Test-Time Augmentations and Quality Controls for Improving Regional Seismic Phase Picking
Highlights
- Test-time augmentations could enhance the reliability of seismic first-arrival picking.
- Results obtained under different augmentations can serve as an effective quality control indicator.
- The combination of test-time augmentation and quality control improves the reliability of regional seismic phase picking
- Our findings offer practical guidance for deploying deep-learning-based pickers for identifying regional seismic phases.
Abstract
1. Introduction
2. Materials and Methods
2.1. Deep Learning Models
2.2. Seis-PnSn Dataset
2.3. The Proposed Workflow
3. Results
3.1. Results on Test-Time Augmentations
3.2. Results on Quality Control Measures
4. Usage of the Augmentation Pipeline
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| TTA | Test-time augmentation |
| QC | Quality control |
| SNR | Signal-to-noise ratio |
References
- Zhao, D. Importance of Later Phases in Seismic Tomography. Phys. Earth Planet. Inter. 2019, 296, 106314. [Google Scholar] [CrossRef]
- Liu, M.; Li, H.; Li, L.; Zhang, M.; Wang, W. Multistage Nucleation of the 2021 Yangbi M S 6.4 Earthquake, Yunnan, China and Its Foreshocks. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024091. [Google Scholar] [CrossRef]
- Ross, Z.E.; Idini, B.; Jia, Z.; Stephenson, O.L.; Zhong, M.; Wang, X.; Zhan, Z.; Simons, M.; Fielding, E.J.; Yun, S.H.; et al. Hierarchical Interlocked Orthogonal Faulting in the 2019 Ridgecrest Earthquake Sequence. Science 2019, 366, 346–351. [Google Scholar] [CrossRef]
- Park, Y.; Mousavi, S.M.; Zhu, W.; Ellsworth, W.L.; Beroza, G.C. Machine-Learning-Based Analysis of the Guy-Greenbrier, Arkansas Earthquakes: A Tale of Two Sequences. Geophys. Res. Lett. 2020, 47, e2020GL087032. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, P.; White, M.C.A.; Pickle, R.; Miller, M.S. A Detailed Earthquake Catalog for Banda Arc–Australian Plate Collision Zone Using Machine-Learning Phase Picker and an Automated Workflow. Seism. Rec. 2022, 2, 1–10. [Google Scholar] [CrossRef]
- Woollam, J.; Münchmeyer, J.; Tilmann, F.; Rietbrock, A.; Lange, D.; Bornstein, T.; Diehl, T.; Giunchi, C.; Haslinger, F.; Jozinović, D.; et al. SeisBench—A Toolbox for Machine Learning in Seismology. Seismol. Res. Lett. 2022, 93, 1695–1709. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Sheng, Y.; Zhu, W.; Beroza, G.C. STanford EArthquake Dataset (STEAD): A Global Data Set of Seismic Signals for AI. IEEE Access 2019, 7, 179464–179476. [Google Scholar] [CrossRef]
- Michelini, A.; Cianetti, S.; Gaviano, S.; Giunchi, C.; Jozinović, D.; Lauciani, V. INSTANCE—The Italian Seismic Dataset for Machine Learning. Earth Syst. Sci. Data 2021, 13, 5509–5544. [Google Scholar] [CrossRef]
- Zhao, M.; Xiao, Z.; Chen, S.; Fang, L. DiTing: A Large-Scale Chinese Seismic Benchmark Dataset for Artificial Intelligence in Seismology. Earthq. Sci. 2023, 36, 84–94. [Google Scholar] [CrossRef]
- Cole, H.M.; Yeck, W.L.; Benz, H.M. MLAAPDE: A Machine Learning Dataset for Determining Global Earthquake Source Parameters. Seismol. Res. Lett. 2023, 94, 2489–2499. [Google Scholar] [CrossRef]
