilient industrial ecosystems, emphasizing intelligent automation, collaboration, and adaptive operations. Predictive Maintenance (PdM) plays a critical role in this transition, addressing the limitations of traditional maintenance approaches in increasingly complex and data-driven environments. The convergence of Artificial Intelligence and the Industrial Internet of Things, referred to as the Artificial Intelligence of Things (AIoT), enables real-time sensing, learning, and decision-making for advanced fault detection, Remaining Useful Life estimation, and prescriptive maintenance actions. This study provides a systematic and structured review of AIoT-enabled PdM aligned with Industry 5.0 objectives. It presents a unified taxonomy integrating AI models, Industrial Internet of Things (IIoT) infrastructures, and AIoT architectures; reviews AI-driven techniques, sector-specific implementations in manufacturing, transportation, and energy; and analyzes emerging paradigms such as Edge–Cloud collaboration, federated learning, self-supervised learning, and digital twins for autonomous and privacy-preserving maintenance. Furthermore, this paper synthesizes strengths, limitations, and cross-industry challenges, and outlines future research directions centered on explainability, data quality and heterogeneity, resource-constrained intelligence, cybersecurity, and human–AI collaboration. By bridging technological advancements with Industry 5.0 principles, this review contributes a comprehensive foundation for the development of scalable, trustworthy, and next-generation AIoT-based predictive maintenance systems.
Keywords: Artificial Intelligence of Things; predictive maintenance; smart manufacturing; Industry 5.0 Artificial Intelligence of Things; predictive maintenance; smart manufacturing; Industry 5.0

Share and Cite

MDPI and ACS Style

Bitam, T.; Yahiaoui, A.; Boubiche, D.E.; Martínez-Peláez, R.; Toral-Cruz, H.; Velarde-Alvarado, P. Artificial Intelligence of Things for Next-Generation Predictive Maintenance. Sensors 2025, 25, 7636. https://doi.org/10.3390/s25247636

AMA Style

Bitam T, Yahiaoui A, Boubiche DE, Martínez-Peláez R, Toral-Cruz H, Velarde-Alvarado P. Artificial Intelligence of Things for Next-Generation Predictive Maintenance. Sensors. 2025; 25(24):7636. https://doi.org/10.3390/s25247636

Chicago/Turabian Style

Bitam, Taimia, Aya Yahiaoui, Djallel Eddine Boubiche, Rafael Martínez-Peláez, Homero Toral-Cruz, and Pablo Velarde-Alvarado. 2025. "Artificial Intelligence of Things for Next-Generation Predictive Maintenance" Sensors 25, no. 24: 7636. https://doi.org/10.3390/s25247636

APA Style

Bitam, T., Yahiaoui, A., Boubiche, D. E., Martínez-Peláez, R., Toral-Cruz, H., & Velarde-Alvarado, P. (2025). Artificial Intelligence of Things for Next-Generation Predictive Maintenance. Sensors, 25(24), 7636. https://doi.org/10.3390/s25247636

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop