WISEST: Weighted Interpolation for Synthetic Enhancement Using SMOTE with Thresholds †
Highlights
- Consistent recall and F1 gains: WISEST increased recall and F1 across multiple benchmarks by generating weighted locality-constrained synthetic minority samples that reduce unsafe interpolation.
- Robustness to moderate noise and borderline structure: WISEST outperformed or matched alternatives when sufficient samples formed borderline pockets or subclusters, delivering stronger minority detection with modest precision trade-offs.
- The approach is a practical choice for recall-critical applications: for tasks where detecting minority events matters (e.g., intrusion detection and rare-fault detection), WISEST offers a reliable oversampling option without aggressive sample generation or complex training.
- There is no “one oversampler that rules them all” for imbalanced datasets: WISEST should be used alongside dataset diagnostics. Datasets with limited minority support, extreme separability, highly noisy borderlines, or many categorical features may still benefit more from other methods.
Abstract
1. Introduction
- We present WISEST, an oversampling algorithm that assigns weights to near neighbors and interpolates synthetic samples using SMOTE within a threshold.
- We extensively test WISEST against traditional and oversampling methods using real-world datasets.
- Finally, we present a thorough analysis of the conditions by which WISEST performs better than existing work.
2. Related Work
3. Proposed WISEST Oversampling
3.1. Overview
- WISEST creates minority synthetic samples in the “boundary area”, which is located between the majority and minority classes. This will avoid excessive and indiscriminate creation of samples that might hinder classification. For illustration purposes, we created a synthetic binary classification dataset using the following code:
make_classification(n_samples=10000, n_features=3, n_redundant=0,n_clusters_per_class=1, weights=[0.99],flip_y=0, random_state=1) The make_classification function from the sklearn.datasets library in Python 3.10.15 creates n_samples=10000 samples, with three non-redundant features (independent variables); the minority and majority classes will consist of a single cluster with no noise, and the IR (IR) would be 99:1. That is, 1% of the samples would belong to the minority class.Figure 1 depicts the generated dataset (majority class samples depicted in red; minority in blue) and the boundary area (shown in shaded blue) from a synthetic dataset created above. Note that the area varies depending on the features being compared and the dataset’s geometry. - Some feature pairs might have high separability (i.e., Figure 1b), while others might have overlapping classes (i.e., Figure 1c). Thus, we apply a weighted locally aware interpolation within a threshold. To do so, we use a custom threshold distance to limit the area around each nearest minority class. This distance is used to assign weights to each minority point. Then, we apply conditional branching based on this weight; thus, even when the minority class data is sparsely distributed in the dataset, we can generate samples from the closest minority neighbors.
- Contrary to traditional approaches, such as SMOTE, ADASYN, and Borderline-SMOTE, which create the same number of samples as the majority-class data, we adopt a more conservative approach, producing only samples that fall within the boundary area, thereby avoiding over-inflating the dataset with samples that might affect its performance.
3.2. The WISEST Algorithm
| Algorithm 1. Proposed Algorithm |
|
- When no majority-class points () exist nearby the k neighboring points (measured by the distance dif) that are within the threshold (), then no synthetic data is generated as it would not be within the boundary area, as detailed in lines 7 and 8 in Algorithm 1.
- Now, when the ratio of the number of majority and the selected k minority samples is equal, that is, there are only the minimum number of majority samples () equal to k, then . This case is treated separately as the dataset may be very sparse or contain an isolated boundary. Thus, we adopt a conservative approach and create only k synthetic data toward the minority class. To do so, we calculate whether the distance is within the threshold () and whether the distance to the closest minority (r) neighbor is using SMOTE, as shown in lines 9 to 15 in Algorithm 1.
- Otherwise, since there are enough majority-class neighbors, we must first determine the number of samples to create (n); we do this based on the number of nearest minority samples, as shown in Equation (2):Then, n synthetic samples are generated in the range if the distance from the sample to the closest minority neighbor is less than or equal to the closest majority neighbors (s), otherwise within the range of the majority class, as described in Algorithm 1, lines 17 to 29. The rationale for this is that we prefer to create samples near the minority class in cases where it is closer but not so close to the majority neighbor.
3.3. WISEST Applied on the Synthetic Dataset
3.4. Preliminary Analysis of Oversampling Methods on the Synthetic Dataset Compared to WISEST
4. Evaluation and Discussion
4.1. Experimental Setup
4.1.1. Datasets
- Datasets with an IR between 1.5 and 9: 20 dataset subgroups (e.g., iris, glass, pima, new-thyroid, vehicle, some yeast subset variants, some ecoli subset variants, and shuttle).
- Datasets with an IR higher than 9: 70 dataset subgroups (e.g., some abalone subsets, winequality subsets, poker class-pair problems, KDD attack pairs, some ecoli subsets, and some yeast subset variants).
- Noisy and borderline examples: 30 dataset subgroups (e.g., 03subcl5, 04clover5z, paw02a families and their noise levels variants).
- IoT-23 [17] contains data on attacks on IoT devices such as Amazon Echo. The dataset is classified into six classes with an IR of 57:18:14:10:1:0.2. We used the following columns: orig_bytes, orig_okts, orig_ip_bytes, resp_bytes, resp_pkts, and resp_ip_bytes, and the classification labels were PortOfHorizontalPortScan, Okiru, Benign, DDoS, and C&C. Note, we only used the first 10,000 samples for both training (80%) and testing (20%).
- BoT–IoT [18] is a dataset from a realistic network environment that classifies the network data into four classes: normal, backdoor, XSS, and scanning, with an IR of 84:14:1.8:0.2. We used the following columns: FC1_Read_Input_Register, FC2_Read_Discrete_Value, FC3_Read_Holding_Register, and FC4_Read_Coil. We used the same number of samples and distributions as with IoT-23.
- Air Quality and Pollution Assessment [19] is a dataset containing environmental and demographics data regarding air quality, which is separated into four classes (Good, Moderate, Poor, and Hazardous), with an IR of 4:3:2:1. We used the Temperature, Humidity, PM2.5, PM10, NO2, SO2, CO, Promixity_to_Industrial_Areas, and Population_Density columns and 5000 samples.
4.1.2. Oversampling Techniques
- SMOTE [4]Base technique that generates a new minority-class sample using linear interpolation between a minority sample and one of its k nearest minority neighbors.
- Borderline-SMOTE [6]A variant of SMOTE that creates synthetic samples near the class boundary instead of between minority points.
- ADASYN [5]Generates more synthetic minority samples near hard-to-learn samples, so classifiers focus on difficult regions.
- SMOTE+Tomek [14]Creates synthetic minority samples (SMOTE) and then removes overlapping borderline pairs (Tomek links) to balance and clean the data.
- SMOTEENN [7]An approach that combines SMOTE with Edited Nearest Neighbor (ENN), which removes samples whose labels disagree with the majority of their k nearest neighbors.
- Radius-SMOTE [13]Another SMOTE variant that restricts or selects interpolation inside a fixed neighborhood radius, which reduces unsafe extrapolation and limits generation in sparse/noisy regions.
- WCOM-KKNBR [8]Uses conditional Wasserstein CGAN-based oversampling, which generates minority class samples to balance the majority using a K-means and nearest neighbor-based method.
- WISESTOur approach.
4.1.3. Implementation and Setup
4.1.4. Methodology
- SMOTE: neighbors. The rationale for this number was to set “enough” NNs to ensure the newly generated samples would safely lie within the boundary area. Based on preliminary experiments, it was determined to be the optimal value. However, we will address a thorough analysis of how this value affects each dataset in the future.
- Borderline-SMOTE: variant 1, neighbors.
- ADASYN: Same as SMOTE, sampling adaptivity enabled.
- SMOTE+Tomek: SMOTE component same as above, and Tomek link step has no tunable hyperparameter.
- SMOTEENN: Same SMOTE parameters as above, .
- Radius-SMOTE: As defined in [13].
- WCOM-KKNBR: latent dimension latent_dim = 16; epochs = 50; batch_size = 32; learning rates (generator) and (discriminator); generate equal to the original minority count, as defined in [8].
- WISEST (proposed): neighbors and threshold distance . Note that the threshold value has been statically set based on preliminary experiments with the synthetic dataset shown in Section 3.1.
4.2. Results
4.2.1. Results on KEEL Datasets with IR Less than or Equal to 9
4.2.2. Results on KEEL Datasets with an IR Greater than 9
4.2.3. Results on KEEL’s Noisy and Borderline Datasets
4.2.4. Results on Other Datasets Using Different Classifiers
4.3. Sensitivity Analysis of the Threshold Distance
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Dataset | Metric | Original | SMOTE | Borderline- SMOTE | ADASYN | SMOTE +Tomek | SMOTEENN | Radius-SMOTE | WCOM-KKNBR | WISEST |
|---|---|---|---|---|---|---|---|---|---|---|
| glass1 | Accuracy | 0.8598 | 0.8502 | 0.8504 | 0.8221 | 0.8410 | 0.7754 | 0.8269 | 0.8548 | 0.8032 |
| Precision | 0.8914 | 0.8257 | 0.8041 | 0.7721 | 0.8115 | 0.6760 | 0.7662 | 0.8875 | 0.7188 | |
| Recall | 0.7100 | 0.7633 | 0.7900 | 0.7500 | 0.7500 | 0.7358 | 0.7633 | 0.6975 | 0.8025 | |
| F1 | 0.7792 | 0.7858 | 0.7908 | 0.7511 | 0.7725 | 0.7014 | 0.7591 | 0.7765 | 0.7492 | |
| ecoli-0_vs_1 | Accuracy | 0.9909 | 0.9909 | 0.9773 | 0.9727 | 0.9864 | 0.9909 | 0.9909 | 0.9909 | 0.9864 |
| Precision | 1.0000 | 1.0000 | 0.9624 | 0.9519 | 0.9882 | 1.0000 | 1.0000 | 1.0000 | 0.9882 | |
