A Deep-Learning-Based Real-Time Microearthquake Monitoring System (RT-MEMS) for Taiwan
Abstract
1. Introduction
2. Data and Methods
2.1. Seismic Networks
2.2. Workframe of the RT-MEMS
2.2.1. Continuous Waveform Data
2.2.2. P- and S-Wave Picking Database
2.2.3. Association
2.2.4. Earthquake Report
2.2.5. Remediation Strategy for Automated System Failures
3. Applications
3.1. The 2022 Chihshang Seismic Network (2022CSN)
3.1.1. Station Selection for 2022CSN-RT-MEMS
3.1.2. Earthquake Report of the 2022CSN-RT-MEMS
3.1.3. Long-Term Seismicity of the 2022CSN-RT-MEMS
3.2. The 2024 ML 7.2 Hualien Aftershock Sequence (2024HL-RT-MEMS)
3.2.1. Station Selection and Test of the 2024HL-RT-MEMS
3.2.2. Earthquake Report of the 2024HL-RT-MEMS
3.2.3. Long-Term Seismicity of the 2024HL-RT-MEMS
3.3. The Chia-Nan and the 2025 ML 6.4 Dapu Earthquake Sequence (2025CN-RT-MEMS)
3.3.1. Station Selection and Test of the 2025CN-RT-MEMS
3.3.2. Earthquake Report of the 2025CN-RT-MEMS
3.3.3. Long-Term Seismicity of the 2025CN-RT-MEMS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BATS | Broadband Array in Taiwan for Seismology |
CSN | Chihshang Seismic Network |
CWA | Central Weather Administration |
CWASN | Central Weather Administration Seismic Network |
IES | Institute of Earth Sciences, Academia Sinica |
NCREE | National Center for Research on Earthquake Engineering |
RT-MEMS | Real-Time MicroEarthquake Monitoring System |
SANTA | Seismic Array of NCREE in Taiwan |
References
- Kanamori, H. Real-time seismology and earthquake damage mitigation. Annu. Rev. Earth Planet. Sci. 2005, 33, 195–214. [Google Scholar] [CrossRef]
- Wu, Y.M.; Kanamori, H. Development of an earthquake early warning system using real-time strong motion signals. Sensors 2008, 8, 1–9. [Google Scholar] [CrossRef]
- Allen, R.M.; Melgar, D. Earthquake early warning: Advances, scientific challenges, and societal needs. Annu. Rev. Earth Planet. Sci. 2019, 47, 361–388. [Google Scholar] [CrossRef]
- Kong, Q.; Trugman, D.T.; Ross, Z.E.; Bianco, M.J.; Meade, B.J.; Gerstoft, P. Machine learning in seismology: Turning data into insights. Seismol. Res. Lett. 2019, 90, 3–14. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Beroza, G.C. Machine learning in earthquake seismology. Annu. Rev. Earth Planet. Sci. 2023, 51, 105–129. [Google Scholar] [CrossRef]
- Anikiev, D.; Birnie, C.; Waheed, U.B.; Alkhalifah, T.; Gu, C.; Verschuur, D.J.; Eisner, L. Machine learning in microseismic monitoring. Earth-Sci. Rev. 2023, 239, 104371. [Google Scholar] [CrossRef]
- Yeck, W.L.; Patton, J.M.; Ross, Z.E.; Hayes, G.P.; Guy, M.R.; Ambruz, N.B.; Shelly, D.R.; Benz, H.M.; Earle, P.S. Leveraging deep learning in global 24/7 real-time earthquake monitoring at the National Earthquake Information Center. Seismol. Res. Lett. 2020, 92, 469–480. [Google Scholar] [CrossRef]
- Kuo-Chen, H.; Sun, W.; Huang, C.; Pan, S. Near real-time seismic data processing helps scientist understand aftershocks. Temblor 2022. [Google Scholar] [CrossRef]
- Retailleau, L.; Saurel, J.M.; Zhu, W.; Satriano, C.; Beroza, G.C.; Issartel, S.; Boissier, P.; OVPF Team and OVSM Team. A wrapper to use a machine-learning-based algorithm for earthquake monitoring. Seismol. Res. Lett. 2022, 93, 1673–1682. [Google Scholar] [CrossRef]
- Chen, Y.; Savvaidis, A.; Siervo, D.; Huang, D.; Saad, O.M. Near real-time earthquake monitoring in Texas using the highly precise deep learning phase picker. Earth Space Sci. 2024, 11, e2024EA003890. [Google Scholar] [CrossRef]
- Wang, K.; Waldhauser, F.; Schaff, D.; Tolstoy, M.; Wilcock, W.S.D.; Tan, Y.J. Real-time detection of volcanic unrest and eruption at axial seamount using machine learning. Seismol. Res. Lett. 2024, 95, 2651–2662. [Google Scholar] [CrossRef]
- Arrowsmith, S.J.; Trugman, D.T.; MacCarthy, J.; Bergen, K.J.; Lumley, D.; Magnani, M.B. Big data seismology. Rev. Geophys. 2022, 60, e2021RG000769. [Google Scholar] [CrossRef]
- Martínez-Garzón, P.; Poli, P. Cascade and pre-slip models oversimplify the complexity of earthquake preparation in nature. Commun. Earth Environ. 2024, 5, 120. [Google Scholar] [CrossRef]
- Peng, Z.; Lei, X. Physical mechanisms of earthquake nucleation and foreshocks: Cascade triggering, aseismic slip, or fluid flows? Earthq. Res. Adv. 2024, 5, 100349. [Google Scholar] [CrossRef]
- Beroza, G.C.; Segou, M.; Mousavi, S.M. Machine learning and earthquake forecasting—Next steps. Nat. Commun. 2021, 12, 4761. [Google Scholar] [CrossRef]
- Gulia, L.; Wiemer, S. Real-time discrimination of earthquake foreshocks and aftershocks. Nature 2019, 574, 193–199. [Google Scholar] [CrossRef]
- Gulia, L.; Wiemer, S.; Biondini, E.; Enescu, B.; Vannucci, G. Improving the foreshock traffic light systems for real-time discrimination between foreshocks and aftershocks. Seismol. Res. Lett. 2024, 95, 3579–3592. [Google Scholar] [CrossRef]
- Allen, R.V. Automatic earthquake recognition and timing from single traces. Bull. Seismol. Soc. Am. 1978, 68, 1521–1532. [Google Scholar] [CrossRef]
- Olivieri, M.; Clinton, J. An almost fair comparison between Earthworm and SeisComp3. Seismol. Res. Lett. 2012, 83, 720–727. [Google Scholar] [CrossRef]
- Shelly, D.R. A high-resolution seismic catalog for the initial 2019 Ridgecrest earthquake sequence: Foreshocks, aftershocks, and faulting complexity. Seismol. Res. Lett. 2020, 91, 1971–1978. [Google Scholar] [CrossRef]
- Tan, D.; Fee, D.; Hotovec-Ellis, A.J.; Pesicek, J.D.; Haney, M.M.; Power, J.A.; Girona, T. Volcanic earthquake catalog enhancement using integrated detection, matched-filtering, and relocation tools. Front. Earth Sci. 2023, 11, 1158442. [Google Scholar] [CrossRef]
- Beaucé, E.; Frank, W.B.; Seydoux, L.; Poli, P.; Groebner, N.; van der Hilst, R.D.; Campillo, M. BPMF: A backprojection and matched-filtering workflow for automated earthquake detection and location. Seismol. Res. Lett. 2023, 95, 1030–1042. [Google Scholar] [CrossRef]
- Waldhauser, F.D.; Wilcock, W.S.; Tolstoy, M.; Baillard, C.; Tan, Y.J.; Schaff, D.P. Precision seismic monitoring and analysis at axial seamount using a real-time double-difference system. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018796. [Google Scholar] [CrossRef]
- Yoon, C.E.; O’Reilly, O.; Bergen, K.J.; Beroza, G.C. Earthquake detection through computationally efficient similarity search. Sci. Adv. 2015, 1, e1501057. [Google Scholar] [CrossRef] [PubMed]
- Taiwan Seismological and Geophysical Data Management System (GDMS). Available online: https://gdms.cwa.gov.tw/ (accessed on 24 March 2025).
- Chen, D.Y.; Hsiao, N.C.; Wu, Y.M. The Earthworm based earthquake alarm reporting system in Taiwan. Bull. Seismol. Soc. Am. 2015, 105, 568–579. [Google Scholar] [CrossRef]
- Sun, W.F.; Pan, S.Y.; Huang, C.M.; Guan, Z.K.; Yen, I.C.; Ho, C.W.; Chi, T.C.; Ku, C.S.; Huang, B.S.; Fu, C.C.; et al. Deep learning-based earthquake catalog reveals the seismogenic structures of the 2022 MW 6.9 Chihshang earthquake sequence. Terr. Atmos. Ocean. Sci. 2024, 35, 5. [Google Scholar] [CrossRef]
- Institute of Earth Sciences, Academia Sinica, Taiwan. Broadband Array in Taiwan for Seismology; Other/Seismic Network; Institute of Earth Sciences, Academia Sinica, Taiwan: Taiwan, 1996. [Google Scholar] [CrossRef]
- Seismic Array of NCREE in Taiwan (SANTA). Available online: http://santa.ncree.org/ (accessed on 24 March 2025).
