Draw Tower Optical Fibers with Functional Coatings and Their Possible Use in Distributed Sensor Technology †
Abstract
1. Introduction
2. Applying Functional Coatings for Distributed Sensing
3. Case Study: Pt:WO3 Polymer Coating
3.1. The Preparation of the Functional Coating
3.2. The Application of the Functional Coating on Optical Fiber
3.3. Studying the Coating Quality and the Optical Performance
3.4. The Validating of the Point Sensing Concept
3.5. Towards Fully Distributed Optical Fiber Sensing Systems for Hydrogen Leak Detection
4. Discussion and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yeo, T.L.; Sun, T.; Grattan, K.T.V.; Parry, D.; Lade, R.; Powell, B.D. Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing. Sens. Actuators B Chem. 2005, 110, 148–155. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, X.; He, C. High-accuracy high temperature measurement based on forward Brillouin scattering of polyimide-coated optical fiber. Opt. Fiber Technol. 2024, 83, 103653. [Google Scholar] [CrossRef]
- Hey Tow, K.; Alomari, S.; Pereira, J.; Neves, T.; Claesson, Å. Graphene-Material Based Nanocomposite-Coated Optical Fibres: A Multi-Functional Optical Fibre for Improved Distributed Sensing Performance in Harsh Environment. J. Light. Technol. 2024, 42, 6457–6465. [Google Scholar] [CrossRef]
- Xie, Z.; Huang, Z.; Shi, Y.; Cao, Y.; Dong, J.; Tian, R.; Shen, C. Highly sensitive optical fiber hydrogen detection in liquid environment. Int. J. Hydrogen Energy 2025, 106, 1–7. [Google Scholar] [CrossRef]
- Poole, Z.L.; Ohodnicki, P.; Chen, R.; Lin, Y.; Chen, K.P. Engineering metal oxide nanostructures for the fiber optic sensor platform. Opt. Express 2014, 22, 2665–2674. [Google Scholar] [CrossRef]
- Qu, W.; Chen, Y.; Liu, S.; Luo, L. Advances and Prospects of Nanomaterial Coatings in Optical Fiber Sensors. Coatings 2025, 15, 1008. [Google Scholar] [CrossRef]
- Alkhabet, M.M.; Girei, S.H.; Farhan, A.H.; Altalebi, O.; Al-Isawi, Z.K.; Khalaf, A.L.; Jaafar, J.A.; Yaaccob, M.H. Fabrication of PANI/GO/Pd nanocomposite based tapered optical fiber for hydrogen gas sensing applications. Mater. Sci. Semicond. Process. 2024, 184, 108850. [Google Scholar] [CrossRef]
- Gomaa, M.; Salah, A.; Abdel Fattah, G. Utilizing dip-coated graphene/nanogold to enhance SPR-based fiber optic sensor. Appl. Phys. A 2022, 128, 56. [Google Scholar] [CrossRef]
- González-Sierra, N.E.; Gómez-Pavón, L.C.; Pérez-Sánchez, G.F.; Luis-Ramos, A.; Zaca-Morán, P.; Muñoz-Pacheco, J.M.; Chávez-Ramírez, F. Tapered Optical Fiber Functionalized with Palladium Nanoparticles by Drop Casting and Laser Radiation for H2 and Volatile Organic Compounds Sensing Purposes. Sensors 2017, 17, 2039. [Google Scholar] [CrossRef]
- Silva, D.; Monteiro, C.S.; Silva, S.O.; Frazão, O.; Pinto, J.V.; Raposo, M.; Ribeiro, P.A.; Sério, S. Sputtering Deposition of TiO2 Thin Film Coatings for Fiber Optic Sensors. Photonics 2022, 9, 342. [Google Scholar] [CrossRef]
- Shukla, S.K.; Tiwari, A.; Parashar, G.K.; Mishra, A.P.; Dubey, G.C. Exploring fiber optic approach to sense humid environment over nano-crystalline zinc oxide film. Talanta 2009, 80, 565–571. [Google Scholar] [CrossRef]