| Recall | 0.9733 | 0.9733 | 0.9733 | 0.9733 | 0.9733 | 0.9733 | 0.9733 | 0.9733 | 0.9733 | |
| F1 | 0.9862 | 0.9862 | 0.9673 | 0.9616 | 0.9801 | 0.9862 | 0.9862 | 0.9862 | 0.9801 | |
| wisconsin | Accuracy | 0.9736 | 0.9736 | 0.9678 | 0.9707 | 0.9751 | 0.9736 | 0.9766 | 0.9678 | 0.9737 |
| Precision | 0.9512 | 0.9445 | 0.9435 | 0.9436 | 0.9446 | 0.9446 | 0.9482 | 0.9370 | 0.9444 | |
| Recall | 0.9748 | 0.9832 | 0.9664 | 0.9747 | 0.9874 | 0.9832 | 0.9873 | 0.9748 | 0.9832 | |
| F1 | 0.9627 | 0.9632 | 0.9546 | 0.9587 | 0.9654 | 0.9632 | 0.9672 | 0.9552 | 0.9633 | |
| pima | Accuracy | 0.7630 | 0.7473 | 0.7434 | 0.7604 | 0.7604 | 0.7304 | 0.7473 | 0.7643 | 0.7421 |
| Precision | 0.6879 | 0.6317 | 0.6196 | 0.6443 | 0.6496 | 0.5855 | 0.6211 | 0.6921 | 0.6073 | |
| Recall | 0.5897 | 0.6716 | 0.7015 | 0.7088 | 0.6865 | 0.8133 | 0.7239 | 0.5857 | 0.7574 | |
| F1 | 0.6342 | 0.6501 | 0.6570 | 0.6745 | 0.6666 | 0.6792 | 0.6676 | 0.6343 | 0.6729 | |
| iris0 | All | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
| glass0 | Accuracy | 0.8693 | 0.8600 | 0.8599 | 0.8506 | 0.8553 | 0.8179 | 0.8600 | 0.8739 | 0.8553 |
| Precision | 0.8125 | 0.7589 | 0.7550 | 0.7245 | 0.7595 | 0.6635 | 0.7515 | 0.8243 | 0.7360 | |
| Recall | 0.8000 | 0.8429 | 0.8429 | 0.8857 | 0.8143 | 0.9000 | 0.8571 | 0.8000 | 0.8714 | |
| F1 | 0.8000 | 0.7981 | 0.7957 | 0.7962 | 0.7842 | 0.7628 | 0.8003 | 0.8065 | 0.7978 | |
| yeast1 | Accuracy | 0.7817 | 0.7642 | 0.7669 | 0.7554 | 0.7709 | 0.7291 | 0.7722 | 0.7823 | 0.7668 |
| Precision | 0.6682 | 0.5906 | 0.5945 | 0.5719 | 0.5977 | 0.5233 | 0.6032 | 0.6703 | 0.5878 | |
| Recall | 0.4964 | 0.6247 | 0.6224 | 0.6363 | 0.6434 | 0.7459 | 0.6340 | 0.4942 | 0.6596 | |
| F1 | 0.5673 | 0.6053 | 0.6072 | 0.6011 | 0.6190 | 0.6141 | 0.6171 | 0.5664 | 0.6202 | |
| haberman | Accuracy | 0.6730 | 0.6600 | 0.6600 | 0.6632 | 0.6469 | 0.6501 | 0.6796 | 0.6731 | 0.6894 |
| Precision | 0.3417 | 0.3561 | 0.3427 | 0.3715 | 0.3335 | 0.3829 | 0.3892 | 0.3435 | 0.4083 | |
| Recall | 0.2574 | 0.3449 | 0.3191 | 0.3941 | 0.3316 | 0.5037 | 0.3574 | 0.2463 | 0.3824 | |
| F1 | 0.2925 | 0.3499 | 0.3296 | 0.3817 | 0.3316 | 0.4321 | 0.3715 | 0.2861 | 0.3935 | |
| vehicle2 | Accuracy | 0.9870 | 0.9846 | 0.9834 | 0.9858 | 0.9846 | 0.9728 | 0.9858 | 0.9858 | 0.9787 |
| Precision | 0.9817 | 0.9734 | 0.9685 | 0.9728 | 0.9734 | 0.9204 | 0.9693 | 0.9816 | 0.9401 | |
| Recall | 0.9678 | 0.9678 | 0.9678 | 0.9723 | 0.9678 | 0.9815 | 0.9771 | 0.9632 | 0.9814 | |
| F1 | 0.9744 | 0.9701 | 0.9679 | 0.9724 | 0.9701 | 0.9492 | 0.9727 | 0.9721 | 0.9597 | |
| vehicle1 | Accuracy | 0.7932 | 0.7884 | 0.7860 | 0.7860 | 0.7896 | 0.7471 | 0.7860 | 0.7943 | 0.7766 |
| Precision | 0.6330 | 0.5800 | 0.5756 | 0.5809 | 0.5834 | 0.5061 | 0.5792 | 0.6367 | 0.5567 | |
| Recall | 0.4748 | 0.6451 | 0.6357 | 0.6124 | 0.6311 | 0.8200 | 0.6171 | 0.4747 | 0.6448 | |
| F1 | 0.5399 | 0.6085 | 0.6030 | 0.5923 | 0.6044 | 0.6247 | 0.5933 | 0.5428 | 0.5955 | |
| vehicle3 | Accuracy | 0.7896 | 0.7671 | 0.7825 | 0.7719 | 0.7766 | 0.7328 | 0.7766 | 0.7932 | 0.7707 |
| Precision | 0.6218 | 0.5348 | 0.5645 | 0.5437 | 0.5518 | 0.4832 | 0.5563 | 0.6297 | 0.5405 | |
| Recall | 0.4062 | 0.5948 | 0.6226 | 0.5946 | 0.5998 | 0.7973 | 0.5571 | 0.4159 | 0.6092 | |
| F1 | 0.4885 | 0.5616 | 0.5909 | 0.5666 | 0.5729 | 0.6006 | 0.5552 | 0.4975 | 0.5714 | |
| glass-0-1-2- 3_vs_4-5-6 | Accuracy | 0.9392 | 0.9439 | 0.9485 | 0.9391 | 0.9439 | 0.9251 | 0.9532 | 0.9532 | 0.9483 |
| Precision | 0.8859 | 0.8703 | 0.8808 | 0.8544 | 0.8703 | 0.8051 | 0.8929 | 0.8747 | 0.8488 | |
| Recall | 0.8618 | 0.9200 | 0.9200 | 0.9200 | 0.9200 | 0.9400 | 0.9200 | 0.9400 | 0.9800 | |
| F1 | 0.8717 | 0.8901 | 0.8969 | 0.8813 | 0.8901 | 0.8615 | 0.9042 | 0.9052 | 0.9067 | |
| vehicle0 | Accuracy | 0.9716 | 0.9681 | 0.9752 | 0.9704 | 0.9669 | 0.9350 | 0.9633 | 0.9693 | 0.9551 |
| Precision | 0.9447 | 0.9100 | 0.9330 | 0.9112 | 0.9095 | 0.7937 | 0.9050 | 0.9398 | 0.8580 | |
| Recall | 0.9345 | 0.9596 | 0.9646 | 0.9696 | 0.9546 | 0.9800 | 0.9445 | 0.9294 | 0.9696 | |
| F1 | 0.9393 | 0.9339 | 0.9482 | 0.9392 | 0.9313 | 0.8769 | 0.9237 | 0.9342 | 0.9102 | |
| ecoli1 | Accuracy | 0.9108 | 0.9168 | 0.8989 | 0.8931 | 0.9168 | 0.8751 | 0.9079 | 0.9048 | 0.9049 |
| Precision | 0.8231 | 0.7994 | 0.7488 | 0.7197 | 0.7925 | 0.6671 | 0.7922 | 0.8117 | 0.7717 | |
| Recall | 0.8033 | 0.8825 | 0.8817 | 0.9217 | 0.8950 | 0.9342 | 0.8417 | 0.7900 | 0.8683 | |
| F1 | 0.7942 | 0.8314 | 0.8015 | 0.8026 | 0.8333 | 0.7750 | 0.8053 | 0.7856 | 0.8052 | |
| new- thyroid1 | Accuracy | 0.9907 | 0.9814 | 0.9721 | 0.9767 | 0.9814 | 0.9907 | 0.9814 | 0.9814 | 0.9860 |
| Precision | 1.0000 | 0.9750 | 0.9306 | 0.9556 | 0.9750 | 0.9750 | 0.9750 | 0.9750 | 0.9306 | |
| Recall | 0.9429 | 0.9143 | 0.9143 | 0.9143 | 0.9143 | 0.9714 | 0.9143 | 0.9143 | 1.0000 | |
| F1 | 0.9692 | 0.9379 | 0.9129 | 0.9263 | 0.9379 | 0.9713 | 0.9379 | 0.9379 | 0.9617 | |
| new- thyroid2 | Accuracy | 0.9860 | 0.9767 | 0.9814 | 0.9767 | 0.9767 | 0.9814 | 0.9814 | 0.9814 | 0.9860 |
| Precision | 0.9750 | 0.9750 | 0.9750 | 0.9556 | 0.9750 | 0.9750 | 0.9750 | 0.9750 | 0.9500 | |
| Recall | 0.9429 | 0.8857 | 0.9143 | 0.9143 | 0.8857 | 0.9143 | 0.9143 | 0.9143 | 0.9714 | |
| F1 | 0.9533 | 0.9167 | 0.9379 | 0.9263 | 0.9167 | 0.9379 | 0.9379 | 0.9405 | 0.9579 | |
| ecoli2 | Accuracy | 0.9464 | 0.9494 | 0.9554 | 0.9286 | 0.9494 | 0.9583 | 0.9583 | 0.9523 | 0.9494 |
| Precision | 0.8967 | 0.8689 | 0.9044 | 0.7485 | 0.8495 | 0.8521 | 0.9063 | 0.9181 | 0.8452 | |
| Recall | 0.7327 | 0.7909 | 0.7891 | 0.8091 | 0.8091 | 0.8873 | 0.8091 | 0.7527 | 0.8273 | |
| F1 | 0.8008 | 0.8182 | 0.8364 | 0.7742 | 0.8233 | 0.8674 | 0.8469 | 0.8183 | 0.8252 | |
| segment0 | Accuracy | 0.9974 | 0.9970 | 0.9970 | 0.9974 | 0.9965 | 0.9957 | 0.9965 | 0.9974 | 0.9957 |
| Precision | 0.9969 | 0.9909 | 0.9909 | 0.9910 | 0.9908 | 0.9849 | 0.9881 | 0.9969 | 0.9821 | |
| Recall | 0.9848 | 0.9878 | 0.9878 | 0.9909 | 0.9848 | 0.9848 | 0.9878 | 0.9848 | 0.9878 | |
| F1 | 0.9908 | 0.9893 | 0.9893 | 0.9909 | 0.9878 | 0.9848 | 0.9879 | 0.9908 | 0.9849 | |
| glass6 | Accuracy | 0.9627 | 0.9813 | 0.9720 | 0.9766 | 0.9813 | 0.9673 | 0.9673 | 0.9719 | 0.9720 |
| Precision | 0.9667 | 0.9667 | 0.9667 | 0.9381 | 0.9667 | 0.9333 | 0.9667 | 0.9429 | 0.9667 | |
| Recall | 0.7667 | 0.9000 | 0.8333 | 0.9000 | 0.9000 | 0.8333 | 0.8000 | 0.8667 | 0.8333 | |
| F1 | 0.8436 | 0.9273 | 0.8873 | 0.9119 | 0.9273 | 0.8721 | 0.8655 | 0.8939 | 0.8873 | |
| yeast3 | Accuracy | 0.9488 | 0.9508 | 0.9474 | 0.9515 | 0.9488 | 0.9421 | 0.9481 | 0.9481 | 0.9488 |
| Precision | 0.8173 | 0.7572 | 0.7347 | 0.7546 | 0.7497 | 0.6853 | 0.7814 | 0.7988 | 0.7675 | |
| Recall | 0.6987 | 0.8277 | 0.8341 | 0.8402 | 0.8218 | 0.9019 | 0.7477 | 0.7235 | 0.7786 | |
| F1 | 0.7482 | 0.7881 | 0.7783 | 0.7928 | 0.7799 | 0.7765 | 0.7600 | 0.7541 | 0.7704 | |
| ecoli3 | Accuracy | 0.9345 | 0.9137 | 0.9047 | 0.8958 | 0.9137 | 0.8839 | 0.9227 | 0.9226 | 0.9167 |
| Precision | 0.8000 | 0.5675 | 0.5336 | 0.5050 | 0.5675 | 0.4703 | 0.6694 | 0.7329 | 0.6152 | |
| Recall | 0.5143 | 0.7143 | 0.5714 | 0.6857 | 0.7143 | 0.8571 | 0.6000 | 0.4571 | 0.6000 | |
| F1 | 0.6151 | 0.6259 | 0.5462 | 0.5707 | 0.6259 | 0.6062 | 0.6192 | 0.5408 | 0.6005 | |
| page-blocks0 | Accuracy | 0.9762 | 0.9720 | 0.9706 | 0.9686 | 0.9715 | 0.9607 | 0.9761 | 0.9764 | 0.9746 |
| Precision | 0.8893 | 0.8247 | 0.8140 | 0.8001 | 0.8211 | 0.7384 | 0.8809 | 0.8883 | 0.8597 | |
| Recall | 0.8766 | 0.9231 | 0.9231 | 0.9249 | 0.9231 | 0.9535 | 0.8855 | 0.8801 | 0.8981 | |
| F1 | 0.8828 | 0.8708 | 0.8649 | 0.8574 | 0.8687 | 0.8321 | 0.8830 | 0.8840 | 0.8784 |
Appendix B
| Dataset | SMOTE | Borderline- SMOTE | ADASYN | SMOTE +Tomek | SMOTEENN | Radius-SMOTE | WCOM-KKNBR | WISEST |
|---|---|---|---|---|---|---|---|---|
| yeast-2_vs_4 | 330 | 330 | 333 | 329 | 322 | 125 | 41 | 61 |
| yeast-0-5-6-7-9_vs_4 | 341 | 341 | 339 | 338 | 321 | 72 | 41 | 65 |
| vowel0 | 646 | 646 | 646 | 646 | 646 | 290 | 72 | 540 |
| glass-0-1-6_vs_2 | 126 | 126 | 126 | 125 | 115 | 14 | 14 | 14 |
| shuttle-c0-vs-c4 | 1266 | 760 | 1266 | 1266 | 1264 | 486 | 98 | 2410 |
| yeast-1_vs_7 | 319 | 319 | 321 | 316 | 301 | 21 | 24 | 21 |
| glass4 | 150 | 150 | 150 | 150 | 150 | 25 | 10 | 37 |
| ecoli4 | 237 | 237 | 236 | 236 | 235 | 59 | 16 | 22 |
| page-blocks-1-3_vs_4 | 333 | 333 | 333 | 333 | 330 | 70 | 22 | 186 |
| abalone9-18 | 518 | 518 | 519 | 511 | 467 | 28 | 34 | 28 |
| glass-0-1-6_vs_5 | 133 | 133 | 132 | 133 | 133 | 12 | 7 | 12 |
| shuttle-c2-vs-c4 | 0 | 0 | 0 | 0 | 0 | 8 | 4 | 8 |
| yeast-1-4-5-8_vs_7 | 506 | 506 | 504 | 505 | 489 | 11 | 24 | 11 |
| glass5 | 157 | 157 | 157 | 157 | 157 | 11 | 7 | 11 |
| yeast-2_vs_8 | 354 | 283 | 353 | 351 | 338 | 44 | 16 | 10 |
| yeast4 | 1106 | 1106 | 1110 | 1103 | 1086 | 49 | 41 | 47 |
| yeast-1-2-8-9_vs_7 | 710 | 710 | 710 | 708 | 689 | 13 | 24 | 13 |
| yeast5 | 1117 | 1117 | 1115 | 1117 | 1115 | 101 | 35 | 87 |
| yeast6 | 1131 | 1131 | 1131 | 1129 | 1114 | 66 | 28 | 55 |
| abalone19 | 3288 | 3288 | 3285 | 3284 | 3245 | 3 | 26 | 3 |
| cleveland-0_vs_4 | 118 | 118 | 118 | 113 | 99 | 6 | 10 | 6 |
| ecoli-0-1_vs_2-3-5 | 157 | 157 | 156 | 156 | 148 | 64 | 19 | 260 |
| ecoli-0-1_vs_5 | 160 | 160 | 160 | 159 | 156 | 60 | 16 | 256 |
| ecoli-0-1-4-6_vs_5 | 192 | 192 | 192 | 192 | 188 | 61 | 16 | 269 |
| ecoli-0-1-4-7_vs_2-3-5-6 | 222 | 222 | 222 | 221 | 212 | 67 | 23 | 167 |
| ecoli-0-1-4-7_vs_5-6 | 226 | 226 | 225 | 225 | 222 | 64 | 20 | 164 |
| ecoli-0-2-3-4_vs_5 | 130 | 130 | 129 | 129 | 126 | 61 | 16 | 253 |
| ecoli-0-2-6-7_vs_3-5 | 144 | 144 | 143 | 143 | 138 | 51 | 18 | 131 |
| ecoli-0-3-4_vs_5 | 128 | 128 | 128 | 127 | 123 | 61 | 16 | 253 |
| ecoli-0-3-4-7_vs_5-6 | 166 | 166 | 164 | 164 | 159 | 64 | 20 | 172 |
| ecoli-0-4-6_vs_5 | 130 | 130 | 130 | 130 | 127 | 61 | 16 | 257 |
| ecoli-0-6-7_vs_3-5 | 142 | 142 | 144 | 142 | 137 | 51 | 18 | 139 |
| ecoli-0-6-7_vs_5 | 144 | 144 | 144 | 144 | 142 | 49 | 16 | 141 |
| glass-0-1-4-6_vs_2 | 137 | 137 | 137 | 136 | 128 | 16 | 14 | 16 |
| glass-0-1-5_vs_2 | 110 | 110 | 110 | 109 | 101 | 15 | 14 | 15 |
| glass-0-4_vs_5 | 59 | 59 | 58 | 59 | 59 | 17 | 7 | 33 |
| glass-0-6_vs_5 | 72 | 72 | 73 | 72 | 71 | 13 | 7 | 13 |
| led7digit-0-2-4-5-6-7-8-9_vs_1 | 295 | 295 | 295 | 295 | 105 | 26 | 30 | 128 |
| yeast-0-2-5-6_vs_3-7-8-9 | 645 | 645 | 648 | 638 | 600 | 189 | 79 | 144 |
| yeast-0-2-5-7-9_vs_3-6-8 | 645 | 645 | 647 | 643 | 630 | 291 | 79 | 112 |