- Angelier, J.; Chu, H.T.; Lee, J.C.; Hu, J.C. Active faulting and earthquake hazard: The case study of the Chihshang fault, Taiwan. J. Geodyn. 2020, 29, 151–185. [Google Scholar] [CrossRef]
- Thomas, M.Y.; Avouac, J.P.; Champenois, J.; Lee, J.C.; Kuo, L.C. Spatiotemporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault, Taiwan. J. Geophys. Res. Solid Earth 2014, 119, 5114–5139. [Google Scholar] [CrossRef]
- Harris, R.A. Large earthquakes and creeping faults. Rev. Geophys. 2017, 55, 169–198. [Google Scholar] [CrossRef]
- Beyreuther, M.; Barsch, R.; Krischer, L.; Megies, T.; Behr, Y.; Wassermann, J. Obspy: A python toolbox for seismology. Seismol. Res. Lett. 2010, 81, 530–533. [Google Scholar] [CrossRef]
- Megies, T.; Beyreuther, M.; Barsch, R.; Krischer, L.; Wassermann, J. ObsPy—What can it do for data centers and observatories? Ann. Geophys. 2011, 54, 47–58. [Google Scholar] [CrossRef]
- SeedLink. Available online: https://docs.obspy.org/packages/obspy.clients.seedlink.html (accessed on 10 March 2025).
- SeisComP Data Structure (SDS) Archive. Available online: https://www.seiscomp.de/doc/apps/slarchive.html (accessed on 10 March 2025).
- Ahern, T.; Casey, R.; Barnes, D.; Benson, R.; Knight, T.; Trabant, C. SEED Reference Manual, Version 2.4. 2012. Available online: https://www.fdsn.org/pdf/SEEDManual_V2.4.pdf (accessed on 10 March 2025).
- Ringler, A.T.; Evans, J.R. A Quick SEED Tutorial. Seismol. Res. Lett. 2015, 86, 1717–1725. [Google Scholar] [CrossRef]
- Huang, C.M.; Chang, L.H.; Kuo-Chen, H.; Zhuang, Y. SeisBlue: A deep-learning data processing platform for seismology. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Ellsworth, W.L.; Zhu, W.; Chuang, L.Y.; Beroza, G.C. Earthquake transformer—An attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat. Commun. 2020, 11, 3952. [Google Scholar] [CrossRef]
- Zhu, W.; Beroza, G.C. PhaseNet: A deep-neural-network-based seismic arrival-time picking method. Geophys. J. Int. 2019, 216, 261–273. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27, 1–9. [Google Scholar]
- DuBois, P. MySQL; New Riders Publishing: Hoboken, NJ, USA, 1999. [Google Scholar]
- SQLAlchemy. Available online: https://pypi.org/project/SQLAlchemy/ (accessed on 24 March 2025).
- Chang, Y.H.; Hung, S.H.; Chen, Y.L. A fast algorithm for automatic phase picker and event location: Application to the 2018 Hualien earthquake sequences. Terr. Atmos. Ocean. Sci. 2019, 30, 435–448. [Google Scholar] [CrossRef]
- Chen, C.; Holland, A.A. PhasePApy: A robust pure Python package for automatic identification of seismic phases. Seismol. Res. Lett. 2016, 87, 1384–1396. [Google Scholar] [CrossRef]
- Havskov, J.; Ottemöller, L. Routine Data Processing in Earthquake Seismology; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Lienert, B.R.; Havskov, J. A computer program for locating earthquakes both locally and globally. Seismol. Res. Lett. 1995, 66, 26–36. [Google Scholar] [CrossRef]
- Havskov, J.; Voss, P.H.; Ottemöller, L. Seismological observatory software: 30 yr of seisan. Seismol. Res. Lett. 2020, 91, 1846–1852. [Google Scholar] [CrossRef]
- LINE. Available online: https://www.line.me/en/ (accessed on 24 March 2025).
- Smtplib. Available online: https://docs.python.org/3/library/smtplib.html (accessed on 24 March 2025).
- Line Application Programming Interface (API) Through the Kit Requests. Available online: https://requests.readthedocs.io/en/latest/ (accessed on 24 March 2025).