- Pawar, D.; Lo Presti, D.; Lemma, E.D.; Rainer, A.; Kumar, A.; Kanawade, R.; Silvestri, S.; Schena, E.; Massaroni, C. Polymeric PEI/PEG Coated Optical Fiber Fabry–Perot Interferometer for CO2 Detection. IEEE Sens. J. 2024, 24, 40883–40889. [Google Scholar] [CrossRef]
- Irawan, D.; Saktioto; Hanto, D.; Widiyatmoko, B.; Sutoyo. High Sensitivity CH4 and CO2 Gas Sensor Using Fiber Bragg Grating Coated with Single Layer Graphene. Sci. Technol. Indones. 2024, 9, 710–717. [Google Scholar] [CrossRef]
- Fan, X.; Deng, S.; Wei, Z.; Wang, F.; Tan, C.; Meng, H. Ammonia Gas Sensor Based on Graphene Oxide-Coated Mach-Zehnder Interferometer with Hybrid Fiber Structure. Sensors 2021, 21, 3886. [Google Scholar] [CrossRef]
- Okazaki, S.; Maru, Y.; Mizutani, T. Sensing Characteristics of a Fiber Bragg Grating Hydrogen Gas Sensor using Sol-Gel Derived Pt/WO3 Film. ECS Trans. 2013, 50, 289. [Google Scholar] [CrossRef]
- Swargiary, K.; Jitpratak, P.; Kongsawang, N.; Viphavakit, C. ZnO nanoparticles coated optical fiber sensor for volatile organic compound biomarker detection. Proc. SPIE 2024, 12999, 437–443. [Google Scholar]
- Ghosh, S.; Dissanayake, K.; Asokan, S.; Sun, T.; Rahman, B.M.A.; Grattan, K.T.V. Lead (Pb2+) ion sensor development using optical fiber gratings and nanocomposite materials. Sens. Actuators B Chem. 2022, 364, 131818. [Google Scholar] [CrossRef]
- Mohan, S.; Kumar, N. Etched FBG-Based Optical Fiber Sensor for Hg2+ Ion Detection in Aqueous Solution. IEEE Photon. Technol. Lett. 2024, 36, 1289–1292. [Google Scholar] [CrossRef]
- Thévenaz, L. Distributed optical fiber sensors: What is known and what is to come. Front. Sens. 2025, 10, 1546392. [Google Scholar] [CrossRef]
- Wijaya, H.; Rajeev, P.; Gad, E. Distributed optical fibre sensor for infrastructure monitoring: Field applications. Opt. Fiber Technol. 2021, 64, 102577. [Google Scholar] [CrossRef]
- Schenato, L. A Review of Distributed Fibre Optic Sensors for Geo-Hydrological Applications. Appl. Sci. 2017, 7, 896. [Google Scholar] [CrossRef]
- Kishida, K.; Aung, T.L.; Lin, R. Monitoring a Railway Bridge with Distributed Fiber Optic Sensing Using Specially Installed Fibers. Sensors 2024, 25, 98. [Google Scholar] [CrossRef]
- Ping, X.; Cao, X.; Cao, C.; Lei, H.; Yang, C.; Cheng, Q.; Zhou, T.; Liu, M. Fiber Grating Hydrogen Sensor: Progress, Challenge and Prospect. Adv. Sens. Res. 2024, 4, 2300088. [Google Scholar] [CrossRef]
- Hartmann, K.L.F.; United Fiber Sensing Holding B.V. Sensing Assembly for a Gas Sensor for Detecting a Reactive Gas. WO2023/294989A1, 28 December 2023. [Google Scholar]
- Mendez, A.; Morse, T.F. Specialty Optical Fibers Handbook; Chapter 4; Academic Press: Burlington, MA, USA, 2007. [Google Scholar]
- Gardner, W.B. Microbending loss in optical fibers. Bell Syst. Technol. J. 1975, 54, 457–465. [Google Scholar] [CrossRef]
- Chamoin, L.; Farahbakhsh, S.; Poncelet, M. A review on distributed optic fiber sensing based on Rayleigh backscattering for structural health monitoring. Meas. Sci. Technol. 2022, 13, 1786–1808. [Google Scholar]
- Bao, X.; Chen, L. Recent Progress in Brillouin Scattering Based Fiber Sensors. Sensors 2011, 11, 4152–4187. [Google Scholar] [CrossRef]