| yeast-0-3-5-9_vs_7-8 | 325 | 325 | 324 | 322 | 301 | 68 | 40 | 55 |
| abalone-3_vs_11 | 378 | 302 | 378 | 378 | 378 | 52 | 12 | 4 |
| abalone-17_vs_7-8-9-10 | 1778 | 1778 | 1776 | 1776 | 1758 | 37 | 46 | 37 |
| abalone-19_vs_10-11-12-13 | 1246 | 1246 | 1246 | 1241 | 1193 | 5 | 26 | 5 |
| abalone-20_vs_8-9-10 | 1491 | 1491 | 1492 | 1489 | 1478 | 9 | 21 | 9 |
| abalone-21_vs_8 | 442 | 442 | 442 | 442 | 436 | 12 | 11 | 12 |
| car-good | 1272 | 1272 | 1271 | 1272 | 1130 | 41 | 55 | 69 |
| car-vgood | 1278 | 1278 | 1281 | 1278 | 1117 | 49 | 52 | 78 |
| dermatology-6 | 254 | 203 | 254 | 254 | 254 | 73 | 16 | 333 |
| flare-F | 784 | 784 | 789 | 783 | 680 | 16 | 34 | 38 |
| kddcup-buffer_overflow_vs_back | 1738 | 695 | 1739 | 1738 | 1738 | 115 | 24 | 563 |
| kddcup-guess_passwd_vs_satan | 1229 | 0 | 0 | 1229 | 1229 | 212 | 42 | 1060 |
| kddcup-land_vs_portsweep | 815 | 0 | 0 | 815 | 815 | 81 | 17 | 378 |
| kr-vs-k-one_vs_fifteen | 1670 | 1670 | 1671 | 1670 | 1670 | 304 | 62 | 1428 |
| kr-vs-k-zero-one_vs_draw | 2153 | 2153 | 2152 | 2152 | 2149 | 358 | 84 | 1542 |
| lymphography-normal-fibrosis | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 4 |
| poker-8_vs_6 | 1154 | 1154 | 1154 | 1154 | 1154 | 3 | 14 | 3 |
| poker-8-9_vs_5 | 1620 | 1620 | 1618 | 1620 | 1615 | 7 | 20 | 7 |
| poker-9_vs_7 | 182 | 182 | 182 | 182 | 181 | 5 | 6 | 5 |
| shuttle-2_vs_5 | 2574 | 2574 | 2575 | 2574 | 2574 | 191 | 39 | 923 |
| shuttle-6_vs_2-3 | 168 | 168 | 134 | 168 | 168 | 38 | 8 | 182 |
| winequality-red-3_vs_5 | 537 | 537 | 538 | 532 | 488 | 1 | 8 | 1 |
| winequality-red-4 | 1194 | 1194 | 1183 | 1179 | 1062 | 8 | 42 | 8 |
| winequality-red-8_vs_6-7 | 655 | 524 | 657 | 643 | 558 | 1 | 14 | 3 |
| winequality-red-8_vs_6 | 496 | 496 | 495 | 485 | 422 | 2 | 14 | 4 |
| winequality-white-3_vs_7 | 688 | 688 | 688 | 679 | 598 | 8 | 16 | 8 |
| winequality-white-3-9_vs_5 | 1146 | 1146 | 1142 | 1121 | 949 | 3 | 20 | 3 |
| winequality-white-9_vs_4 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| zoo-3 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 4 |
Appendix C
| Dataset | Metric | Original | SMOTE | Borderline- SMOTE | ADASYN | SMOTE +Tomek | SMOTE ENN | Radius-SMOTE | WCOM KKNB | WISEST (Ours) |
|---|---|---|---|---|---|---|---|---|---|---|
| yeast- 2_vs_4 | Accuracy | 0.9631 | 0.9573 | 0.9495 | 0.9495 | 0.9553 | 0.9417 | 0.9592 | 0.9592 | 0.9592 |
| Precision | 0.9010 | 0.7818 | 0.7733 | 0.7306 | 0.7697 | 0.6547 | 0.8373 | 0.8639 | 0.8465 | |
| Recall | 0.7273 | 0.8055 | 0.7255 | 0.8273 | 0.8055 | 0.9018 | 0.7473 | 0.7273 | 0.7473 | |
| F1 | 0.7948 | 0.7921 | 0.7391 | 0.7698 | 0.7851 | 0.7541 | 0.7828 | 0.7735 | 0.7842 | |
| yeast-0-5- 6-7-9_vs_4 | Accuracy | 0.9185 | 0.9223 | 0.9090 | 0.9185 | 0.9166 | 0.8882 | 0.9242 | 0.9186 | 0.9166 |
| Precision | 0.7500 | 0.5930 | 0.5231 | 0.5676 | 0.5642 | 0.4611 | 0.6640 | 0.7533 | 0.5906 | |
| Recall | 0.2745 | 0.6455 | 0.5255 | 0.6436 | 0.6255 | 0.7655 | 0.4691 | 0.2945 | 0.4673 | |
| F1 | 0.3981 | 0.6171 | 0.5206 | 0.6007 | 0.5926 | 0.5710 | 0.5448 | 0.4100 | 0.5135 | |
| vowel0 | Accuracy | 0.9949 | 0.9960 | 0.9960 | 0.9949 | 0.9960 | 0.9960 | 0.9949 | 0.9919 | 0.9959 |
| Precision | 0.9895 | 0.9789 | 0.9789 | 0.9695 | 0.9789 | 0.9789 | 0.9784 | 0.9895 | 0.9684 | |
| Recall | 0.9556 | 0.9778 | 0.9778 | 0.9778 | 0.9778 | 0.9778 | 0.9667 | 0.9222 | 0.9889 | |
| F1 | 0.9714 | 0.9778 | 0.9778 | 0.9726 | 0.9778 | 0.9778 | 0.9721 | 0.9529 | 0.9781 | |
| glass-0-1- 6_vs_2 | Accuracy | 0.9116 | 0.9012 | 0.8958 | 0.8853 | 0.8960 | 0.8228 | 0.9065 | 0.9116 | 0.9012 |
| Precision | 0.0000 | 0.5333 | 0.4333 | 0.4571 | 0.5000 | 0.2535 | 0.0667 | 0.0000 | 0.0667 | |
| Recall | 0.0000 | 0.3500 | 0.2333 | 0.3667 | 0.3500 | 0.5167 | 0.0500 | 0.0000 | 0.0500 | |
| F1 | 0.0000 | 0.3867 | 0.2838 | 0.3505 | 0.3733 | 0.3369 | 0.0571 | 0.0000 | 0.0571 | |
| shuttle-c0-vs-c4 | All | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| yeast- 1_vs_7 | Accuracy | 0.9434 | 0.9151 | 0.9216 | 0.9064 | 0.9107 | 0.8474 | 0.9390 | 0.9412 | 0.9346 |
| Precision | 0.4500 | 0.3424 | 0.3500 | 0.2803 | 0.2967 | 0.2047 | 0.4500 | 0.4333 | 0.3300 | |
| Recall | 0.2667 | 0.4000 | 0.3667 | 0.3333 | 0.3667 | 0.4667 | 0.3000 | 0.2333 | 0.2667 | |
| F1 | 0.3333 | 0.3630 | 0.3571 | 0.2993 | 0.3242 | 0.2818 | 0.3518 | 0.3022 | 0.2927 | |
| glass4 | Accuracy | 0.9626 | 0.9671 | 0.9813 | 0.9671 | 0.9671 | 0.9529 | 0.9719 | 0.9626 | 0.9672 |
| Precision | 0.7000 | 0.6833 | 0.8000 | 0.6833 | 0.6833 | 0.6267 | 0.8000 | 0.7000 | 0.6500 | |
| Recall | 0.5000 | 0.8333 | 0.9333 | 0.8333 | 0.8333 | 0.8333 | 0.7667 | 0.5000 | 0.7333 | |
| F1 | 0.5600 | 0.7448 | 0.8533 | 0.7448 | 0.7448 | 0.7005 | 0.7533 | 0.5600 | 0.6648 | |
| ecoli4 | Accuracy | 0.9762 | 0.9703 | 0.9614 | 0.9644 | 0.9703 | 0.9674 | 0.9792 | 0.9762 | 0.9792 |
| Precision | 0.9333 | 0.8000 | 0.6967 | 0.7300 | 0.8000 | 0.7633 | 0.8833 | 0.9600 | 0.8667 | |
| Recall | 0.6500 | 0.6500 | 0.6500 | 0.6500 | 0.6500 | 0.7000 | 0.7500 | 0.6500 | 0.7500 | |
| F1 | 0.7524 | 0.7095 | 0.6675 | 0.6770 | 0.7095 | 0.7246 | 0.8071 | 0.7492 | 0.8000 | |
| page-blocks- 1-3_vs_4 | Accuracy | 0.9916 | 0.9958 | 0.9979 | 0.9979 | 0.9958 | 0.9958 | 1.0000 | 0.9916 | 0.9958 |
| Precision | 0.9667 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9667 | 0.9381 | |
| Recall | 0.9000 | 0.9333 | 0.9667 | 0.9667 | 0.9333 | 0.9333 | 1.0000 | 0.9000 | 1.0000 | |
| F1 | 0.9236 | 0.9636 | 0.9818 | 0.9818 | 0.9636 | 0.9636 | 1.0000 | 0.9236 | 0.9664 | |
| abalone9-18 | Accuracy | 0.9480 | 0.9152 | 0.9289 | 0.9138 | 0.9193 | 0.8769 | 0.9494 | 0.9508 | 0.9467 |
| Precision | 0.5000 | 0.3820 | 0.4233 | 0.3782 | 0.4320 | 0.2476 | 0.6767 | 0.7000 | 0.5333 | |
| Recall | 0.1222 | 0.5056 | 0.4111 | 0.4806 | 0.5278 | 0.5278 | 0.2444 | 0.1694 | 0.2444 | |
| F1 | 0.1964 | 0.4092 | 0.3949 | 0.3987 | 0.4369 | 0.3251 | 0.3364 | 0.2655 | 0.3216 | |
| glass-0-1- 6_vs_5 | Accuracy | 0.9782 | 0.9835 | 0.9835 | 0.9835 | 0.9835 | 0.9889 | 0.9781 | 0.9836 | 0.9782 |
| Precision | 0.8000 | 0.8000 | 0.8000 | 0.8000 | 0.8000 | 0.8000 | 0.8000 | 0.9000 | 0.8000 | |
| Recall | 0.8000 | 0.7000 | 0.7000 | 0.7000 | 0.7000 | 0.8000 | 0.6000 | 0.8000 | 0.8000 | |
| F1 | 0.7667 | 0.7333 | 0.7333 | 0.7333 | 0.7333 | 0.8000 | 0.6667 | 0.8000 | 0.7667 | |
| shuttle-c2- vs-c4 | Accuracy | 0.9923 | - | - | - | - | - | 0.9923 | 0.9923 | 1.0000 |
| Precision | 1.0000 | - | - | - | - | - | 1.0000 | 1.0000 | 1.0000 | |
| Recall | 0.9000 | - | - | - | - | - | 0.9000 | 0.9000 | 1.0000 | |
| F1 | 0.9333 | - | - | - | - | - | 0.9333 | 0.9333 | 1.0000 | |
| yeast-1-4- 5-8_vs_7 | Accuracy | 0.9567 | 0.9249 | 0.9408 | 0.9278 | 0.9264 | 0.8889 | 0.9567 | 0.9567 | 0.9553 |
| Precision | 0.0000 | 0.1300 | 0.1905 | 0.1333 | 0.0833 | 0.1205 | 0.0000 | 0.0000 | 0.0000 | |
| Recall | 0.0000 | 0.1333 | 0.1333 | 0.1000 | 0.0667 | 0.2667 | 0.0000 | 0.0000 | 0.0000 | |
| F1 | 0.0000 | 0.1299 | 0.1504 | 0.1111 | 0.0733 | 0.1654 | 0.0000 | 0.0000 | 0.0000 | |
| glass5 | Accuracy | 0.9767 | 0.9767 | 0.9721 | 0.9767 | 0.9767 | 0.9814 | 0.9721 | 0.9767 | 0.9721 |
| Precision | 0.7333 | 0.5333 | 0.5333 | 0.5333 | 0.5333 | 0.7333 | 0.5333 | 0.7333 | 0.5333 | |
| Recall | 0.6000 | 0.6000 | 0.5000 | 0.6000 | 0.6000 | 0.7000 | 0.5000 | 0.6000 | 0.5000 | |
| F1 | 0.6267 | 0.5600 | 0.4933 | 0.5600 | 0.5600 | 0.6933 | 0.4933 | 0.6267 | 0.4933 | |
| yeast-2_vs_8 | Accuracy | 0.9751 | 0.9606 | 0.9564 | 0.9398 | 0.9585 | 0.9357 | 0.9751 | 0.9792 | 0.9751 |
| Precision | 0.9500 | 0.5676 | 0.4667 | 0.3000 | 0.5750 | 0.3294 | 0.9500 | 0.9500 | 0.9500 | |
| Recall | 0.4500 | 0.5000 | 0.1500 | 0.3000 | 0.5000 | 0.5500 | 0.4500 | 0.5500 | 0.4500 | |
| F1 | 0.5614 | 0.4731 | 0.2171 | 0.2889 | 0.4638 | 0.3884 | 0.5614 | 0.6433 | 0.5614 | |
| yeast4 | Accuracy | 0.9650 | 0.9521 | 0.9555 | 0.9522 | 0.9528 | 0.9178 | 0.9690 | 0.9677 | 0.9656 |
| Precision | 0.3333 | 0.3268 | 0.3398 | 0.3147 | 0.3331 | 0.2261 | 0.7667 | 0.5667 | 0.5600 | |
| Recall | 0.0782 | 0.4036 | 0.3455 | 0.3836 | 0.4036 | 0.5436 | 0.1564 | 0.1164 | 0.1764 | |
| F1 | 0.1256 | 0.3561 | 0.3300 | 0.3406 | 0.3556 | 0.3162 | 0.2550 | 0.1884 | 0.2605 | |
| yeast-1-2- 8-9_vs_7 | Accuracy | 0.9694 | 0.9504 | 0.9514 | 0.9451 | 0.9462 | 0.9070 | 0.9694 | 0.9715 | 0.9704 |
| Precision | 0.5000 | 0.2497 | 0.2178 | 0.1582 | 0.1967 | 0.0969 | 0.6167 | 0.7333 | 0.6333 | |
| Recall | 0.1333 | 0.2333 | 0.1667 | 0.1667 | 0.2000 | 0.2333 | 0.2333 | 0.2333 | 0.2333 | |
| F1 | 0.2071 | 0.2309 | 0.1786 | 0.1599 | 0.1905 | 0.1344 | 0.3249 | 0.3365 | 0.3294 | |
| yeast5 | Accuracy | 0.9811 | 0.9838 | 0.9825 | 0.9825 | 0.9838 | 0.9805 | 0.9852 | 0.9818 | 0.9852 |
| Precision | 0.8250 | 0.7060 | 0.6769 | 0.6839 | 0.7060 | 0.6315 | 0.7739 | 0.8100 | 0.7589 | |
| Recall | 0.4917 | 0.8111 | 0.8083 | 0.7861 | 0.8111 | 0.8806 | 0.7222 | 0.5611 | 0.7444 | |
| F1 | 0.5631 | 0.7400 | 0.7130 | 0.7094 | 0.7400 | 0.7254 | 0.7369 | 0.6212 | 0.7406 | |
| yeast6 | Accuracy | 0.9818 | 0.9778 | 0.9798 | 0.9771 | 0.9771 | 0.9650 | 0.9845 | 0.9825 | 0.9825 |
| Precision | 0.7500 | 0.5518 | 0.6083 | 0.5517 | 0.5379 | 0.3870 | 0.7600 | 0.7367 | 0.6795 | |
| Recall | 0.3429 | 0.6000 | 0.5429 | 0.6000 | 0.5714 | 0.6571 | 0.4857 | 0.4000 | 0.4857 | |
| F1 | 0.4606 | 0.5646 | 0.5601 | 0.5642 | 0.5389 | 0.4761 | 0.5854 | 0.5046 | 0.5550 | |
| abalone19 | Accuracy | 0.9923 | 0.9744 | 0.9859 | 0.9741 | 0.9751 | 0.9430 | 0.9923 | 0.9919 | 0.9923 |
| Precision | 0.0000 | 0.0458 | 0.0583 | 0.0467 | 0.0473 | 0.0238 | 0.0000 | 0.0000 | 0.0000 | |
| Recall | 0.0000 | 0.1286 | 0.0619 | 0.1286 | 0.1286 | 0.1524 | 0.0000 | 0.0000 | 0.0000 | |
| F1 | 0.0000 | 0.0676 | 0.0593 | 0.0684 | 0.0690 | 0.0411 | 0.0000 | 0.0000 | 0.0000 | |
| cleveland- 0_vs_4 | Accuracy | 0.9481 | 0.9711 | 0.9597 | 0.9711 | 0.9654 | 0.9482 | 0.9482 | 0.9482 | 0.9539 |
| Precision | 0.6000 | 0.6000 | 0.5500 | 0.6000 | 0.6000 | 0.5000 | 0.6000 | 0.6000 | 0.6000 | |
| Recall | 0.3000 | 0.6000 | 0.5333 | 0.6000 | 0.5333 | 0.5333 | 0.3333 | 0.3333 | 0.4000 | |
| F1 | 0.3933 | 0.6000 | 0.5314 | 0.6000 | 0.5600 | 0.4933 | 0.4000 | 0.4000 | 0.4600 | |
| ecoli-0- 1_vs_2-3-5 | Accuracy | 0.9631 | 0.9509 | 0.9551 | 0.9509 | 0.9509 | 0.9468 | 0.9632 | 0.9590 | 0.9591 |
| Precision | 0.9100 | 0.7810 | 0.8667 | 0.7833 | 0.7576 | 0.7433 | 0.9200 | 0.8433 | 0.8933 | |
| Recall | 0.7100 | 0.7600 | 0.6800 | 0.8000 | 0.8000 | 0.8000 | 0.7200 | 0.7100 | 0.7200 | |