- Ku, C.S.; Mu, C.H.; Guan, Z.K.; Kan, L.Y.; Sun, W.F.; Kuo-Chen, H.; Fu, C.C. Towards a near-real-time earthquake detection of the MAGIC Project containing distributed acoustic sensing system and broadband seismometer array. In Proceedings of the Galileo Conference: Fiber Optic Sensing in Geosciences, Catania, Italy, 16–20 June 2024. GC12-FibreOptic-15. [Google Scholar] [CrossRef]
- Fu, C.C.; Mu, C.H.; Kuo-Chen, H.; Chiu, Y.C.; Tung, H. Multidimensional active fault of geo-inclusive observatory-Chihshang (MAGIC) project for exploring the earthquake generation process. In Proceedings of the Abstract for the 16th International Conference on Gas Geochemistry 2024, Puerto de la Cruz, Tenerife, Spain, 16–22 June 2024. [Google Scholar]
- Walter, J.I.; Ogwari, P.; Thiel, A.; Ferrer, F.; Woelfel, I. easyQuake: Putting machine learning to work for your regional seismic network or local earthquake study. Seismol. Res. Lett. 2021, 92, 555–563. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, M.; Feng, T.; Wang, R.; Zhu, W. LOC-FLOW: An end-to-end machine learning-based high-precision earthquake location workflow. Seismol. Res. Lett. 2022, 93, 2426–2438. [Google Scholar] [CrossRef]
- Zhu, W.; Hou, A.B.; Yang, R.; Datta, A.; Mousavi, S.M.; Ellsworth, W.L.; Beroza, G.C. QuakeFlow: A scalable machine-learning-based earthquake monitoring workflow with cloud computing. Geophys. J. Int. 2023, 232, 684–693. [Google Scholar] [CrossRef]
- Münchmeyer, J.; Woollam, J.; Rietbrock, A.; Tilmann, F.; Lange, D.; Bornstein, T.; Diehl, T.; Giunchi, C.; Haslinger, F.; Jozinović, D.; et al. Which picker fits my data? A quantitative evaluation of deep learning based seismic pickers. J. Geophys. Res. Solid Earth 2021, 127, e2021JB023499. [Google Scholar] [CrossRef]
- Li, J.; Rojas-Parra, J.; Salvage, R.O.; Eaton, D.W.; Innanen, K.A.; Gu, Y.J.; Sun, W. Machine learning aids rapid assessment of aftershocks: Application to the 2022–2023 Peace River earthquake sequence, Alberta, Canada. Seism. Rec. 2024, 4, 21–31. [Google Scholar] [CrossRef]
- Zhu, W.; McBrearty, I.W.; Mousavi, S.M.; Ellsworth, W.L.; Beroza, G.C. Earthquake phase association using a Bayesian Gaussian Mixture Model. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023249. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, M.; Zhu, W.; Ellsworth, W.L.; Li, H. Rapid characterization of the July 2019 Ridgecrest, California, earthquake sequence from raw seismic data using machine-learning phase picker. Geophys. Res. Lett. 2020, 47, e2019GL086189. [Google Scholar] [CrossRef]
- Ross, Z.E.; Trugman, D.T.; Hauksson, E.; Shearer, P.M. Searching for hidden earthquakes in southern California. Science 2019, 364, 767–771. [Google Scholar] [CrossRef]
- Lomax, A.; Virieux, J.; Volant, P.; Berge-Thierry, C. Probabilistic earthquake location in 3D and layered models. In Advances in Seismic Event Location; Springer: Dordrecht, The Netherlands, 2000; pp. 101–134. [Google Scholar] [CrossRef]
- Smith, J.D.; Ross, Z.E.; Azizzadenesheli, K.; Muir, J.B. HypoSVI: Hypocentre inversion with Stein variational inference and physics informed neural networks. Geophys. J. Int. 2022, 228, 698–710. [Google Scholar] [CrossRef]
- Trugman, D.T.; Shearer, P.M. GrowClust: A hierarchical clustering algorithm for relative earthquake relocation, with application to the Spanish Springs and Sheldon, Nevada, earthquake sequences. Seismol. Res. Lett. 2017, 88, 379–391. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, P.; White, M.C.; Pickle, R.; Miller, M.S. A detailed earthquake catalog for Banda Arc–Australian plate collision zone using machine-learning phase picker and an automated workflow. Seism. Rec. 2022, 2, 1–10. [Google Scholar] [CrossRef]
