Flexible Sensor Foil Based on Polymer Optical Waveguide for Haptic Assessment
Abstract
1. Introduction
- 1.
- The design and fabrication of a miniaturized flexible polymer optical waveguide, compatible for integration with MIS tools.
- 2.
- Characterization of the sensor foil’s performance in response to contact forces and defined stiffness levels.
- 3.
- Demonstration of the sensor foil’s capability for stiffness mapping and surface texture profile reconstruction when integrated on a robot arm.
2. Sensing Principle
3. Materials and Methods
4. Results and Discussion
4.1. Tactile Response Characterization
4.2. Stiffness Sensing Characterization
4.3. Integrated Sensing Applications
4.3.1. Stiffness Mapping
4.3.2. Surface Texture Reconstruction
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| NA | Numerical aperture |
| TIR | Total internal reflection |
| PPW | Planar polymer (optical) waveguide |
| POF | Polymer optical fiber |
References
- Colan, J.; Davila, A.; Hasegawa, Y. Tactile Feedback in Robot-Assisted Minimally Invasive Surgery: A Systematic Review. Int. J. Med. Robot. Comput. Assist. Surg. 2024, 20, e70019. [Google Scholar] [CrossRef]
- Selim, M.; Dresscher, D.; Abayazid, M. A comprehensive review of haptic feedback in minimally invasive robotic liver surgery: Advancements and challenges. Int. J. Med. Robot. Comput. Assist. Surg. 2023, 20, e2605. [Google Scholar] [CrossRef]
- Konstantinova, J.; Cotugno, G.; Dasgupta, P.; Althoefer, K.; Nanayakkara, T. Palpation force modulation strategies to identify hard regions in soft tissue organs. PLoS ONE 2017, 12, e0171706. [Google Scholar] [CrossRef]
- Othman, W.; Lai, Z.H.A.; Abril, C.; Barajas-Gamboa, J.S.; Corcelles, R.; Kroh, M.; Qasaimeh, M.A. Tactile Sensing for Minimally Invasive Surgery: Conventional Methods and Potential Emerging Tactile Technologies. Front. Robot. AI 2022, 8, 705662. [Google Scholar] [CrossRef]
- Cui, Z.; Yu, Y.; Wang, H. Recent Developments in Impedance-Based Tactile Sensors: A Review. IEEE Sens. J. 2024, 24, 2350–2366. [Google Scholar] [CrossRef]
- Dawood, A.B.; Godaba, H.; Ataka, A.; Althoefer, K. Silicone-based Capacitive E-skin for Exteroception and Proprioception. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 25–29 October 2020. [Google Scholar] [CrossRef]
- He, K.; Shi, X.; Yu, D.; Guo, X. Vision-Based High-Resolution Tactile Sensor By Using Visual Light Ring. IEEE Sens. Lett. 2022, 6, 2500404. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Su, L. Soft Optical Waveguides for Biomedical Applications, Wearable Devices, and Soft Robotics: A Review. Adv. Intell. Syst. 2023, 6, 2300482. [Google Scholar] [CrossRef]
- Wang, Q.; Jia, D.; Yan, B.; Teng, F.; Sun, C.; Li, X. Rotary robotic gripper with LiDAR-tactile sensor fusion. Opt. Eng. 2023, 62, 114102. [Google Scholar] [CrossRef]
- Wang, Q.; Jia, D.; Li, X.; Sun, C.; Yan, B. A fiber tactile sensor based on Mach-Zehnder interferometer for grasp force control of gripper. In Proceedings of the Advanced Sensor Systems and Applications XIII, Beijing, China, 27 November 2023. 127711O. [Google Scholar] [CrossRef]
- Violakis, G.; Antonakis, P.; Kritsotakis, E.; Kozonis, T.; Chardalias, L.; Papalois, A.; Agrogiannis, G.; Effrosyni, K.; Vardakis, N.; Kostakis, S.; et al. In Vivo Study on the Safe Use of a Novel Intraoperative Sensing Tool for Tissue Stiffness Assessment in Endoscopic Surgery. Biosensors 2025, 15, 581. [Google Scholar] [CrossRef]