| F1 | 0.7798 | 0.7489 | 0.7375 | 0.7720 | 0.7644 | 0.7542 | 0.7798 | 0.7656 | 0.7653 | |
| ecoli-0- 1_vs_5 | Accuracy | 0.9750 | 0.9667 | 0.9625 | 0.9708 | 0.9667 | 0.9667 | 0.9667 | 0.9750 | 0.9792 |
| Precision | 0.7600 | 0.8933 | 0.7333 | 0.8433 | 0.8933 | 0.8267 | 0.7200 | 0.7600 | 0.9600 | |
| Recall | 0.7500 | 0.7500 | 0.6500 | 0.8500 | 0.7500 | 0.8000 | 0.7000 | 0.7500 | 0.8000 | |
| F1 | 0.7492 | 0.7511 | 0.6648 | 0.8211 | 0.7511 | 0.7854 | 0.6889 | 0.7492 | 0.8444 | |
| ecoli-0-1-4- 6_vs_5 | Accuracy | 0.9786 | 0.9679 | 0.9679 | 0.9679 | 0.9679 | 0.9714 | 0.9714 | 0.9714 | 0.9750 |
| Precision | 0.9200 | 0.7800 | 0.8167 | 0.7500 | 0.7800 | 0.7900 | 0.8700 | 0.8700 | 0.8700 | |
| Recall | 0.8000 | 0.8000 | 0.7000 | 0.8500 | 0.8000 | 0.8500 | 0.7500 | 0.7500 | 0.8000 | |
| F1 | 0.8476 | 0.7825 | 0.7500 | 0.7944 | 0.7825 | 0.8167 | 0.7881 | 0.7881 | 0.8167 | |
| ecoli-0-1-4- 7_vs_2-3-5-6 | Accuracy | 0.9643 | 0.9644 | 0.9702 | 0.9644 | 0.9673 | 0.9613 | 0.9643 | 0.9613 | 0.9732 |
| Precision | 0.9500 | 0.8311 | 0.8600 | 0.8250 | 0.8450 | 0.7726 | 0.9200 | 0.8800 | 0.9000 | |
| Recall | 0.6200 | 0.7867 | 0.7933 | 0.7867 | 0.7867 | 0.8267 | 0.6533 | 0.6533 | 0.7933 | |
| F1 | 0.7418 | 0.7988 | 0.8212 | 0.7974 | 0.8083 | 0.7913 | 0.7552 | 0.7406 | 0.8358 | |
| ecoli-0-1-4- 7_vs_5-6 | Accuracy | 0.9759 | 0.9668 | 0.9698 | 0.9668 | 0.9698 | 0.9638 | 0.9759 | 0.9759 | 0.9820 |
| Precision | 0.9500 | 0.7700 | 0.8433 | 0.7944 | 0.8033 | 0.7643 | 0.9500 | 0.9500 | 0.9333 | |
| Recall | 0.7200 | 0.8000 | 0.7600 | 0.8400 | 0.8000 | 0.8000 | 0.7200 | 0.7200 | 0.8400 | |
| F1 | 0.8111 | 0.7806 | 0.7888 | 0.7994 | 0.7988 | 0.7717 | 0.8111 | 0.8111 | 0.8732 | |
| ecoli-0-2- 3-4_vs_5 | Accuracy | 0.9706 | 0.9655 | 0.9705 | 0.9655 | 0.9655 | 0.9655 | 0.9706 | 0.9706 | 0.9754 |
| Precision | 0.8833 | 0.8600 | 0.9333 | 0.8100 | 0.8600 | 0.8100 | 0.8833 | 0.8833 | 0.9500 | |
| Recall | 0.8000 | 0.8000 | 0.7500 | 0.8500 | 0.8000 | 0.8500 | 0.8000 | 0.8000 | 0.8000 | |
| F1 | 0.8357 | 0.8206 | 0.8286 | 0.8278 | 0.8206 | 0.8278 | 0.8357 | 0.8357 | 0.8643 | |
| ecoli-0-2- 6-7_vs_3-5 | Accuracy | 0.9644 | 0.9510 | 0.9555 | 0.9374 | 0.9555 | 0.9331 | 0.9644 | 0.9600 | 0.9643 |
| Precision | 0.9000 | 0.7267 | 0.7600 | 0.6533 | 0.7467 | 0.6583 | 0.9000 | 0.9000 | 0.8600 | |
| Recall | 0.7100 | 0.7900 | 0.7000 | 0.7900 | 0.7900 | 0.7900 | 0.7100 | 0.6600 | 0.7400 | |
| F1 | 0.7786 | 0.7478 | 0.7111 | 0.6985 | 0.7611 | 0.7044 | 0.7786 | 0.7405 | 0.7683 | |
| ecoli-0-3- 4_vs_5 | Accuracy | 0.9700 | 0.9650 | 0.9750 | 0.9700 | 0.9700 | 0.9600 | 0.9700 | 0.9650 | 0.9800 |
| Precision | 0.8933 | 0.8600 | 0.9600 | 0.8700 | 0.8600 | 0.8433 | 0.8933 | 0.8833 | 0.9100 | |
| Recall | 0.8000 | 0.8000 | 0.8000 | 0.8500 | 0.8500 | 0.8000 | 0.8000 | 0.7500 | 0.9000 | |
| F1 | 0.8349 | 0.8206 | 0.8540 | 0.8484 | 0.8492 | 0.7925 | 0.8349 | 0.8071 | 0.8992 | |
| ecoli-0-3- 4-7_vs_5-6 | Accuracy | 0.9573 | 0.9532 | 0.9610 | 0.9456 | 0.9532 | 0.9532 | 0.9651 | 0.9651 | 0.9571 |
| Precision | 0.9200 | 0.7795 | 0.8595 | 0.7478 | 0.7795 | 0.7795 | 0.8833 | 0.9200 | 0.8295 | |
| Recall | 0.6400 | 0.7600 | 0.7600 | 0.7600 | 0.7600 | 0.7600 | 0.7600 | 0.7200 | 0.7600 | |
| F1 | 0.7343 | 0.7518 | 0.7818 | 0.7280 | 0.7518 | 0.7518 | 0.8066 | 0.7978 | 0.7685 | |
| ecoli-0-4- 6_vs_5 | Accuracy | 0.9754 | 0.9556 | 0.9655 | 0.9556 | 0.9556 | 0.9606 | 0.9704 | 0.9705 | 0.9704 |
| Precision | 0.9600 | 0.8167 | 0.9100 | 0.7943 | 0.8167 | 0.8267 | 0.9100 | 0.9200 | 0.8533 | |
| Recall | 0.8000 | 0.8000 | 0.7500 | 0.8500 | 0.8000 | 0.8500 | 0.8000 | 0.8000 | 0.9000 | |
| F1 | 0.8540 | 0.7748 | 0.8040 | 0.7994 | 0.7748 | 0.8025 | 0.8325 | 0.8317 | 0.8584 | |
| ecoli-0-6- 7_vs_3-5 | Accuracy | 0.9640 | 0.9596 | 0.9506 | 0.9416 | 0.9596 | 0.9415 | 0.9595 | 0.9640 | 0.9640 |
| Precision | 0.9600 | 0.8433 | 0.7667 | 0.7267 | 0.8433 | 0.6767 | 0.9200 | 0.9600 | 0.8933 | |
| Recall | 0.6800 | 0.7800 | 0.7400 | 0.7800 | 0.7800 | 0.7800 | 0.6800 | 0.6800 | 0.7800 | |
| F1 | 0.7767 | 0.7867 | 0.7410 | 0.7251 | 0.7867 | 0.7166 | 0.7544 | 0.7767 | 0.8033 | |
| ecoli-0-6- 7_vs_5 | Accuracy | 0.9727 | 0.9591 | 0.9591 | 0.9591 | 0.9591 | 0.9318 | 0.9773 | 0.9727 | 0.9727 |
| Precision | 0.9600 | 0.8076 | 0.8033 | 0.7576 | 0.8076 | 0.7043 | 0.9200 | 0.9600 | 0.8933 | |
| Recall | 0.7500 | 0.8500 | 0.8000 | 0.9000 | 0.8500 | 0.8000 | 0.8500 | 0.7500 | 0.8500 | |
| F1 | 0.8006 | 0.7880 | 0.7456 | 0.8047 | 0.7880 | 0.6675 | 0.8603 | 0.8006 | 0.8425 | |
| glass-0-1- 4-6_vs_2 | Accuracy | 0.9122 | 0.8780 | 0.8732 | 0.9073 | 0.8780 | 0.8146 | 0.9171 | 0.9073 | 0.9024 |
| Precision | 0.0000 | 0.3733 | 0.3590 | 0.5033 | 0.3733 | 0.2591 | 0.1500 | 0.0000 | 0.2333 | |
| Recall | 0.0000 | 0.3833 | 0.3833 | 0.4333 | 0.3833 | 0.5000 | 0.2000 | 0.0000 | 0.2000 | |
| F1 | 0.0000 | 0.3078 | 0.2944 | 0.4110 | 0.3078 | 0.3038 | 0.1714 | 0.0000 | 0.2133 | |
| glass-0-1- 5_vs_2 | Accuracy | 0.9015 | 0.8429 | 0.8486 | 0.8429 | 0.8429 | 0.7787 | 0.9129 | 0.9013 | 0.9072 |
| Precision | 0.2000 | 0.1905 | 0.2833 | 0.2500 | 0.1905 | 0.1651 | 0.6333 | 0.2000 | 0.6000 | |
| Recall | 0.0667 | 0.2333 | 0.2833 | 0.2833 | 0.2333 | 0.3500 | 0.2833 | 0.0667 | 0.2333 | |
| F1 | 0.1000 | 0.1943 | 0.2786 | 0.2643 | 0.1943 | 0.2224 | 0.3810 | 0.1000 | 0.3333 | |
| glass-0-4_vs_5 | All | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| glass-0- 6_vs_5 | Accuracy | 0.9905 | 0.9818 | 0.9723 | 0.9909 | 0.9818 | 0.9909 | 0.9905 | 0.9905 | 0.9905 |
| Precision | 0.8000 | 0.9333 | 0.7333 | 1.0000 | 0.9333 | 1.0000 | 0.8000 | 0.8000 | 0.8000 | |
| Recall | 0.8000 | 0.9000 | 0.7000 | 0.9000 | 0.9000 | 0.9000 | 0.8000 | 0.8000 | 0.8000 | |
| F1 | 0.8000 | 0.8933 | 0.6933 | 0.9333 | 0.8933 | 0.9333 | 0.8000 | 0.8000 | 0.8000 | |
| led7digit- 0-2-4-5-6- 7-8-9_vs_1 | Accuracy | 0.9662 | 0.9684 | 0.9662 | 0.9617 | 0.9684 | 0.9324 | 0.9662 | 0.9662 | 0.9594 |
| Precision | 0.7984 | 0.8012 | 0.7984 | 0.7634 | 0.8012 | 0.8667 | 0.7984 | 0.7984 | 0.7523 | |
| Recall | 0.8071 | 0.8321 | 0.8071 | 0.8071 | 0.8321 | 0.3000 | 0.8071 | 0.8071 | 0.8071 | |
| F1 | 0.8005 | 0.8137 | 0.8005 | 0.7811 | 0.8137 | 0.4215 | 0.8005 | 0.8005 | 0.7737 | |
| yeast-0-2- 5-6_vs_3-7- 8-9 | Accuracy | 0.9382 | 0.9293 | 0.9283 | 0.9193 | 0.9293 | 0.9044 | 0.9372 | 0.9373 | 0.9323 |
| Precision | 0.8143 | 0.6496 | 0.6662 | 0.5982 | 0.6535 | 0.5172 | 0.7682 | 0.7790 | 0.7099 | |
| Recall | 0.4842 | 0.6353 | 0.5653 | 0.6053 | 0.6253 | 0.6958 | 0.5353 | 0.5147 | 0.5447 | |
| F1 | 0.6030 | 0.6373 | 0.6067 | 0.5959 | 0.6342 | 0.5905 | 0.6261 | 0.6168 | 0.6129 | |
| yeast-0-2- 5-7-9_vs_3- 6-8 | Accuracy | 0.9641 | 0.9592 | 0.9651 | 0.9572 | 0.9582 | 0.9532 | 0.9631 | 0.9661 | 0.9641 |
| Precision | 0.8587 | 0.7837 | 0.8588 | 0.7686 | 0.7807 | 0.7266 | 0.8439 | 0.8584 | 0.8328 | |
| Recall | 0.7695 | 0.8195 | 0.7889 | 0.8295 | 0.8195 | 0.8500 | 0.7795 | 0.8000 | 0.8095 | |
| F1 | 0.8066 | 0.7982 | 0.8165 | 0.7931 | 0.7952 | 0.7808 | 0.8049 | 0.8213 | 0.8159 | |
| yeast-0-3-5- 9_vs_7-8 | Accuracy | 0.9111 | 0.8775 | 0.8853 | 0.8794 | 0.8873 | 0.8182 | 0.9072 | 0.9151 | 0.9131 |
| Precision | 0.6333 | 0.3875 | 0.4095 | 0.4195 | 0.4389 | 0.3046 | 0.4933 | 0.6333 | 0.5950 | |
| Recall | 0.1800 | 0.4600 | 0.3600 | 0.4600 | 0.4800 | 0.6200 | 0.2400 | 0.2400 | 0.3200 | |
| F1 | 0.2620 | 0.4099 | 0.3739 | 0.4241 | 0.4472 | 0.4045 | 0.3150 | 0.3381 | 0.4076 | |
| abalone- 3_vs_11 | Accuracy | 0.9980 | 0.9980 | 0.9980 | 0.9980 | 0.9980 | 0.9980 | 0.9980 | 1.0000 | 0.9940 |
| Precision | 0.9500 | 0.9500 | 0.9500 | 0.9500 | 0.9500 | 0.9500 | 0.9500 | 1.0000 | 0.9000 | |
| Recall | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
| F1 | 0.9714 | 0.9714 | 0.9714 | 0.9714 | 0.9714 | 0.9714 | 0.9714 | 1.0000 | 0.9333 | |
| abalone- 17_vs_7-8- 9-10 | Accuracy | 0.9756 | 0.9577 | 0.9615 | 0.9568 | 0.9564 | 0.9397 | 0.9765 | 0.9748 | 0.9748 |
| Precision | 0.6333 | 0.2873 | 0.3054 | 0.2907 | 0.2811 | 0.2431 | 0.5667 | 0.3667 | 0.5100 | |
| Recall | 0.1045 | 0.4470 | 0.4136 | 0.4303 | 0.4485 | 0.5864 | 0.1591 | 0.0515 | 0.1561 | |
| F1 | 0.1761 | 0.3451 | 0.3460 | 0.3354 | 0.3427 | 0.3360 | 0.2457 | 0.0886 | 0.2349 | |
| abalone- 19_vs_10- 11-12-13 | Accuracy | 0.9803 | 0.9427 | 0.9605 | 0.9464 | 0.9427 | 0.8964 | 0.9803 | 0.9803 | 0.9803 |
| Precision | 0.0000 | 0.0926 | 0.0889 | 0.0860 | 0.0671 | 0.0622 | 0.0000 | 0.0000 | 0.0000 | |
| Recall | 0.0000 | 0.2238 | 0.1286 | 0.2000 | 0.1667 | 0.3238 | 0.0000 | 0.0000 | 0.0000 | |
| F1 | 0.0000 | 0.1302 | 0.1028 | 0.1199 | 0.0955 | 0.1037 | 0.0000 | 0.0000 | 0.0000 | |
| abalone- 20_vs_8-9-10 | Accuracy | 0.9859 | 0.9734 | 0.9786 | 0.9723 | 0.9708 | 0.9640 | 0.9849 | 0.9859 | 0.9854 |
| Precision | 0.0000 | 0.2271 | 0.2885 | 0.2253 | 0.1833 | 0.1775 | 0.0000 | 0.0000 | 0.0000 | |
| Recall | 0.0000 | 0.4800 | 0.4333 | 0.4800 | 0.4000 | 0.5133 | 0.0000 | 0.0000 | 0.0000 | |
| F1 | 0.0000 | 0.3051 | 0.3438 | 0.3034 | 0.2493 | 0.2624 | 0.0000 | 0.0000 | 0.0000 | |
| abalone- 21_vs_8 | Accuracy | 0.9776 | 0.9690 | 0.9776 | 0.9638 | 0.9690 | 0.9621 | 0.9759 | 0.9776 | 0.9794 |
| Precision | 0.3333 | 0.5083 | 0.6033 | 0.3917 | 0.5083 | 0.3488 | 0.3000 | 0.3333 | 0.5500 | |
| Recall | 0.2000 | 0.5667 | 0.5667 | 0.5667 | 0.5667 | 0.6667 | 0.1333 | 0.2000 | 0.3333 | |
| F1 | 0.2333 | 0.4662 | 0.5300 | 0.4335 | 0.4662 | 0.4361 | 0.1800 | 0.2333 | 0.3714 | |
| car-good | Accuracy | 0.9491 | 0.9479 | 0.9485 | 0.9502 | 0.9479 | 0.9346 | 0.9497 | 0.9502 | 0.9485 |
| Precision | 0.3228 | 0.3549 | 0.3594 | 0.3717 | 0.3549 | 0.3535 | 0.3611 | 0.3425 | 0.3363 | |
| Recall | 0.2473 | 0.3187 | 0.3330 | 0.3341 | 0.3187 | 0.7516 | 0.3187 | 0.2615 | 0.2747 | |
| F1 | 0.2780 | 0.3287 | 0.3396 | 0.3485 | 0.3287 | 0.4782 | 0.3352 | 0.2919 | 0.2996 | |
| car-vgood | Accuracy | 0.9618 | 0.9595 | 0.9601 | 0.9601 | 0.9595 | 0.9612 | 0.9618 | 0.9606 | 0.9589 |
| Precision | 0.5102 | 0.4585 | 0.4776 | 0.4776 | 0.4585 | 0.4954 | 0.5016 | 0.4969 | 0.4734 | |
| Recall | 0.3385 | 0.3385 | 0.3538 | 0.3538 | 0.3385 | 0.7846 | 0.3385 | 0.3231 | 0.3692 | |
| F1 | 0.3913 | 0.3812 | 0.3991 | 0.3991 | 0.3812 | 0.6055 | 0.3907 | 0.3771 | 0.4006 | |
| dermatology-6 | All | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| flare-F | Accuracy | 0.9503 | 0.9381 | 0.9390 | 0.9353 | 0.9400 | 0.9156 | 0.9475 | 0.9493 | 0.9437 |
| Precision | 0.1333 | 0.1471 | 0.1650 | 0.1379 | 0.1789 | 0.2449 | 0.1250 | 0.1550 | 0.1817 | |