- Zhu, W.; Beroza, G.C. PhaseNet: A Deep-Neural-Network-Based Seismic Arrival-Time Picking Method. Geophys. J. Int. 2019, 216, 261–273. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Ellsworth, W.L.; Zhu, W.; Chuang, L.Y.; Beroza, G.C. Earthquake Transformer—An Attentive Deep-Learning Model for Simultaneous Earthquake Detection and Phase Picking. Nat. Commun. 2020, 11, 3952. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, Z.; Liu, C.; Zhao, D.; Yao, Z. Deep Learning for Picking Seismic Arrival Times. J. Geophys. Res. Solid Earth 2019, 124, 6612–6624. [Google Scholar] [CrossRef]
- Kubo, H.; Naoi, M.; Kano, M. Recent Advances in Earthquake Seismology Using Machine Learning. Earth Planets Space 2024, 76, 36. [Google Scholar] [CrossRef]
- Aguilar Suarez, A.L.; Beroza, G. Picking Regional Seismic Phase Arrival Times with Deep Learning. Seismica 2025, 4. [Google Scholar] [CrossRef]
- Niksejel, A.; Zhang, M. OBSTransformer: A Deep-Learning Seismic Phase Picker for OBS Data Using Automated Labelling and Transfer Learning. Geophys. J. Int. 2024, 237, 485–505. [Google Scholar] [CrossRef]
- Ni, Y.; Denolle, M.A.; Thomas, A.M.; Hamilton, A.; Münchmeyer, J.; Wang, Y.; Bachelot, L.; Trabant, C.; Mencin, D. A Global-Scale Database of Seismic Phases from Cloud-Based Picking at Petabyte Scale. arXiv 2025, arXiv:2505.18874. [Google Scholar] [CrossRef]
- Aguilar Suarez, A.L.; Beroza, G. Curated Regional Earthquake Waveforms (CREW) Dataset. Seismica 2024, 3. [Google Scholar] [CrossRef]
- Kong, H.; Xiao, Z.; Lü, Y.; Li, J. Seis-PnSn: A Global Million-Scale Benchmark Data Set of Pn and Sn Seismic Phases for Deep Learning. Seismol. Res. Lett. 2024, 95, 3746–3760. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, M.; Feng, T.; Wang, R.; Zhu, W. LOC-FLOW: An End-to-End Machine Learning-Based High-Precision Earthquake Location Workflow. Seismol. Res. Lett. 2022, 93, 2426–2438. [Google Scholar] [CrossRef]
- Zhu, W.; Hou, A.B.; Yang, R.; Datta, A.; Mousavi, S.M.; Ellsworth, W.L.; Beroza, G.C. QuakeFlow: A Scalable Machine-Learning-Based Earthquake Monitoring Workflow with Cloud Computing. Geophys. J. Int. 2022, 232, 684–693. [Google Scholar] [CrossRef]
- Zhu, W.; Mousavi, S.M.; Beroza, G.C. Chapter Four—Seismic Signal Augmentation to Improve Generalization of Deep Neural Networks. In Machine Learning in Geosciences; Moseley, B., Krischer, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 61, pp. 151–177. ISBN 0065-2687. [Google Scholar]
- Shi, P.; Meier, M.; Villiger, L.; Tuinstra, K.; Selvadurai, P.A.; Lanza, F.; Yuan, S.; Obermann, A.; Mesimeri, M.; Münchmeyer, J.; et al. From Labquakes to Megathrusts: Scaling Deep Learning Based Pickers Over 15 Orders of Magnitude. J. Geophys. Res. Mach. Learn. Comput. 2024, 1, e2024JH000220. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Beroza, G.C. Bayesian-Deep-Learning Estimation of Earthquake Location from Single-Station Observations. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8211–8224. [Google Scholar] [CrossRef]
- Kimura, M. Understanding Test-Time Augmentation. In Neural Information Processing; Mantoro, T., Lee, M., Ayu, M.A., Wong, K.W., Hidayanto, A.N., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 558–569. [Google Scholar]