- Violakis, G.; Vardakis, N.; Zhang, Z.; Angelmahr, M.; Polygerinos, P. Rapid and accurate shape sensing method using a multi-core Fiber Bragg Grating-based optical fiber. Sensors 2025, 25, 4494. [Google Scholar] [CrossRef]
- Leong, C.Y.; Cheng, X.; Cui, J.; Gunawardena, D.S.; Tam, H.T. Artificial Skin Based on Polymer Optical Fiber Bragg Grating Arrays for Robotic Tactile Perception. J. Light. Technol. 2024, 42, 3022–3029. [Google Scholar] [CrossRef]
- Lv, C.; Wang, S.; Shi, C. A High-Precision and Miniature Fiber Bragg Grating-Based Force Sensor for Tissue Palpation During Minimally Invasive Surgery. Ann. Biomed. Eng. 2020, 48, 669–681. [Google Scholar] [CrossRef]
- Guo, J.; Shang, C.; Gao, S.; Zhang, Y.; Xu, L. Flexible Plasmonic Optical Tactile Sensor for Health Monitoring and Artificial Haptic Perception. Adv. Mater. Technol. 2023, 8, 2201506. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Zheng, T.; Wu, H.; Wu, Q.; Wang, Y. Wearable Optical Fiber Sensors in Medical Monitoring Applications: A Review. Sensors 2023, 23, 6671. [Google Scholar] [CrossRef] [PubMed]
- Polygerinos, P.; Seneviratne, L.D.; Althoefer, K. Modeling of Light Intensity-Modulated Fiber-Optic Displacement Sensors. IEEE Trans. Instrum. Meas. 2010, 60, 1408–1415. [Google Scholar] [CrossRef]
- Pan, J.; Wang, Q.; Gao, S.; Zhang, Z.; Xie, Y.; Yu, L.; Zhang, L. Knot-inspired optical sensors for slip detection and friction measurement in dexterous robotic manipulation. Opto-Electron. Adv. 2023, 6, 230076. [Google Scholar] [CrossRef]
- Hu, J.; Cao, D.; Li, Y.; Liu, H. Polymer-Based Optical Waveguide Tactile Sensing Method for 3-D Surfaces. IEEE Sens. J. 2023, 23, 8761–8768. [Google Scholar] [CrossRef]
- Yun, S.; Park, S.; Park, B.; Kim, Y.; Park, S.K.; Nam, S.; Kyung, K.U. Polymer-Waveguide-Based Flexible Tactile Sensor Array for Dynamic Response. Adv. Mater. 2014, 26, 4474–4480. [Google Scholar] [CrossRef]
- Mendes, S.B.; Saavedra, S.S. Comparative analysis of absorbance calculations for integrated optical waveguide configurations by use of the ray optics model and the electromagnetic wave theory. Appl. Opt. 2000, 39, 612–621. [Google Scholar] [CrossRef][Green Version]
- Marcatili, E.A.J.; Miller, S.E. Improved Relations Describing Directional Control in Electromagnetic Wave Guidance. Bell Syst. Tech. J. 1969, 48, 2161–2188. [Google Scholar] [CrossRef]
- Gloge, D. Bending Loss in Multimode Fibers with Graded and Ungraded Core Index. Appl. Opt. 1972, 11, 2506–2513. [Google Scholar] [CrossRef] [PubMed]
- Pichler, E.; Bethmann, K.; Kelb, C.; Schade, W. Rapid prototyping of all-polymer AWGs for FBG readout using direct laser lithography. Opt. Lett. 2018, 43, 5347–5350. [Google Scholar] [CrossRef] [PubMed]
- Dawood, A.B.; Chavali, V.K.; Mack, T.; Zhang, Z.; Godaba, H.; Angelmahr, M.; Althoefer, K. Abraded optical fibre-based dynamic range force sensor for tissue palpation. Front. Robot. AI 2024, 11, 1489884. [Google Scholar] [CrossRef] [PubMed]
- Bandari, N.; Dargahi, J.; Packirisamy, M. Tactile Sensors for Minimally Invasive Surgery: A Review of the State-of-the-Art, Applications, and Perspectives. IEEE Access 2019, 8, 7682–7708. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Y.; Sun, Y.; Zhang, Y.; Ding, G. Recent Advances in Resistive Sensor Technology for Tactile Perception: A Review. IEEE Sens. J. 2022, 22, 15635–15649. [Google Scholar] [CrossRef]