| Recall | 0.0694 | 0.1417 | 0.1667 | 0.1417 | 0.1917 | 0.5139 | 0.0694 | 0.0944 | 0.1667 | |
| F1 | 0.0908 | 0.1421 | 0.1638 | 0.1364 | 0.1829 | 0.3299 | 0.0876 | 0.1158 | 0.1705 | |
| kddcup- buffer_overflow_ vs_back | All | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| kddcup- guess_passwd_ vs_satan | All | 1.0000 | 1.0000 | 1.0000 | - | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| kddcup- land_vs_ portsweep | All | 1.0000 | 1.0000 | 1.0000 | - | 1.0000 | 1.0000 | 1.0000 | 0.9991 | 1.0000 |
| kr-vs-k- one_vs_fifteen | All | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| kr-vs-k-zero- one_vs_draw | Accuracy | 0.9959 | 0.9959 | 0.9955 | 0.9962 | 0.9966 | 0.9945 | 0.9976 | 0.9966 | 0.9983 |
| Precision | 0.9795 | 0.9445 | 0.9609 | 0.9437 | 0.9623 | 0.8882 | 0.9810 | 0.9905 | 0.9814 | |
| Recall | 0.9048 | 0.9429 | 0.9143 | 0.9524 | 0.9429 | 0.9714 | 0.9524 | 0.9143 | 0.9714 | |
| F1 | 0.9400 | 0.9428 | 0.9366 | 0.9477 | 0.9519 | 0.9274 | 0.9661 | 0.9502 | 0.9761 | |
| lymphography- normal- fibrosis | Accuracy | 0.9864 | - | - | - | - | - | 0.9864 | 0.9864 | 0.9864 |
| Precision | 0.6000 | - | - | - | - | - | 0.6000 | 0.6000 | 0.6000 | |
| Recall | 0.6000 | - | - | - | - | - | 0.6000 | 0.6000 | 0.6000 | |
| F1 | 0.6000 | - | - | - | - | - | 0.6000 | 0.6000 | 0.6000 | |
| poker-8_vs_6 | Accuracy | 0.9885 | 0.9946 | 0.9932 | 0.9939 | 0.9946 | 0.9946 | 0.9885 | 0.9885 | 0.9885 |
| Precision | 0.0000 | 0.8000 | 0.6000 | 0.8000 | 0.8000 | 0.8000 | - | - | - | |
| Recall | 0.0000 | 0.5500 | 0.4333 | 0.4833 | 0.5500 | 0.5500 | - | - | - | |
| F1 | 0.0000 | 0.6133 | 0.4933 | 0.5733 | 0.6133 | 0.6133 | - | - | - | |
| poker-8-9_vs_5 | Accuracy | 0.9880 | 0.9855 | 0.9870 | 0.9860 | 0.9855 | 0.9827 | 0.9880 | 0.9880 | 0.9880 |
| Precision | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
| Recall | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
| F1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |
| poker-9_vs_7 | Accuracy | 0.9713 | 0.9713 | 0.9673 | 0.9754 | 0.9713 | 0.9672 | 0.9713 | 0.9713 | 0.9713 |
| Precision | 0.2000 | 0.2000 | 0.0000 | 0.4000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | 0.2000 | |
| Recall | 0.2000 | 0.1000 | 0.0000 | 0.2000 | 0.1000 | 0.1000 | 0.2000 | 0.2000 | 0.2000 | |
| F1 | 0.2000 | 0.1333 | 0.0000 | 0.2667 | 0.1333 | 0.1333 | 0.2000 | 0.2000 | 0.2000 | |
| shuttle-2_vs_5 | All | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| shuttle-6_vs_2-3 | All | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| winequality- red-3_vs_5 | Accuracy | 0.9855 | 0.9653 | 0.9768 | 0.9667 | 0.9667 | 0.9566 | 0.9855 | 0.9855 | 0.9855 |
| Precision | - | - | - | - | - | - | - | - | - | |
| Recall | - | - | - | - | - | - | - | - | - | |
| F1 | - | - | - | - | - | - | - | - | - | |
| winequality- red-4 | Accuracy | 0.9669 | 0.9475 | 0.9600 | 0.9475 | 0.9481 | 0.9137 | 0.9662 | 0.9669 | 0.9656 |
| Precision | 0.1000 | 0.1831 | 0.0667 | 0.1754 | 0.1458 | 0.1268 | 0.0000 | 0.1000 | 0.0000 | |
| Recall | 0.0182 | 0.1691 | 0.0200 | 0.1327 | 0.1127 | 0.2618 | 0.0000 | 0.0182 | 0.0000 | |
| F1 | 0.0308 | 0.1748 | 0.0308 | 0.1473 | 0.1268 | 0.1697 | 0.0000 | 0.0308 | 0.0000 | |
| winequality- red-8_vs_6-7 | Accuracy | 0.9813 | 0.9602 | 0.9801 | 0.9602 | 0.9614 | 0.9216 | 0.9813 | 0.9813 | 0.9813 |
| Precision | 0.4000 | 0.1333 | 0.4000 | 0.1333 | 0.1467 | 0.1103 | 0.4000 | 0.4000 | 0.4000 | |
| Recall | 0.1000 | 0.2000 | 0.1000 | 0.2000 | 0.2000 | 0.3833 | 0.1000 | 0.1000 | 0.1000 | |
| F1 | 0.1600 | 0.1600 | 0.1600 | 0.1600 | 0.1689 | 0.1700 | 0.1600 | 0.1600 | 0.1600 | |
| winequality- red-8_vs_6 | Accuracy | 0.9741 | 0.9543 | 0.9726 | 0.9527 | 0.9481 | 0.9238 | 0.9741 | 0.9726 | 0.9726 |
| Precision | 0.4000 | 0.2444 | 0.3667 | 0.2305 | 0.2133 | 0.1446 | 0.3000 | 0.3000 | 0.3000 | |
| Recall | 0.1167 | 0.3000 | 0.1667 | 0.3000 | 0.3000 | 0.4167 | 0.1167 | 0.1167 | 0.1167 | |
| F1 | 0.1800 | 0.2476 | 0.2133 | 0.2443 | 0.2258 | 0.2062 | 0.1600 | 0.1600 | 0.1600 | |
| winequality- white-3_vs_7 | Accuracy | 0.9811 | 0.9711 | 0.9778 | 0.9700 | 0.9678 | 0.9478 | 0.9811 | 0.9800 | 0.9800 |
| Precision | 0.4000 | 0.1667 | 0.3000 | 0.1667 | 0.1286 | 0.1812 | 0.6000 | 0.4000 | 0.6000 | |
| Recall | 0.1500 | 0.1500 | 0.1500 | 0.1500 | 0.1000 | 0.4000 | 0.2000 | 0.1500 | 0.2000 | |
| F1 | 0.2133 | 0.1467 | 0.1800 | 0.1467 | 0.1030 | 0.2457 | 0.2933 | 0.2133 | 0.2933 | |
| winequality- white-3-9_vs_5 | Accuracy | 0.9825 | 0.9730 | 0.9784 | 0.9717 | 0.9723 | 0.9575 | 0.9825 | 0.9825 | 0.9818 |
| Precision | 0.2000 | 0.1119 | 0.2500 | 0.0833 | 0.1067 | 0.0993 | 0.2000 | 0.2000 | 0.2000 | |
| Recall | 0.0400 | 0.1200 | 0.0800 | 0.0800 | 0.1200 | 0.2000 | 0.0400 | 0.0400 | 0.0400 | |
| F1 | 0.0667 | 0.1141 | 0.1111 | 0.0808 | 0.1127 | 0.1307 | 0.0667 | 0.0667 | 0.0667 | |
| winequality- white-9_vs_4 | Accuracy | 0.9763 | - | - | - | - | - | 0.9763 | 0.9763 | 0.9763 |
| Precision | 0.2000 | - | - | - | - | - | 0.2000 | 0.2000 | 0.2000 | |
| Recall | 0.2000 | - | - | - | - | - | 0.2000 | 0.2000 | 0.2000 | |
| F1 | 0.2000 | - | - | - | - | - | 0.2000 | 0.2000 | 0.2000 | |
| zoo-3 | Accuracy | 0.9705 | - | - | - | - | - | 0.9705 | 0.9705 | 0.9705 |
| Precision | 0.4000 | - | - | - | - | - | 0.4000 | 0.4000 | 0.4000 | |
| Recall | 0.4000 | - | - | - | - | - | 0.4000 | 0.4000 | 0.4000 | |
| F1 | 0.4000 | - | - | - | - | - | 0.4000 | 0.4000 | 0.4000 |
Appendix D
| Dataset | Metric | Original | SMOTE | Borderline- SMOTE | ADASYN | SMOTE +Tomek | SMOTEENN | Radius-SMOTE | WCOM KKNB | WISEST (Ours) |
|---|---|---|---|---|---|---|---|---|---|---|
| 03subcl5- 600-5-0-BI | Accuracy | 0.9483 | 0.9467 | 0.9450 | 0.9483 | 0.9450 | 0.9233 | 0.9400 | 0.9533 | 0.9483 |
| Precision | 0.8378 | 0.8235 | 0.8131 | 0.8181 | 0.8176 | 0.7263 | 0.7981 | 0.8771 | 0.7810 | |
| Recall | 0.8600 | 0.8700 | 0.8900 | 0.9000 | 0.8700 | 0.8800 | 0.8700 | 0.8400 | 0.9700 | |
| F1 | 0.8457 | 0.8430 | 0.8454 | 0.8542 | 0.8403 | 0.7940 | 0.8292 | 0.8551 | 0.8641 | |
| 03subcl5- 600-5-30-BI | Accuracy | 0.8850 | 0.8517 | 0.8483 | 0.8350 | 0.8367 | 0.8350 | 0.8700 | 0.8917 | 0.8667 |
| Precision | 0.7052 | 0.5447 | 0.5363 | 0.5056 | 0.5153 | 0.5070 | 0.6017 | 0.7222 | 0.5890 | |
| Recall | 0.5700 | 0.7400 | 0.7600 | 0.7600 | 0.7000 | 0.8100 | 0.6600 | 0.6000 | 0.7000 | |
| F1 | 0.6263 | 0.6250 | 0.6278 | 0.6055 | 0.5906 | 0.6227 | 0.6289 | 0.6521 | 0.6387 | |
| 03subcl5- 600-5-50-BI | Accuracy | 0.8600 | 0.8150 | 0.8150 | 0.8100 | 0.8100 | 0.7800 | 0.8350 | 0.8583 | 0.8350 |
| Precision | 0.6245 | 0.4730 | 0.4692 | 0.4582 | 0.4606 | 0.4242 | 0.5143 | 0.6156 | 0.5125 | |
| Recall | 0.4600 | 0.6800 | 0.6800 | 0.7100 | 0.6700 | 0.8300 | 0.5200 | 0.4600 | 0.5800 | |
| F1 | 0.5278 | 0.5542 | 0.5536 | 0.5561 | 0.5433 | 0.5591 | 0.5157 | 0.5242 | 0.5432 | |
| 03subcl5- 600-5-60-BI | Accuracy | 0.8350 | 0.8050 | 0.7933 | 0.8033 | 0.8033 | 0.7850 | 0.8050 | 0.8333 | 0.8000 |
| Precision | 0.5150 | 0.4436 | 0.4246 | 0.4451 | 0.4384 | 0.4250 | 0.4185 | 0.4992 | 0.4201 | |
| Recall | 0.3700 | 0.6500 | 0.6300 | 0.7100 | 0.6300 | 0.8100 | 0.4600 | 0.3500 | 0.5400 | |
| F1 | 0.4243 | 0.5259 | 0.5054 | 0.5458 | 0.5161 | 0.5572 | 0.4369 | 0.4102 | 0.4710 | |
| 03subcl5- 600-5-70-BI | Accuracy | 0.8367 | 0.8050 | 0.7917 | 0.7967 | 0.8133 | 0.7700 | 0.8100 | 0.8400 | 0.7983 |
| Precision | 0.5442 | 0.4516 | 0.4267 | 0.4431 | 0.4667 | 0.4066 | 0.4371 | 0.5273 | 0.4177 | |
| Recall | 0.3500 | 0.7300 | 0.6600 | 0.7900 | 0.7600 | 0.8000 | 0.4600 | 0.3700 | 0.4800 | |
| F1 | 0.4142 | 0.5565 | 0.5163 | 0.5657 | 0.5764 | 0.5381 | 0.4443 | 0.4315 | 0.4415 | |
| 03subcl5- 800-7-0-BI | Accuracy | 0.9538 | 0.9525 | 0.9538 | 0.9575 | 0.9550 | 0.9462 | 0.9550 | 0.9563 | 0.9550 |
| Precision | 0.8212 | 0.7744 | 0.7896 | 0.7963 | 0.7878 | 0.7274 | 0.7920 | 0.8560 | 0.7662 | |
| Recall | 0.8100 | 0.8800 | 0.8700 | 0.8900 | 0.8800 | 0.9100 | 0.8700 | 0.7800 | 0.9300 | |
| F1 | 0.8149 | 0.8224 | 0.8235 | 0.8391 | 0.8297 | 0.8067 | 0.8283 | 0.8155 | 0.8387 | |
| 03subcl5- 800-7-30-BI | Accuracy | 0.9113 | 0.8613 | 0.8588 | 0.8575 | 0.8575 | 0.8263 | 0.9025 | 0.9088 | 0.9025 |
| Precision | 0.6994 | 0.4647 | 0.4618 | 0.4707 | 0.4552 | 0.4012 | 0.6079 | 0.6919 | 0.6117 | |
| Recall | 0.5400 | 0.6900 | 0.6900 | 0.7400 | 0.6800 | 0.7400 | 0.6300 | 0.5200 | 0.6600 | |
| F1 | 0.5990 | 0.5537 | 0.5514 | 0.5707 | 0.5434 | 0.5185 | 0.6149 | 0.5873 | 0.6324 | |
| 03subcl5- 800-7-50-BI | Accuracy | 0.8838 | 0.8200 | 0.8313 | 0.8138 | 0.8088 | 0.7713 | 0.8738 | 0.8863 | 0.8625 |
| Precision | 0.5883 | 0.3751 | 0.4040 | 0.3688 | 0.3604 | 0.3180 | 0.4953 | 0.6070 | 0.4525 | |
| Recall | 0.3400 | 0.6400 | 0.6800 | 0.6700 | 0.6400 | 0.7200 | 0.4700 | 0.3300 | 0.4800 | |
| F1 | 0.4246 | 0.4720 | 0.5054 | 0.4740 | 0.4590 | 0.4401 | 0.4820 | 0.4244 | 0.4650 | |
| 03subcl5- 800-7-60-BI | Accuracy | 0.8787 | 0.8200 | 0.8200 | 0.8088 | 0.8088 | 0.7875 | 0.8588 | 0.8750 | 0.8412 |
| Precision | 0.5383 | 0.3747 | 0.3684 | 0.3624 | 0.3566 | 0.3371 | 0.4355 | 0.5110 | 0.3693 | |
| Recall | 0.3000 | 0.6100 | 0.5700 | 0.6700 | 0.6400 | 0.7300 | 0.3800 | 0.2800 | 0.3700 | |
| F1 | 0.3780 | 0.4617 | 0.4454 | 0.4691 | 0.4572 | 0.4607 | 0.4009 | 0.3573 | 0.3636 | |
| 03subcl5- 800-7-70-BI | Accuracy | 0.8600 | 0.8050 | 0.8038 | 0.8000 | 0.7925 | 0.7513 | 0.8463 | 0.8600 | 0.8412 |
| Precision | 0.4565 | 0.3461 | 0.3426 | 0.3477 | 0.3293 | 0.3028 | 0.3871 | 0.4412 | 0.3815 | |
| Recall | 0.2500 | 0.6300 | 0.6100 | 0.6800 | 0.6300 | 0.7300 | 0.3900 | 0.2100 | 0.3900 | |
| F1 | 0.3082 | 0.4466 | 0.4380 | 0.4597 | 0.4318 | 0.4263 | 0.3838 | 0.2737 | 0.3836 | |
| 04clover5z- 600-5-0-BI | Accuracy | 0.9200 | 0.9150 | 0.9200 | 0.9083 | 0.9200 | 0.8967 | 0.9150 | 0.9350 | 0.9150 |
| Precision | 0.7802 | 0.7181 | 0.7166 | 0.6819 | 0.7235 | 0.6446 | 0.7256 | 0.8438 | 0.6931 | |
| Recall | 0.7400 | 0.8300 | 0.8700 | 0.8700 | 0.8700 | 0.8900 | 0.8100 | 0.7600 | 0.9000 | |
| F1 | 0.7559 | 0.7683 | 0.7844 | 0.7625 | 0.7867 | 0.7451 | 0.7623 | 0.7969 | 0.7816 | |
| 04clover5z- 600-5-30-BI | Accuracy | 0.8717 | 0.8667 | 0.8600 | 0.8600 | 0.8600 | 0.8283 | 0.8683 | 0.8700 | 0.8700 |
| Precision | 0.6573 | 0.5875 | 0.5672 | 0.5615 | 0.5690 | 0.5011 | 0.6067 | 0.6446 | 0.5955 | |
| Recall | 0.4900 | 0.7200 | 0.7300 | 0.7500 | 0.7100 | 0.8000 | 0.6300 | 0.5100 | 0.7100 | |
| F1 | 0.5569 | 0.6438 | 0.6365 | 0.6406 | 0.6294 | 0.6113 | 0.6113 | 0.5642 | 0.6451 | |