- Tan, X.; Tramelli, A.; Gammaldi, S.; Beroza, G.C.; Ellsworth, W.L.; Marzocchi, W. A Clearer View of the Current Phase of Unrest at Campi Flegrei Caldera. Science 2025, 390, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Gammaldi, S.; Cabrera-Pérez, I.; Koulakov, I.; D’Auria, L.; Barberi, G.; García-Hernández, R.; Martínez van Dorth, D.; Ortega-Ramos, V.; Prudencio, J.; Przeor, M.; et al. Seismic Tomography of a Newborn Volcano. Geophys. Res. Lett. 2025, 52, e2025GL114932. [Google Scholar] [CrossRef]
- Wilding, J.D.; Zhu, W.; Ross, Z.E.; Jackson, J.M. The Magmatic Web beneath Hawai‘i. Science 2022, 379, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Zhao, L. P -Wave Velocity Structure of the Lower Crust and Uppermost Mantle beneath the Sichuan–Yunnan (China) Region. Seismol. Res. Lett. 2022, 93, 2161–2175. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015 Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015; pp. 1–14. [Google Scholar]
- Liu, C.; Ke, W.; Jiao, J.; Ye, Q. RSRN: Rich Side-Output Residual Network for Medial Axis Detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017, Venice, Italy, 22–29 October 2017; pp. 1739–1743. [Google Scholar] [CrossRef]
- Ross, Z.E.; Meier, M.A.; Hauksson, E. P Wave Arrival Picking and First-Motion Polarity Determination with Deep Learning. J. Geophys. Res. Solid Earth 2018, 123, 5120–5129. [Google Scholar] [CrossRef]
- Zhu, W.; Mousavi, S.M.; Beroza, G.C. Seismic Signal Denoising and Decomposition Using Deep Neural Networks. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9476–9488. [Google Scholar] [CrossRef]
- Liang, J.; He, R.; Tan, T. A Comprehensive Survey on Test-Time Adaptation Under Distribution Shifts. Int. J. Comput. Vis. 2025, 133, 31–64. [Google Scholar] [CrossRef]






| Deep Learning Model | TTA-Method | Tolerance (s) | Original | After QC | Tolerance (s) | Original | After QC |
|---|---|---|---|---|---|---|---|
| PickNet | Direct | 0.5 | 0.4898 | 0.6316 | 1.0 | 0.6694 | 0.7846 |
| PickNet | Filter TTA | 0.5 | 0.5387 | 0.6363 | 1.0 | 0.7082 | 0.7856 |
| PickNet | Shift TTA | 0.5 | 0.4893 | 0.6286 | 1.0 | 0.6745 | 0.7858 |
| PickNet | Rotate TTA | 0.5 | 0.4965 | 0.6336 | 1.0 | 0.6739 | 0.7853 |
| PhaseNet | Direct | 0.5 | 0.4632 | 0.5303 | 1.0 | 0.6428 | 0.7189 |
| PhaseNet | Filter TTA | 0.5 | 0.4876 | 0.5434 | 1.0 | 0.6719 | 0.7308 |
| PhaseNet | Shift TTA | 0.5 | 0.4650 | 0.5342 | 1.0 | 0.6430 | 0.7189 |
| PhaseNet | Rotate TTA | 0.5 | 0.4607 | 0.5272 | 1.0 | 0.6414 | 0.7182 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, B.; Tang, L.; Ma, L.; Kong, H.; Xiao, Z. Test-Time Augmentations and Quality Controls for Improving Regional Seismic Phase Picking. Sensors 2025, 25, 7238. https://doi.org/10.3390/s25237238
Han B, Tang L, Ma L, Kong H, Xiao Z. Test-Time Augmentations and Quality Controls for Improving Regional Seismic Phase Picking. Sensors. 2025; 25(23):7238. https://doi.org/10.3390/s25237238
Chicago/Turabian StyleHan, Bingyao, Lin Tang, Li Ma, Hua Kong, and Zhuowei Xiao. 2025. "Test-Time Augmentations and Quality Controls for Improving Regional Seismic Phase Picking" Sensors 25, no. 23: 7238. https://doi.org/10.3390/s25237238
APA StyleHan, B., Tang, L., Ma, L., Kong, H., & Xiao, Z. (2025). Test-Time Augmentations and Quality Controls for Improving Regional Seismic Phase Picking. Sensors, 25(23), 7238. https://doi.org/10.3390/s25237238