- Kuang, R.; Wang, Z.; Ma, L.; Wang, H.; Chen, Q.; Leal Junior, A.; Kumar, S.; Li, X.; Marques, C.; Min, R. Smart photonic wristband for pulse wave monitoring. Opto-Electron. Sci. 2024, 3, 240009. [Google Scholar] [CrossRef]
- Xing, J.; Yuan, T.; Yang, S.; Li, C.; Fan, Z.; Pan, L. Single channel tactile sensor array for detection of pressure and position with two electrodes. Chem. Eng. J. 2025, 521, 166454. [Google Scholar] [CrossRef]
- Li, J.; Qin, H.; Song, Z.; Hou, L.; Li, H. A Tactile Sensor Based on Magnetic Sensing: Design and Mechanism. IEEE Trans. Instrum. Meas. 2024, 73, 1005509. [Google Scholar] [CrossRef]
- Huang, M. Stress effects on the performance of optical waveguides. Int. J. Solids Struct. 2003, 40, 1615–1632. [Google Scholar] [CrossRef]
- Marcuse, D. Bending losses of the asymmetric slab waveguide. Bell Syst. Tech. J. 1971, 50, 2551–2563. [Google Scholar] [CrossRef]
- Amouzou, K.N.; Romero, A.A.; Sengupta, D.; Zimmermann, C.A.; Kumar, A.; Gravel, N.; Lina, J.M.; Daxhelet, X.; Ung, B. Porous-Cladding Polydimethylsiloxane Optical Waveguide for Biomedical Pressure Sensing Applications. Sensors 2025, 25, 4311. [Google Scholar] [CrossRef]
- Yin, Y.; Ishigure, T. Polymer Waveguide Based Optical Tactile Sensor Fabricated by the Mosquito Method. IEEE Sens. J. 2025, 25, 34636–34645. [Google Scholar] [CrossRef]
- Wang, C.; Wu, B.; Sun, S.; Wu, P. Interface Deformable, Thermally Sensitive Hydrogel–Elastomer Hybrid Fiber for Versatile Underwater Sensing. Adv. Mater. Technol. 2020, 5, 2000515. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, J.; Zhang, Z.; Wu, H.; Yao, N.; Cai, D.; Xu, Y.; Zhang, J.; Sun, G.; Wang, L.; et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron. Adv. 2020, 3, 190022. [Google Scholar] [CrossRef]
- Li, J.H.; Chen, J.H.; Xu, F. Sensitive and Wearable Optical Microfiber Sensor for Human Health Monitoring. Adv. Mater. Technol. 2018, 3, 1800296. [Google Scholar] [CrossRef]
- Yao, N.; Wang, S. Recent progress of optical tactile sensors: A review. Opt. Laser Technol. 2024, 176, 111040. [Google Scholar] [CrossRef]
- Guzman, H.V.; Garcia, R. Peak forces and lateral resolution in amplitude modulation force microscopy in liquid. Beilstein J. Nanotechnol. 2013, 4, 852–859. [Google Scholar] [CrossRef]
- Butt, H.J.; Pham, J.T.; Kappl, M. Forces between a stiff and a soft surface. Curr. Opin. Colloid Interface Sci. 2017, 27, 82–90. [Google Scholar] [CrossRef]
- Boese, A.; Wex, C.; Croner, R.; Liehr, U.B.; Wendler, J.J.; Weigt, J.; Walles, T.; Vorwerk, U.; Lohmann, C.H.; Friebe, M.; et al. Endoscopic Imaging Technology Today. Diagnostics 2022, 12, 1262. [Google Scholar] [CrossRef]
- Yang, C.; Yan, B.; Wang, Q.; Zhao, J.; Zhang, H.; Yu, H.; Fan, H.; Jia, D. Sensitivity Improvement of an Optical Fiber Sensor Based on Surface Plasmon Resonance with Pure Higher-Order Modes. Appl. Sci. 2023, 13, 4020. [Google Scholar] [CrossRef]
- Xu, K.; Tang, Y.; Liang, J.; Zhao, T.; Guo, H. Flexible capacitive pressure sensor sensitized by tilted micropillar structures fabricated by two-photon polymerization. J. Mater. Sci. Mater. Electron. 2024, 35, 1579. [Google Scholar] [CrossRef]
- Singhal, A.; Dalmiya, A.; Lynch, P.T.; Paprotny, I. 2-Photon Polymerized IP-Dip 3D Photonic Crystals for Mid IR Spectroscopic Applications. IEEE Photonics Technol. Lett. 2023, 35, 410–413. [Google Scholar] [CrossRef]