| 04clover5z- 600-5-50-BI | Accuracy | 0.8433 | 0.8350 | 0.8367 | 0.8533 | 0.8350 | 0.8050 | 0.8517 | 0.8450 | 0.8417 |
| Precision | 0.5559 | 0.5155 | 0.5126 | 0.5487 | 0.5179 | 0.4613 | 0.5598 | 0.5535 | 0.5259 | |
| Recall | 0.3500 | 0.6900 | 0.7000 | 0.7800 | 0.6900 | 0.8200 | 0.5500 | 0.3600 | 0.5800 | |
| F1 | 0.4249 | 0.5851 | 0.5903 | 0.6421 | 0.5849 | 0.5880 | 0.5484 | 0.4322 | 0.5480 | |
| 04clover5z- 600-5-60-BI | Accuracy | 0.8217 | 0.8117 | 0.7983 | 0.8000 | 0.8050 | 0.7650 | 0.8117 | 0.8267 | 0.8067 |
| Precision | 0.4308 | 0.4594 | 0.4368 | 0.4401 | 0.4471 | 0.3935 | 0.4472 | 0.4615 | 0.4315 | |
| Recall | 0.3000 | 0.6600 | 0.6300 | 0.6600 | 0.6500 | 0.7400 | 0.4700 | 0.3400 | 0.4900 | |
| F1 | 0.3497 | 0.5397 | 0.5133 | 0.5266 | 0.5270 | 0.5121 | 0.4542 | 0.3877 | 0.4557 | |
| 04clover5z- 600-5-70-BI | Accuracy | 0.8333 | 0.8133 | 0.7983 | 0.8017 | 0.8133 | 0.7683 | 0.8233 | 0.8200 | 0.8083 |
| Precision | 0.5237 | 0.4651 | 0.4263 | 0.4379 | 0.4660 | 0.4093 | 0.4781 | 0.4765 | 0.4309 | |
| Recall | 0.3200 | 0.6600 | 0.6000 | 0.6400 | 0.7100 | 0.7800 | 0.4700 | 0.3100 | 0.4700 | |
| F1 | 0.3874 | 0.5417 | 0.4953 | 0.5181 | 0.5583 | 0.5318 | 0.4687 | 0.3653 | 0.4442 | |
| 04clover5z- 800-7-0-BI | Accuracy | 0.9488 | 0.9463 | 0.9550 | 0.9450 | 0.9487 | 0.9200 | 0.9450 | 0.9450 | 0.9325 |
| Precision | 0.8775 | 0.7442 | 0.7918 | 0.7412 | 0.7609 | 0.6282 | 0.7932 | 0.8800 | 0.6957 | |
| Recall | 0.6900 | 0.8700 | 0.8800 | 0.8600 | 0.8600 | 0.8900 | 0.7600 | 0.6500 | 0.8200 | |
| F1 | 0.7693 | 0.8012 | 0.8302 | 0.7951 | 0.8067 | 0.7356 | 0.7741 | 0.7458 | 0.7513 | |
| 04clover5z- 800-7-30-BI | Accuracy | 0.9100 | 0.8862 | 0.8813 | 0.8825 | 0.8825 | 0.8575 | 0.9000 | 0.9075 | 0.8975 |
| Precision | 0.7319 | 0.5369 | 0.5192 | 0.5232 | 0.5245 | 0.4568 | 0.6227 | 0.7230 | 0.5958 | |
| Recall | 0.4400 | 0.7000 | 0.7200 | 0.7000 | 0.6900 | 0.7500 | 0.5300 | 0.4300 | 0.5800 | |
| F1 | 0.5489 | 0.6060 | 0.6025 | 0.5977 | 0.5948 | 0.5669 | 0.5697 | 0.5375 | 0.5857 | |
| 04clover5z- 800-7-50-BI | Accuracy | 0.8738 | 0.8338 | 0.8375 | 0.8363 | 0.8313 | 0.8087 | 0.8700 | 0.8713 | 0.8500 |
| Precision | 0.4995 | 0.3987 | 0.4008 | 0.4116 | 0.3910 | 0.3690 | 0.4781 | 0.4605 | 0.3998 | |
| Recall | 0.2400 | 0.6200 | 0.5700 | 0.6800 | 0.6200 | 0.7300 | 0.4100 | 0.2000 | 0.3900 | |
| F1 | 0.3223 | 0.4829 | 0.4685 | 0.5116 | 0.4784 | 0.4891 | 0.4397 | 0.2768 | 0.3915 | |
| 04clover5z- 800-7-60-BI | Accuracy | 0.8513 | 0.8212 | 0.8325 | 0.8275 | 0.8250 | 0.8025 | 0.8425 | 0.8575 | 0.8363 |
| Precision | 0.3521 | 0.3839 | 0.4000 | 0.3992 | 0.3892 | 0.3678 | 0.3726 | 0.3919 | 0.3566 | |
| Recall | 0.2000 | 0.6200 | 0.6100 | 0.6500 | 0.6200 | 0.7400 | 0.3300 | 0.2200 | 0.3600 | |
| F1 | 0.2519 | 0.4718 | 0.4819 | 0.4920 | 0.4756 | 0.4895 | 0.3434 | 0.2733 | 0.3556 | |
| 04clover5z- 800-7-70-BI | Accuracy | 0.8687 | 0.8237 | 0.8200 | 0.8262 | 0.8188 | 0.7863 | 0.8525 | 0.8700 | 0.8525 |
| Precision | 0.4546 | 0.3656 | 0.3553 | 0.3801 | 0.3640 | 0.3414 | 0.4055 | 0.4883 | 0.4055 | |
| Recall | 0.2300 | 0.5900 | 0.5500 | 0.6400 | 0.6200 | 0.7500 | 0.3700 | 0.2000 | 0.3900 | |
| F1 | 0.3008 | 0.4495 | 0.4313 | 0.4751 | 0.4571 | 0.4677 | 0.3843 | 0.2809 | 0.3972 | |
| paw02a- 600-5-0-BI | Accuracy | 0.9700 | 0.9667 | 0.9717 | 0.9733 | 0.9700 | 0.9600 | 0.9700 | 0.9700 | 0.9650 |
| Precision | 0.9132 | 0.8714 | 0.9012 | 0.8909 | 0.8829 | 0.8344 | 0.8904 | 0.9132 | 0.8594 | |
| Recall | 0.9100 | 0.9400 | 0.9400 | 0.9600 | 0.9500 | 0.9500 | 0.9400 | 0.9100 | 0.9500 | |
| F1 | 0.9104 | 0.9032 | 0.9185 | 0.9233 | 0.9132 | 0.8879 | 0.9125 | 0.9104 | 0.9011 | |
| paw02a- 600-5-30-BI | Accuracy | 0.9283 | 0.9033 | 0.8983 | 0.8883 | 0.8967 | 0.8750 | 0.9133 | 0.9300 | 0.8967 |
| Precision | 0.8821 | 0.6884 | 0.6698 | 0.6300 | 0.6673 | 0.6048 | 0.7552 | 0.8754 | 0.6753 | |
| Recall | 0.6900 | 0.8100 | 0.8100 | 0.8600 | 0.8200 | 0.8400 | 0.7600 | 0.7100 | 0.8200 | |
| F1 | 0.7586 | 0.7378 | 0.7261 | 0.7231 | 0.7291 | 0.6958 | 0.7444 | 0.7688 | 0.7290 | |
| paw02a- 600-5-50-BI | Accuracy | 0.8900 | 0.8700 | 0.8633 | 0.8583 | 0.8617 | 0.8467 | 0.8800 | 0.8983 | 0.8733 |
| Precision | 0.7153 | 0.5907 | 0.5768 | 0.5573 | 0.5675 | 0.5292 | 0.6304 | 0.7529 | 0.6142 | |
| Recall | 0.5800 | 0.7600 | 0.7700 | 0.7900 | 0.7600 | 0.8000 | 0.6900 | 0.5900 | 0.7000 | |
| F1 | 0.6342 | 0.6601 | 0.6527 | 0.6495 | 0.6465 | 0.6349 | 0.6556 | 0.6555 | 0.6490 | |
| paw02a- 600-5-60-BI | Accuracy | 0.8683 | 0.8350 | 0.8283 | 0.8317 | 0.8400 | 0.8083 | 0.8450 | 0.8617 | 0.8583 |
| Precision | 0.6249 | 0.5043 | 0.4898 | 0.4966 | 0.5143 | 0.4548 | 0.5302 | 0.6040 | 0.5711 | |
| Recall | 0.5300 | 0.7300 | 0.7200 | 0.7800 | 0.7500 | 0.7500 | 0.5900 | 0.5200 | 0.6300 | |
| F1 | 0.5693 | 0.5953 | 0.5823 | 0.6059 | 0.6095 | 0.5651 | 0.5577 | 0.5529 | 0.5964 | |
| paw02a- 600-5-70-BI | Accuracy | 0.8683 | 0.8300 | 0.8333 | 0.8233 | 0.8250 | 0.8200 | 0.8350 | 0.8667 | 0.8350 |
| Precision | 0.6204 | 0.4959 | 0.5017 | 0.4823 | 0.4870 | 0.4792 | 0.5041 | 0.6129 | 0.5068 | |
| Recall | 0.5400 | 0.7200 | 0.7200 | 0.7200 | 0.7500 | 0.8200 | 0.6500 | 0.5400 | 0.6600 | |
| F1 | 0.5756 | 0.5855 | 0.5895 | 0.5759 | 0.5888 | 0.6038 | 0.5671 | 0.5733 | 0.5720 | |
| paw02a- 800-7-0-BI | Accuracy | 0.9712 | 0.9688 | 0.9737 | 0.9700 | 0.9688 | 0.9650 | 0.9700 | 0.9713 | 0.9675 |
| Precision | 0.8884 | 0.8417 | 0.8793 | 0.8449 | 0.8417 | 0.8072 | 0.8592 | 0.8920 | 0.8285 | |
| Recall | 0.8900 | 0.9300 | 0.9200 | 0.9400 | 0.9300 | 0.9500 | 0.9200 | 0.8900 | 0.9500 | |
| F1 | 0.8864 | 0.8820 | 0.8981 | 0.8879 | 0.8820 | 0.8717 | 0.8856 | 0.8870 | 0.8816 | |
| paw02a- 800-7-30-BI | Accuracy | 0.9463 | 0.8988 | 0.9113 | 0.8863 | 0.9000 | 0.8763 | 0.9375 | 0.9463 | 0.9250 |
| Precision | 0.8770 | 0.5720 | 0.6241 | 0.5325 | 0.5824 | 0.5012 | 0.7749 | 0.8720 | 0.6850 | |
| Recall | 0.6600 | 0.7700 | 0.7800 | 0.8100 | 0.7500 | 0.8300 | 0.7100 | 0.6700 | 0.7400 | |
| F1 | 0.7483 | 0.6541 | 0.6882 | 0.6412 | 0.6516 | 0.6246 | 0.7355 | 0.7498 | 0.7105 | |
| paw02a- 800-7-50-BI | Accuracy | 0.9238 | 0.8600 | 0.8575 | 0.8575 | 0.8650 | 0.8463 | 0.9025 | 0.9250 | 0.8900 |
| Precision | 0.7890 | 0.4611 | 0.4529 | 0.4566 | 0.4754 | 0.4393 | 0.6134 | 0.7741 | 0.5553 | |
| Recall | 0.5300 | 0.7200 | 0.6800 | 0.7400 | 0.7300 | 0.8100 | 0.6200 | 0.5600 | 0.6500 | |
| F1 | 0.6328 | 0.5616 | 0.5419 | 0.5645 | 0.5749 | 0.5691 | 0.6127 | 0.6467 | 0.5961 | |
| paw02a- 800-7-60-BI | Accuracy | 0.9000 | 0.8538 | 0.8575 | 0.8413 | 0.8538 | 0.8175 | 0.8913 | 0.8988 | 0.8787 |
| Precision | 0.6464 | 0.4474 | 0.4621 | 0.4259 | 0.4476 | 0.3856 | 0.5841 | 0.6487 | 0.5283 | |
| Recall | 0.4700 | 0.7000 | 0.7000 | 0.7300 | 0.7100 | 0.7700 | 0.5500 | 0.4700 | 0.5400 | |
| F1 | 0.5363 | 0.5452 | 0.5553 | 0.5368 | 0.5481 | 0.5131 | 0.5607 | 0.5359 | 0.5292 | |
| paw02a- 800-7-70-BI | Accuracy | 0.8888 | 0.8513 | 0.8563 | 0.8375 | 0.8475 | 0.8125 | 0.8787 | 0.8800 | 0.8663 |
References
- Shimizu, H.; Nakayama, K.I. Artificial intelligence in oncology. Cancer Sci. 2020, 111, 1452–1460. [Google Scholar] [CrossRef] [PubMed]
- Shinde, P.; Shah, S. A Review of Machine Learning and Deep Learning Applications. In Proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Mazurowski, M.A.; Habas, P.A.; Zurada, J.M.; Lo, J.Y.; Baker, J.A.; Tourassi, G.D. Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance. Neural Netw. 2008, 21, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IJCNN), Hong Kong, China, 1–8 June 2008; pp. 1322–1328. [Google Scholar] [CrossRef]
- Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. In Proceedings of the Advances in Intelligent Computing: ICIC 2005 Proceedings, Hefei, China, 23–26 August 2005; pp. 878–887. [Google Scholar] [CrossRef]
- Batista, G.; Prati, R.C.; Monard, M.C. A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 2004, 6, 20–29. [Google Scholar] [CrossRef]
- Zhou, H.; Pan, H.; Zheng, K.; Wu, Z.; Xiang, Q. A novel oversampling method based on Wasserstein CGAN for imbalanced classification. Cybersecurity 2025, 8, 2025. [Google Scholar] [CrossRef]
- Matsui, R.; Guillen, L.; Izumi, S.; Mizuki, T.; Suganuma, T. An Oversampling Method Using Weight and Distance Thresholds for Cyber Attack Detection. In Proceedings of the 1st International Conference on Artificial Intelligence Computing and Systems (AICompS 2024), Jeju, Republic of Korea, 16–18 December 2024; pp. 48–52. [Google Scholar]
- Aditsania, A.; Adiwijaya; Saonard, A.L. Handling imbalanced data in churn prediction using ADASYN and backpropagation algorithm. In Proceedings of the 2017 3rd International Conference on Science in Information Technology (ICSITech), Bandung, Indonesia, 25–26 October 2017; pp. 533–536. [Google Scholar] [CrossRef]
- Gameng, H.A.; Gerardo, G.B.; Medina, R.P. Modified Adaptive Synthetic SMOTE to Improve Classification Performance in Imbalanced Datasets. In Proceedings of the 2019 IEEE 6th International Conference on Engineering Technologies and Applied Sciences (ICETAS), Kuala Lumpur, Malaysia, 20–21 December 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Dai, Q.; Liu, J.; Zhao, J.L. Distance-based arranging oversampling technique for imbalanced data. Neural Comput. Appl. 2023, 35, 1323–1342. [Google Scholar] [CrossRef]
- Pradipta, G.A.; Wardoyo, R.; Musdholifah, A.; Sanjaya, I.N.H. Radius-SMOTE: A New Oversampling Technique of Minority Samples Based on Radius Distance for Learning From Imbalanced Data. IEEE Access 2021, 9, 74763–74777. [Google Scholar] [CrossRef]
- Batista, G.; Prati, R.C.; Monard, M.C. Balancing training data for automated annotation of keywords: A case study. In Proceedings of the II Brazilian Workshop on Bioinformatics, Macaé, RJ, Brazil, 3–5 December 2003; pp. 10–18. [Google Scholar]
- Guan, H.; Zhang, Y.; Xian, M.; Cheng, H.D.; Tang, X. SMOTE-WENN: Solving class imbalance and small sample problems by oversampling and distance scaling. Appl. Intell. 2021, 51, 1394–1409. [Google Scholar] [CrossRef]
- Fernandez, A.; Garcia, S.; del Jesus, M.J.; Herrera, F. A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets. Fuzzy Sets Syst. 2008, 159, 2378–2398. [Google Scholar] [CrossRef]
- Garcia, S.; Parmisano, A.; Erquiaga, M.J. IoT-23: A Labeled Dataset with Malicious and Benign IoT Network Traffic (Version 1.0.0) [Dataset]. Zenodo. 2020. Available online: https://zenodo.org/records/4743746 (accessed on 27 November 2025).
- Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [Google Scholar] [CrossRef]
- Mateen, M. Air Quality and Pollution Assessment. Kaggle. [Dataset]. 2024. Available online: https://www.kaggle.com/datasets/mujtabamatin/air-quality-and-pollution-assessment (accessed on 27 November 2025).
- He, H.; Garcia, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar] [CrossRef]
- Chowdhury, R.H.; Hossain, Q.D.; Ahmad, M. Automated method for uterine contraction extraction and classification of term vs pre-term EHG signals. IEEE Access 2024, 12, 49363–49375. [Google Scholar] [CrossRef]






| Dataset Group | Imbalance | Key Features |
|---|---|---|
| Ecoli subsets (e.g., ecoli-0-3-4_vs_5) | Medium–High | Borderline-prone; one-vs.-rest splits; minority pockets adjacent to the majority class, producing many local decision boundaries. |
| Yeast subsets (e.g., yeast-2_vs_4, yeast5) | Medium–High | Multimodal minority and majority pockets; some subsets are highly overlapping, while others are separable. |
| Glass subsets (e.g., glass-0-4_vs_5, glass4) | Low–Medium | Mix near-separable and borderline splits; small minority classes in some variants. |
| Abalone subsets (e.g., abalone-3_vs_11) | Medium–High | Sparse minority pockets and high heterogeneity in the majority; minority examples can be isolated or lie on tiny islands. |
| Shuttle pairs (e.g., shuttle-c0_vs_c4) | Low (sometimes trivial) | Large-scale with some perfectly separable splits; ideal as control cases to confirm oversamplers do not degrade already optimal classifiers and to test scalability. |
| Page-blocks/Vowel/Segment | Low–Medium | Well-structured feature space with clear local clusters. |
| Medical-type (Pima, Cleveland, Thyroid variants) | Low–Medium | Minority can be small and partially isolated; features can be noisy and clinically correlated. |
| KDD/Poker/large network subsets | Varies (often High) | Large mixed-type feature sets with some trivial and some degenerate pairs; includes extremely low-prevalence positives and categorical-heavy features. |
| Winequality subsets | High (often extreme) | Many splits have very low positive prevalence and degenerate metrics (zero precision/recall in some methods) |
| Noisy synthetic KEEL (03subcl, 04clover, paw02a with -BI) | Controlled (0–70% noise) | Designed to inject borderline/noisy examples; difficulty varies systematically with noise level: moderate noise tests robustness and targeted augmentation, high noise. |
| Dataset | SMOTE | Borderline-SMOTE | ADASYN | SMOTE + Tomek | SMOTEENN | Radius-SMOTE | WCOM-KKNBR | WISEST (Ours) |
|---|---|---|---|---|---|---|---|---|
| glass1 | 50 | 50 | 45 | 47 | 22 | 186 | 61 | 182 |
| ecoli-0_vs_1 | 53 | 53 | 52 | 52 | 48 | 286 | 62 | 48 |
| wisconsin | 164 | 164 | 154 | 163 | 145 | 882 | 191 | 3786 |
| pima | 186 | 186 | 165 | 164 | 22 | 561 | 214 | 1101 |
| iris0 | 40 | 0 | 0 | 40 | 40 | 196 | 40 | 91 |
| glass0 | 59 | 59 | 60 | 57 | 35 | 191 | 56 | 163 |
| yeast1 | 501 | 501 | 552 | 479 | 259 | 787 | 343 | 686 |
| haberman | 115 | 115 | 121 | 103 | 44 | 107 | 65 | 127 |
| vehicle2 | 328 | 328 | 328 | 327 | 309 | 657 | 174 | 2397 |
| vehicle1 | 330 | 330 | 320 | 324 | 221 | 398 | 174 | 538 |
| vehicle3 | 338 | 338 | 344 | 330 | 222 | 337 | 170 | 497 |
| glass-0-1-2-3_vs_4-5-6 | 90 | 90 | 90 | 90 | 82 | 155 | 41 | 406 |
| vehicle0 | 358 | 358 | 359 | 358 | 344 | 643 | 159 | 2075 |
| ecoli1 | 146 | 146 | 142 | 143 | 125 | 211 | 62 | 113 |
| new-thyroid1 | 116 | 116 | 116 | 116 | 112 | 103 | 28 | 395 |
| new-thyroid2 | 116 | 116 | 115 | 116 | 111 | 104 | 28 | 388 |
| ecoli2 | 186 | 149 | 184 | 183 | 176 | 169 | 42 | 58 |
| segment0 | 1320 | 1320 | 1319 | 1320 | 1318 | 1239 | 263 | 5749 |
| glass6 | 125 | 100 | 125 | 125 | 118 | 90 | 23 | 307 |
| yeast3 | 926 | 926 | 930 | 923 | 908 | 403 | 130 | 243 |
| ecoli3 | 213 | 213 | 214 | 212 | 206 | 76 | 28 | 63 |
| page-blocks0 | 3483 | 3483 | 3472 | 3469 | 3317 | 1446 | 447 | 5405 |
| Dataset | No. Minority | No. Majority | IR | Mean NN Majority Dist | Frac with Majority Neighbor k5 |
|---|---|---|---|---|---|
| ecoli-0_vs_1 | 77 | 143 | 1.8571 | 0.3723 | 0.1429 |
| ecoli1 | 77 | 259 | 3.3636 | 0.1726 | 0.7013 |
| ecoli2 | 52 | 284 | 5.4615 | 0.1633 | 0.4615 |
| ecoli3 | 35 | 301 | 8.6000 | 0.1198 | 0.8571 |
| yeast3 | 163 | 1321 | 8.1043 | 0.0981 | 0.7239 |
| wisconsin | 239 | 444 | 1.8577 | 7.3735 | 0.2176 |
| segment0 | 329 | 1979 | 6.0152 | 19.7524 | 0.0638 |
| vehicle2 | 218 | 628 | 2.8807 | 39.6960 | 0.4862 |
| vehicle0 | 199 | 647 | 3.2513 | 24.6629 | 0.4824 |
| page-blocks0 | 559 | 4913 | 8.7889 | 1765.3490 | 0.5170 |
| pima | 268 | 500 | 1.8657 | 20.2823 | 0.8619 |
| Dataset | Metric | Original | SMOTE | Borderline- SMOTE | ADASYN | SMOTE+ Tomek | SMOTE ENN | Radius-SMOTE | WCOM KKNB | WISEST (Ours) |
|---|---|---|---|---|---|---|---|---|---|---|
| glass1 | Accuracy | 0.8598 | 0.8502 | 0.8504 | 0.8221 | 0.8410 | 0.7754 | 0.8269 | 0.8548 | 0.8032 |
| Precision | 0.8914 | 0.8257 | 0.8041 | 0.7721 | 0.8115 | 0.6760 | 0.7662 | 0.8875 | 0.7188 | |
| Recall | 0.7100 | 0.7633 | 0.7900 | 0.7500 | 0.7500 | 0.7358 | 0.7633 | 0.6975 | 0.8025 | |
| F1 | 0.7792 | 0.7858 | 0.7908 | 0.7511 | 0.7725 | 0.7014 | 0.7591 | 0.7765 | 0.7492 | |
| ecoli-0_vs_1 | Accuracy | 0.9909 | 0.9909 | 0.9773 | 0.9727 | 0.9864 | 0.9909 | 0.9909 | 0.9909 | 0.9864 |
| Precision | 1.0000 | 1.0000 | 0.9624 | 0.9519 | 0.9882 | 1.0000 | 1.0000 | 1.0000 | 0.9882 | |
| Recall | 0.9733 | 0.9733 | 0.9733 | 0.9733 | 0.9733 | 0.9733 | 0.9733 | 0.9733 | 0.9733 | |
| F1 | 0.9862 | 0.9862 | 0.9673 | 0.9616 | 0.9801 | 0.9862 | 0.9862 | 0.9862 | 0.9801 | |
| iris0 | All | 1.0000 | 1.0000 | 1.0000 | - | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| yeast1 | Accuracy | 0.7817 | 0.7642 | 0.7669 | 0.7554 | 0.7709 | 0.7291 | 0.7722 | 0.7823 | 0.7668 |
| Precision | 0.6682 | 0.5906 | 0.5945 | 0.5719 | 0.5977 | 0.5233 | 0.6032 | 0.6703 | 0.5878 | |
| Recall | 0.4964 | 0.6247 | 0.6224 | 0.6363 | 0.6434 | 0.7459 | 0.6340 | 0.4942 | 0.6596 | |
| F1 | 0.5673 | 0.6053 | 0.6072 | 0.6011 | 0.6190 | 0.6141 | 0.6171 | 0.5664 | 0.6202 | |
| haberman | Accuracy | 0.6730 | 0.6600 | 0.6600 | 0.6632 | 0.6469 | 0.6501 | 0.6796 | 0.6731 | 0.6894 |
| Precision | 0.3417 | 0.3561 | 0.3427 | 0.3715 | 0.3335 | 0.3829 | 0.3892 | 0.3435 | 0.4083 | |
| Recall | 0.2574 | 0.3449 | 0.3191 | 0.3941 | 0.3316 | 0.5037 | 0.3574 | 0.2463 | 0.3824 | |
| F1 | 0.2925 | 0.3499 | 0.3296 | 0.3817 | 0.3316 | 0.4321 | 0.3715 | 0.2861 | 0.3935 | |
| glass-0-1-2- 3_vs_4-5-6 | Accuracy | 0.9392 | 0.9439 | 0.9485 | 0.9391 | 0.9439 | 0.9251 | 0.9532 | 0.9532 | 0.9483 |
| Precision | 0.8859 | 0.8703 | 0.8808 | 0.8544 | 0.8703 | 0.8051 | 0.8929 | 0.8747 | 0.8488 | |
| Recall | 0.8618 | 0.9200 | 0.9200 | 0.9200 | 0.9200 | 0.9400 | 0.9200 | 0.9400 | 0.9800 | |
| F1 | 0.8717 | 0.8901 | 0.8969 | 0.8813 | 0.8901 | 0.8615 | 0.9042 | 0.9052 | 0.9067 | |
| new-thyroid1 | Accuracy | 0.9907 | 0.9814 | 0.9721 | 0.9767 | 0.9814 | 0.9907 | 0.9814 | 0.9814 | 0.9860 |
| Precision | 1.0000 | 0.9750 | 0.9306 | 0.9556 | 0.9750 | 0.9750 | 0.9750 | 0.9750 | 0.9306 | |
| Recall | 0.9429 | 0.9143 | 0.9143 | 0.9143 | 0.9143 | 0.9714 | 0.9143 | 0.9143 | 1.0000 | |
| F1 | 0.9692 | 0.9379 | 0.9129 | 0.9263 | 0.9379 | 0.9713 | 0.9379 | 0.9379 | 0.9617 | |
| new-thyroid2 | Accuracy | 0.9860 | 0.9767 | 0.9814 | 0.9767 | 0.9767 | 0.9814 | 0.9814 | 0.9814 | 0.9860 |
| Precision | 0.9750 | 0.9750 | 0.9750 | 0.9556 | 0.9750 | 0.9750 | 0.9750 | 0.9750 | 0.9500 | |
| Recall | 0.9429 | 0.8857 | 0.9143 | 0.9143 | 0.8857 | 0.9143 | 0.9143 | 0.9143 | 0.9714 | |
| F1 | 0.9533 | 0.9167 | 0.9379 | 0.9263 | 0.9167 | 0.9379 | 0.9379 | 0.9405 | 0.9579 | |
| glass6 | Accuracy | 0.9627 | 0.9813 | 0.9720 | 0.9766 | 0.9813 | 0.9673 | 0.9673 | 0.9719 | 0.9720 |
| Precision | 0.9667 | 0.9667 | 0.9667 | 0.9381 | 0.9667 | 0.9333 | 0.9667 | 0.9429 | 0.9667 | |
| Recall | 0.7667 | 0.9000 | 0.8333 | 0.9000 | 0.9000 | 0.8333 | 0.8000 | 0.8667 | 0.8333 | |
| F1 | 0.8436 | 0.9273 | 0.8873 | 0.9119 | 0.9273 | 0.8721 | 0.8655 | 0.8939 | 0.8873 |
| Dataset | SMOTE | Borderline- SMOTE | ADASYN | SMOTE +Tomek | SMOTEENN | Radius- SMOTE | WCOM KKNBR | WISEST (Ours) |
|---|---|---|---|---|---|---|---|---|
| winequality-red-3_vs_5 | 537 | 537 | 538 | 532 | 488 | 1 | 8 | 1 |
| winequality-white-9_vs_4 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| abalone19 | 3288 | 3288 | 3285 | 3284 | 3245 | 3 | 26 | 3 |
| poker-8_vs_6 | 1154 | 1154 | 1154 | 1154 | 1154 | 3 | 14 | 3 |
| winequality-red-8_vs_6-7 | 655 | 524 | 657 | 643 | 558 | 1 | 14 | 3 |
| winequality-white-3-9_vs_5 | 1146 | 1146 | 1142 | 1121 | 949 | 3 | 20 | 3 |
| abalone-3_vs_11 | 378 | 302 | 378 | 378 | 378 | 52 | 12 | 4 |
| lymphography-normal-fibrosis | 0 | 0 | 0 | 0 | 0 | 4 | 4 | 4 |
| winequality-red-8_vs_6 | 496 | 496 | 495 | 485 | 422 | 2 | 14 | 4 |
| abalone-19_vs_10-11-12-13 | 1246 | 1246 | 1246 | 1241 | 1193 | 5 | 26 | 5 |
| ecoli-0-1_vs_2-3-5 | 157 | 157 | 156 | 156 | 148 | 64 | 19 | 260 |