- Yoon, C.; Cochran, E.S.; Vanacore, E.A.; Huerfano, V.; Báez-Sánchez, G.; Wilding, J.D.; Smith, J. A detailed view of the 2020–2023 southwestern Puerto Rico seismic sequence with deep learning. Bull. Seismol. Soc. Am. 2023, 113, 2377–2415. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, S.H.; Chou, H.L.B.; Li, Y.Y.; Cheng, W.S.; Ho, A.; Chen, J.M.; Liu, S.C.; Hsieh, C.Y.; Duan, S.; et al. Surface ruptures of the 2022 Guanshan-Chihshang earthquakes in central Longitudinal Valley area, eastern Taiwan. Terr. Atmos. Ocean. Sci. 2024, 35, 16. [Google Scholar] [CrossRef]
- Kearse, J.; Kaneko, Y.; Nozuka, Y.; Milliner, C.; Hsu, Y.J.; Avouac, J.-P. Strong asymmetry in near-fault ground velocity during an oblique strike-slip earthquake revealed by waveform particle motions and dynamic rupture simulations. Seismica 2024, 3, 1–12. [Google Scholar] [CrossRef]
- Lin, C.D.J.; Wu, Y.M.; Tung, H.; Huang, H.H. Coseismic deformation and interaction of the 2022 ML 6.6 Guanshan and ML 6.8 Chihshang earthquakes in southeastern Taiwan revealed by strong-motion data. Seismol. Res. Lett. 2025, 96, 52–64. [Google Scholar] [CrossRef]
- Tung, H.; Chen, H.Y.; Hsu, Y.J.; Tang, C.H.; Lee, J.C.; Wang, Y.; Lee, H.K. Geodetic constraints on the September 2022 Guanshan and Chihshang earthquakes, eastern Taiwan. Tectonophysics 2025, 895, 230600. [Google Scholar] [CrossRef]
- Chan, J.B.; Hwang, R.D.; Lin, C.Y.; Lin, C.Y. Scaling relationships between local magnitude, seismic moment, and radiated seismic energy for the 18 April 2019 Xiulin, Taiwan, earthquake sequence: Implications for source non-self-similarity. Seismol. Res. Lett. 2024, 96, 883–896. [Google Scholar] [CrossRef]
- Kuo-Chen, H.; Sun, W.F.; Kan, L.Y.; Pan, S.Y.; Yen, I.C.; Liang, S.H.; Guan, Z.K.; Liu, Y.H.; Chen, W.S.; Brown, D. Real-time earthquake monitoring with deep learning: A case study of the 2025 M6.4 Dapu earthquake and its fault system in southwestern Taiwan. Sensors, 2025; submitted. [Google Scholar]
- Kuo-Chen, H.; Wu, F.T.; Roecker, S.W. Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. J. Geophys. Res. Solid Earth 2012, 117, B06306. [Google Scholar] [CrossRef]
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.; Tian, D. The Generic Mapping Tools Version 6. Geochem. Geophys. Geosyst. 2019, 20, 5556–5564. [Google Scholar] [CrossRef]
- Barrett, P.; Hunter, J.; Miller, J.T.; Hsu, J.C.; Greenfield, P. matplotlib—A portable Python plotting package. In Proceedings of the Astronomical Data Analysis Software and Systems XIV, Pasadena, CA, USA, 24–27 October 2004; Volume 347, pp. 91–95. [Google Scholar]
- Waskom, M.L. Seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.-F.; Pan, S.-Y.; Liu, Y.-H.; Kuo-Chen, H.; Ku, C.-S.; Lin, C.-M.; Fu, C.-C. A Deep-Learning-Based Real-Time Microearthquake Monitoring System (RT-MEMS) for Taiwan. Sensors 2025, 25, 3353. https://doi.org/10.3390/s25113353
Sun W-F, Pan S-Y, Liu Y-H, Kuo-Chen H, Ku C-S, Lin C-M, Fu C-C. A Deep-Learning-Based Real-Time Microearthquake Monitoring System (RT-MEMS) for Taiwan. Sensors. 2025; 25(11):3353. https://doi.org/10.3390/s25113353
Chicago/Turabian StyleSun, Wei-Fang, Sheng-Yan Pan, Yao-Hung Liu, Hao Kuo-Chen, Chin-Shang Ku, Che-Min Lin, and Ching-Chou Fu. 2025. "A Deep-Learning-Based Real-Time Microearthquake Monitoring System (RT-MEMS) for Taiwan" Sensors 25, no. 11: 3353. https://doi.org/10.3390/s25113353
APA StyleSun, W.-F., Pan, S.-Y., Liu, Y.-H., Kuo-Chen, H., Ku, C.-S., Lin, C.-M., & Fu, C.-C. (2025). A Deep-Learning-Based Real-Time Microearthquake Monitoring System (RT-MEMS) for Taiwan. Sensors, 25(11), 3353. https://doi.org/10.3390/s25113353