- Silva, L.C.B.; Segatto, M.E.V.; Castellani, C.E.S. Raman scattering-based distributed temperature sensors: A comprehensive literature review over the past 37 years and towards new avenues. Opt. Fiber Technol. 2022, 74, 103091. [Google Scholar] [CrossRef]
- Hartmann, K.; Nieuwland, R. Fiber Bragg Grating based Hydrogen leak detection. In Proceedings of the Advanced Photonics Congress, Québec, QC, Canada, 29 July–1 August 2024. [Google Scholar]
- Zhou, X.; Dai, Y.; Karanja, J.M.; Liu, F.; Yang, M. Microstructured FBG hydrogen sensor based on Pt-loaded WO3. Opt. Express 2017, 25, 8777–8786. [Google Scholar] [CrossRef]
- Roe, R.-J. Wetting of fine wires and fibers by a liquid film. J. Colloid Interface Sci. 1975, 50, 70–79. [Google Scholar] [CrossRef]
- Dai, J.; Yang, M.; Yang, Z.; Li, Z.; Wang, Y.; Wang, G.; Zhang, Y.; Zhuang, Z. Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating. Sens. Actuators B Chem. 2014, 190, 657–663. [Google Scholar] [CrossRef]
- Yassin, M.H.; Farhat, M.H.; Soleimanpour, R.; Nahas, M. Fiber Bragg grating (FBG)-based sensors: A review of technology and recent applications in structural health monitoring (SHM) of civil engineering structures. J. Civ. Struct. Health Monit. 2024, 1, 151. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M. Physics and applications of Raman distributed optical fiber sensing. Opt. Fiber Technol. 2023, 78, 103220. [Google Scholar] [CrossRef] [PubMed]
- Alomari, S.; Hey Tow, K.; Pereira, J.; Antikainen, A.; Tesfay, T.W.; Claesson, Å. Distributed Hydrogen Sensing and Leak Detection Using Draw-Tower Fabricated Optical Fiber. In Proceedings of the Advanced Photonics Congress, Québec, QC, Canada, 29 July–1 August 2024. [Google Scholar]











| Loss at 850 nm (dB/km) | Loss at 1310 nm (dB/km) | Numerical Aperture (NA) | Mode Field Diameter (MFD) | |
|---|---|---|---|---|
| Standard 50/125 μm MM PI | 2.9 | 0.6 | 0.18 | 6.4 |
| Up-coated 50/125 μm MM fiber | 8.6 | 7.3 | 0.2 | 6.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alomari, S.; Tow, K.H.; Pereira, J.; Soriano-Amat, M.; Weldehawariat, T.; Hartmann, K.; Nieuwland, R.; Claesson, Å. Draw Tower Optical Fibers with Functional Coatings and Their Possible Use in Distributed Sensor Technology. Sensors 2025, 25, 7367. https://doi.org/10.3390/s25237367
Alomari S, Tow KH, Pereira J, Soriano-Amat M, Weldehawariat T, Hartmann K, Nieuwland R, Claesson Å. Draw Tower Optical Fibers with Functional Coatings and Their Possible Use in Distributed Sensor Technology. Sensors. 2025; 25(23):7367. https://doi.org/10.3390/s25237367
Chicago/Turabian StyleAlomari, Sandy, Kenny Hey Tow, Joao Pereira, Miguel Soriano-Amat, Tedros Weldehawariat, Korina Hartmann, Remco Nieuwland, and Åsa Claesson. 2025. "Draw Tower Optical Fibers with Functional Coatings and Their Possible Use in Distributed Sensor Technology" Sensors 25, no. 23: 7367. https://doi.org/10.3390/s25237367
APA StyleAlomari, S., Tow, K. H., Pereira, J., Soriano-Amat, M., Weldehawariat, T., Hartmann, K., Nieuwland, R., & Claesson, Å. (2025). Draw Tower Optical Fibers with Functional Coatings and Their Possible Use in Distributed Sensor Technology. Sensors, 25(23), 7367. https://doi.org/10.3390/s25237367