| ecoli-0-1-4-6_vs_5 | 192 | 192 | 192 | 192 | 188 | 61 | 16 | 269 |
| dermatology-6 | 254 | 203 | 254 | 254 | 254 | 73 | 16 | 333 |
| kddcup-land_vs_portsweep | 815 | 0 | 0 | 815 | 815 | 81 | 17 | 378 |
| vowel0 | 646 | 646 | 646 | 646 | 646 | 290 | 72 | 540 |
| kddcup-buffer_overflow_vs_back | 1738 | 695 | 1739 | 1738 | 1738 | 115 | 24 | 563 |
| shuttle-2_vs_5 | 2574 | 2574 | 2575 | 2574 | 2574 | 191 | 39 | 923 |
| kddcup-guess_passwd_vs_satan | 1229 | 0 | 0 | 1229 | 1229 | 212 | 42 | 1060 |
| kr-vs-k-one_vs_fifteen | 1670 | 1670 | 1671 | 1670 | 1670 | 304 | 62 | 1428 |
| kr-vs-k-zero-one_vs_draw | 2153 | 2153 | 2152 | 2152 | 2149 | 358 | 84 | 1542 |
| shuttle-c0-vs-c4 | 1266 | 760 | 1266 | 1266 | 1264 | 486 | 98 | 2410 |
| Dataset | No. Minority | No. Majority | IR | Mean NN Majority Dist | Frac with Majority Neighbor k5 |
|---|---|---|---|---|---|
| abalone19 | 32 | 4142 | 129.4 | 0.05 | 1 |
| glass5 | 9 | 205 | 22.8 | 1.5 | 1 |
| poker-9_vs_7 | 8 | 236 | 29.5 | 4.5 | 1 |
| winequality-red-4 | 53 | 1546 | 29.2 | 2.0 | 1 |
| ecoli-0-1_vs_2-3-5 | 24 | 220 | 9.2 | 33.9 | 0.46 |
| dermatology-6 | 20 | 338 | 16.9 | 5.5 | 0.15 |
| kr-vs-k-one_vs_fifteen | 78 | 2166 | 27.7 | 2.7 | 0.05 |
| shuttle-c0_vs_c4 | 123 | 1706 | 13.9 | 139.1 | 0.02 |
| Dataset | Metric | Original | SMOTE | Borderline- SMOTE | ADASYN | SMOTE +Tomek | SMOTE ENN | Radius-SMOTE | WCOM KKNB | WISEST (Ours) |
|---|---|---|---|---|---|---|---|---|---|---|
| vowel0 | Accuracy | 0.9949 | 0.9960 | 0.9960 | 0.9949 | 0.9960 | 0.9960 | 0.9949 | 0.9919 | 0.9959 |
| Precision | 0.9895 | 0.9789 | 0.9789 | 0.9695 | 0.9789 | 0.9789 | 0.9784 | 0.9895 | 0.9684 | |
| Recall | 0.9556 | 0.9778 | 0.9778 | 0.9778 | 0.9778 | 0.9778 | 0.9667 | 0.9222 | 0.9889 | |
| F1 | 0.9714 | 0.9778 | 0.9778 | 0.9726 | 0.9778 | 0.9778 | 0.9721 | 0.9529 | 0.9781 | |
| shuttle-c0-vs-c4 | All | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| page-blocks-1- 3_vs_4 | Accuracy | 0.9916 | 0.9958 | 0.9979 | 0.9979 | 0.9958 | 0.9958 | 1.0000 | 0.9916 | 0.9958 |
| Precision | 0.9667 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9667 | 0.9381 | |
| Recall | 0.9000 | 0.9333 | 0.9667 | 0.9667 | 0.9333 | 0.9333 | 1.0000 | 0.9000 | 1.0000 | |
| F1 | 0.9236 | 0.9636 | 0.9818 | 0.9818 | 0.9636 | 0.9636 | 1.0000 | 0.9236 | 0.9664 | |
| glass-0-1- 6_vs_5 | Accuracy | 0.9782 | 0.9835 | 0.9835 | 0.9835 | 0.9835 | 0.9889 | 0.9781 | 0.9836 | 0.9782 |
| Precision | 0.8000 | 0.8000 | 0.8000 | 0.8000 | 0.8000 | 0.8000 | 0.8000 | 0.9000 | 0.8000 | |
| Recall | 0.8000 | 0.7000 | 0.7000 | 0.7000 | 0.7000 | 0.8000 | 0.6000 | 0.8000 | 0.8000 | |
| F1 | 0.7667 | 0.7333 | 0.7333 | 0.7333 | 0.7333 | 0.8000 | 0.6667 | 0.8000 | 0.7667 | |
| shuttle-c2- vs-c4 | Accuracy | 0.9923 | - | - | - | - | - | 0.9923 | 0.9923 | 1.0000 |
| Precision | 1.0000 | - | - | - | - | - | 1.0000 | 1.0000 | 1.0000 | |
| Recall | 0.9000 | - | - | - | - | - | 0.9000 | 0.9000 | 1.0000 | |
| F1 | 0.9333 | - | - | - | - | - | 0.9333 | 0.9333 | 1.0000 | |
| yeast-2_vs_8 | Accuracy | 0.9751 | 0.9606 | 0.9564 | 0.9398 | 0.9585 | 0.9357 | 0.9751 | 0.9792 | 0.9751 |
| Precision | 0.9500 | 0.5676 | 0.4667 | 0.3000 | 0.5750 | 0.3294 | 0.9500 | 0.9500 | 0.9500 | |
| Recall | 0.4500 | 0.5000 | 0.1500 | 0.3000 | 0.5000 | 0.5500 | 0.4500 | 0.5500 | 0.4500 | |
| F1 | 0.5614 | 0.4731 | 0.2171 | 0.2889 | 0.4638 | 0.3884 | 0.5614 | 0.6433 | 0.5614 | |
| yeast5 | Accuracy | 0.9811 | 0.9838 | 0.9825 | 0.9825 | 0.9838 | 0.9805 | 0.9852 | 0.9818 | 0.9852 |
| Precision | 0.8250 | 0.7060 | 0.6769 | 0.6839 | 0.7060 | 0.6315 | 0.7739 | 0.8100 | 0.7589 | |
| Recall | 0.4917 | 0.8111 | 0.8083 | 0.7861 | 0.8111 | 0.8806 | 0.7222 | 0.5611 | 0.7444 | |
| F1 | 0.5631 | 0.7400 | 0.7130 | 0.7094 | 0.7400 | 0.7254 | 0.7369 | 0.6212 | 0.7406 | |
| ecoli-0-1- 4-7_vs_5-6 | Accuracy | 0.9759 | 0.9668 | 0.9698 | 0.9668 | 0.9698 | 0.9638 | 0.9759 | 0.9759 | 0.9820 |
| Precision | 0.9500 | 0.7700 | 0.8433 | 0.7944 | 0.8033 | 0.7643 | 0.9500 | 0.9500 | 0.9333 | |
| Recall | 0.7200 | 0.8000 | 0.7600 | 0.8400 | 0.8000 | 0.8000 | 0.7200 | 0.7200 | 0.8400 | |
| F1 | 0.8111 | 0.7806 | 0.7888 | 0.7994 | 0.7988 | 0.7717 | 0.8111 | 0.8111 | 0.8732 | |
| dermatology-6 | All | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
| winequality- red-8_vs_6-7 | Accuracy | 0.9813 | 0.9602 | 0.9801 | 0.9602 | 0.9614 | 0.9216 | 0.9813 | 0.9813 | 0.9813 |
| Precision | 0.4000 | 0.1333 | 0.4000 | 0.1333 | 0.1467 | 0.1103 | 0.4000 | 0.4000 | 0.4000 | |
| Recall | 0.1000 | 0.2000 | 0.1000 | 0.2000 | 0.2000 | 0.3833 | 0.1000 | 0.1000 | 0.1000 | |
| F1 | 0.1600 | 0.1600 | 0.1600 | 0.1600 | 0.1689 | 0.1700 | 0.1600 | 0.1600 | 0.1600 |
| Dataset | Metric | Original | SMOTE | Borderline- SMOTE | ADASYN | SMOTE +Tomek | SMOTE ENN | Radius-SMOTE | WCOM KKNB | WISEST (Ours) |
|---|---|---|---|---|---|---|---|---|---|---|
| 03subcl5-600-5-0-BI | Accuracy | 0.9483 | 0.9467 | 0.9450 | 0.9483 | 0.9450 | 0.9233 | 0.9400 | 0.9533 | 0.9483 |
| Precision | 0.8378 | 0.8235 | 0.8131 | 0.8181 | 0.8176 | 0.7263 | 0.7981 | 0.8771 | 0.7810 | |
| Recall | 0.8600 | 0.8700 | 0.8900 | 0.9000 | 0.8700 | 0.8800 | 0.8700 | 0.8400 | 0.9700 | |
| F1 | 0.8457 | 0.8430 | 0.8454 | 0.8542 | 0.8403 | 0.7940 | 0.8292 | 0.8551 | 0.8641 | |
| 03subcl5-800-7-0-BI | Accuracy | 0.9538 | 0.9525 | 0.9538 | 0.9575 | 0.9550 | 0.9462 | 0.9550 | 0.9563 | 0.9550 |
| Precision | 0.8212 | 0.7744 | 0.7896 | 0.7963 | 0.7878 | 0.7274 | 0.7920 | 0.8560 | 0.7662 | |
| Recall | 0.8100 | 0.8800 | 0.8700 | 0.8900 | 0.8800 | 0.9100 | 0.8700 | 0.7800 | 0.9300 | |
| F1 | 0.8149 | 0.8224 | 0.8235 | 0.8391 | 0.8297 | 0.8067 | 0.8283 | 0.8155 | 0.8387 | |
| 03subcl5-800-7-30-BI | Accuracy | 0.9113 | 0.8613 | 0.8588 | 0.8575 | 0.8575 | 0.8263 | 0.9025 | 0.9088 | 0.9025 |
| Precision | 0.6994 | 0.4647 | 0.4618 | 0.4707 | 0.4552 | 0.4012 | 0.6079 | 0.6919 | 0.6117 | |
| Recall | 0.5400 | 0.6900 | 0.6900 | 0.7400 | 0.6800 | 0.7400 | 0.6300 | 0.5200 | 0.6600 | |
| F1 | 0.5990 | 0.5537 | 0.5514 | 0.5707 | 0.5434 | 0.5185 | 0.6149 | 0.5873 | 0.6324 | |
| 04clover5z-600-5-0-BI | Accuracy | 0.9200 | 0.9150 | 0.9200 | 0.9083 | 0.9200 | 0.8967 | 0.9150 | 0.9350 | 0.9150 |
| Precision | 0.7802 | 0.7181 | 0.7166 | 0.6819 | 0.7235 | 0.6446 | 0.7256 | 0.8438 | 0.6931 | |
| Recall | 0.7400 | 0.8300 | 0.8700 | 0.8700 | 0.8700 | 0.8900 | 0.8100 | 0.7600 | 0.9000 | |
| F1 | 0.7559 | 0.7683 | 0.7844 | 0.7625 | 0.7867 | 0.7451 | 0.7623 | 0.7969 | 0.7816 | |
| 04clover5z-600-5-30-BI | Accuracy | 0.8717 | 0.8667 | 0.8600 | 0.8600 | 0.8600 | 0.8283 | 0.8683 | 0.8700 | 0.8700 |
| Precision | 0.6573 | 0.5875 | 0.5672 | 0.5615 | 0.5690 | 0.5011 | 0.6067 | 0.6446 | 0.5955 | |
| Recall | 0.4900 | 0.7200 | 0.7300 | 0.7500 | 0.7100 | 0.8000 | 0.6300 | 0.5100 | 0.7100 | |
| F1 | 0.5569 | 0.6438 | 0.6365 | 0.6406 | 0.6294 | 0.6113 | 0.6113 | 0.5642 | 0.6451 | |
| paw02a-800-7-0-BI | Accuracy | 0.9712 | 0.9688 | 0.9737 | 0.9700 | 0.9688 | 0.9650 | 0.9700 | 0.9713 | 0.9675 |
| Precision | 0.8884 | 0.8417 | 0.8793 | 0.8449 | 0.8417 | 0.8072 | 0.8592 | 0.8920 | 0.8285 | |
| Recall | 0.8900 | 0.9300 | 0.9200 | 0.9400 | 0.9300 | 0.9500 | 0.9200 | 0.8900 | 0.9500 | |
| F1 | 0.8864 | 0.8820 | 0.8981 | 0.8879 | 0.8820 | 0.8717 | 0.8856 | 0.8870 | 0.8816 |
| Dataset | Metric | KNN | Random Forest | LightGBM | |||
|---|---|---|---|---|---|---|---|
| Original | WISEST (Ours) | Original | WISEST (Ours) | Original | WISEST (Ours) | ||
| IoT-23 | Accuracy | 0.655 | 0.459 | 0.681 | 0.590 | 0.665 | 0.642 |
| Precision | 0.505 | 0.765 | 0.765 | 0.774 | 0.759 | 0.798 | |
| Recall | 0.537 | 0.649 | 0.532 | 0.593 | 0.504 | 0.579 | |
| F1 | 0.484 | 0.589 | 0.548 | 0.586 | 0.497 | 0.575 | |
| BoT–IoT | Accuracy | 0.911 | 0.910 | 0.916 | 0.913 | 0.914 | 0.913 |
| Precision | 0.338 | 0.362 | 0.390 | 0.414 | 0.376 | 0.541 | |
| Recall | 0.345 | 0.360 | 0.346 | 0.347 | 0.535 | 0.377 | |
| F1 | 0.333 | 0.358 | 0.335 | 0.340 | 0.389 | 0.391 | |
| Air and Pollution | Accuracy | 0.918 | 0.897 | 0.960 | 0.949 | 0.959 | 0.949 |
| Precision | 0.904 | 0.857 | 0.943 | 0.925 | 0.950 | 0.925 | |
| Recall | 0.874 | 0.855 | 0.938 | 0.925 | 0.935 | 0.926 | |
| F1 | 0.886 | 0.850 | 0.941 | 0.926 | 0.942 | 0.925 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsui, R.; Guillen, L.; Izumi, S.; Suganuma, T. WISEST: Weighted Interpolation for Synthetic Enhancement Using SMOTE with Thresholds. Sensors 2025, 25, 7417. https://doi.org/10.3390/s25247417
Matsui R, Guillen L, Izumi S, Suganuma T. WISEST: Weighted Interpolation for Synthetic Enhancement Using SMOTE with Thresholds. Sensors. 2025; 25(24):7417. https://doi.org/10.3390/s25247417
Chicago/Turabian StyleMatsui, Ryotaro, Luis Guillen, Satoru Izumi, and Takuo Suganuma. 2025. "WISEST: Weighted Interpolation for Synthetic Enhancement Using SMOTE with Thresholds" Sensors 25, no. 24: 7417. https://doi.org/10.3390/s25247417
APA StyleMatsui, R., Guillen, L., Izumi, S., & Suganuma, T. (2025). WISEST: Weighted Interpolation for Synthetic Enhancement Using SMOTE with Thresholds. Sensors, 25(24), 7417. https://doi.org/10.3390/s25247417