- Yin, R.; Yang, Y.; Hou, L.; Wei, H.; Zhang, H.; Zhang, W. Two-photon 3D printed fiber-optic Fabry–Perot probe for triaxial contact force detection of guidewire tips. Photonics Res. 2024, 12, 2474–2487. [Google Scholar] [CrossRef]
- Hessler, S.; Rüth, M.; Sauvant, C.; Lemke, H.D.; Schmauss, B.; Hellmann, R. Hemocompatibility of EpoCore/EpoClad photoresists on COC substrate for optofluidic integrated Bragg sensors. Sens. Actuators B Chem. 2017, 239, 916–922. [Google Scholar] [CrossRef]








| Sensor Type | Range (Resolution) | Size (Width × Thickness) | Application | Comment / Key Limitation | Reference |
|---|---|---|---|---|---|
| PPW | 0–5 N (80 mN) | 10 × 0.15 mm | Contact force, material stiffness, surface texture | Waveguide on flexible substrate, straightforward measurement without additional coating or actuator. / Limited sensitivity. | This work |
| Rectangular POF | 0–10 N (N.A.) | 3 × 2 mm | Contact force, pressure | POF with porous cladding. / Anisotropic response. | Amouzou (2025) [33] |
| POF knot | 0–10 N (N.A.) | 5× 1 mm | Tri-axial force, slip and friction | POF actuated with knot structure. / PDMS encapsulation required. | Pan (2023) [18] |
| Coated POF | 0–6 N (2.5 mN) | 15 × 2 mm | Finger press, respiration, blood pulse, contact force, material stiffness, surface texture | Gold nanoparticles-coated POF actuated by a PDMS block sandwiched between two substrate layers. / Additional coating and actuator required. | Guo (2023) [15] |
| Micro/nanofiber | 0–2.1 Pa (N.A.) | Not specified, fiber diameter 900 nm | Contact force, pressure, bending, acoustic vibration | Glass micro/nanofibers embedded in PDMS film. / Risk of cross-sensitivity. | Zhang (2020) [36] |
| Hydrogel optical fibers | 0–0.175 N (N.A.) | 1 × 0.03 mm | Pressure, contact force, ultrasonic and audible wave | PDMS coated hydrogel fiber embedded in PDMS layer, designed for underwater applications. / Small sensing dynamic range. | Wang (2020) [35] |
| Planar waveguide with actuator slide | 0–3 N (N.A.) | Not specified, thickness < 0.15 mm | Dynamic input force (multi-positions) | Waveguide core separated by spacer, actuated by additional touch layer. / Complicated fabrication. | Yun (2014) [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Dawood, A.B.; Violakis, G.; Abdalwareth, A.; Flachenecker, G.; Polygerinos, P.; Althoefer, K.; Angelmahr, M.; Schade, W. Flexible Sensor Foil Based on Polymer Optical Waveguide for Haptic Assessment. Sensors 2025, 25, 6915. https://doi.org/10.3390/s25226915
Zhang Z, Dawood AB, Violakis G, Abdalwareth A, Flachenecker G, Polygerinos P, Althoefer K, Angelmahr M, Schade W. Flexible Sensor Foil Based on Polymer Optical Waveguide for Haptic Assessment. Sensors. 2025; 25(22):6915. https://doi.org/10.3390/s25226915
Chicago/Turabian StyleZhang, Zhenyu, Abu Bakar Dawood, Georgios Violakis, Ahmad Abdalwareth, Günter Flachenecker, Panagiotis Polygerinos, Kaspar Althoefer, Martin Angelmahr, and Wolfgang Schade. 2025. "Flexible Sensor Foil Based on Polymer Optical Waveguide for Haptic Assessment" Sensors 25, no. 22: 6915. https://doi.org/10.3390/s25226915
APA StyleZhang, Z., Dawood, A. B., Violakis, G., Abdalwareth, A., Flachenecker, G., Polygerinos, P., Althoefer, K., Angelmahr, M., & Schade, W. (2025). Flexible Sensor Foil Based on Polymer Optical Waveguide for Haptic Assessment. Sensors, 25(22), 6915. https://doi.org/10.3390/s25226915

