The Effect of Tattoos on Heart Rate Validity in the Polar Verity Sense Commercial Wearable Device
Highlights
- Heart rate measurements from a commercially wearable device placed over tattoo skin were inaccurate, especially during rest, with error decreasing as exercise intensity increased.
- Skin tone was a significant predictor of measurement error during rest and walking, while tattoo characteristics, such as age and intensity, did not significantly affect heart rate accuracy.
- Wearable device manufacturers should consider skin tone and tattoo presence when designing and calibrating sensors, as these factors can introduce bias and reduce measurement accuracy.
- Excluding tattooed individuals from research studies may compromise generalizability and equity, highlighting the need for inclusive methodologies and improved sensor technologies.
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CCC | Lin’s Concordance Correlation Coefficient |
| MAPE | Mean Absolute Percentage Error |
| PPG | Photoplethysmography |
| r | Pearson’s Product-Moment Correlation Coefficient |
References
- Krutak, L. Tattoo Traditions of Native North America: Ancient and Contemporary Expressions of Identity; Stichting LM Publishers: Edam, The Netherlands, 2014. [Google Scholar]
- Krutak, L. The cultural heritage of tattooing: A brief history. Curr. Probl. Dermatol. 2015, 48, 1–5. [Google Scholar]
- Togafau, K. Tatau: A History of Sāmoan Tattooing by Sean Mallon and Sébastien Galliot; University of Hawai’i Press: Honolulu, HI, USA, 2020; pp. 299–301. [Google Scholar]
- Fisher, A.J. Tattooing the Body, Marking Culture. Body Soc. 2002, 8, 91–107. [Google Scholar] [CrossRef]
- Broussard, A.K.; Harton, C.H. Tattoo or taboo? Tattoo stigma and negative attitudes toward tattooed individuals. J. Soc. Psychol. 2018, 158, 521–540. [Google Scholar] [CrossRef]
- Braverman, S. One in Five US Adults Now Has a Tattoo; Harris Poll: New York, NY, USA; Chicago, IL, USA, 2012; pp. 1–6. [Google Scholar]
- Schaeffer, K.; Dinesh, S. 32% of Americans have a tattoo, including 22% who have more than one. Pew Research Center, 15 August 2023. [Google Scholar]
- Bunn, J.; Navalta, W.J.; Fountaine, J.C.; Reece, J. Current State of Commercial Wearable Technology in Physical Activity Monitoring 2015–2017. Int. J. Exerc. Sci. 2018, 11, 503–515. [Google Scholar] [CrossRef]
- Thompson, R.W. Worldwide Survey of Fitness Trends for 2017. ACSM’S Health Fit. J. 2016, 20, 8–17. [Google Scholar] [CrossRef]
- Newsome, M.A.N.; Batrakoulis, A.; Camhi, M.S.; Mcavoy, C.; Sansone, S.J.; Reed, R. 2025 ACSM Worldwide Fitness Trends: Future Directions of the Health and Fitness Industry. ACSM’S Health Fit. J. 2024, 28, 11–25. [Google Scholar] [CrossRef]
- Navalta, W.J.; Davis, W.D.; Carrier, B.; Malek, M.E.; Vargas, N.; Rodriguez, P.J.; Weyers, B.; Carlos, K.; Peck, M. Validity and Reliability of Wearable Devices during Self-Paced Walking, Jogging and Overground Skipping. Sport Mont 2023, 21, 23–29. [Google Scholar] [CrossRef]
- Navalta, W.J.; Montes, J.; Bodell, G.N.; Salatto, W.R.; Manning, W.J.; Debeliso, M. Concurrent heart rate validity of wearable technology devices during trail running. PLoS ONE 2020, 15, e0238569. [Google Scholar] [CrossRef]
- Estepp, R.J.; Blackford, B.E.; Meier, M.C. Recovering pulse rate during motion artifact with a multi-imager array for non-contact imaging photoplethysmography. In Proceedings of the 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC) 2014, San Diego, CA, USA, 5–8 October 2014. [Google Scholar] [CrossRef]
- Trivedi, S.N.; Ghouri, F.A.; Shah, K.N.; Lai, E.; Barker, J.S. Effects of motion, ambient light, and hypoperfusion on pulse oximeter function. J. Clin. Anesth. 1997, 9, 179–183. [Google Scholar] [CrossRef]
- Nelson, W.B.; Low, A.C.; Jacobson, N.; Areán, P.; Torous, J.; Allen, B.N. Guidelines for wrist-worn consumer wearable assessment of heart rate in biobehavioral research. npj Digit. Med. 2020, 3, 90. [Google Scholar] [CrossRef]
- Koerber, D.; Khan, S.; Shamsheri, T.; Kirubarajan, A.; Mehta, S. Accuracy of Heart Rate Measurement with Wrist-Worn Wearable Devices in Various Skin Tones: A Systematic Review. J. Racial Ethn. Health Dispar. 2023, 10, 2676–2684. [Google Scholar] [CrossRef]
- Weiler, D.T.; Villajuan, S.O.; Edkins, L.; Cleary, S.; Saleem, J.J. Wearable heart rate monitor technology accuracy in research: A comparative study between PPG and ECG technology. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2017, 61, 1292–1296. [Google Scholar] [CrossRef]
- Teixeira, E.; Fonseca, H.; Diniz-Sousa, F.; Veras, L.; Boppre, G.; Oliveira, J.; Pinto, D.; Alves, J.A.; Barbosa, A.; Mendes, R.; et al. Wearable Devices for Physical Activity and Healthcare Monitoring in Elderly People: A Critical Review. Geriatrics 2021, 6, 38. [Google Scholar] [CrossRef]
- Scardulla, F.; Cosoli, G.; Spinsante, S.; Poli, A.; Iadarola, G.; Pernice, R.; Busacca, A.; Pasta, S.; Scalise, L.; D’Acquisto, L. Photoplethysmograhic sensors, potential and limitations: Is it time for regulation? A comprehensive review. Measurement 2023, 218, 113150. [Google Scholar] [CrossRef]
- Icenhower, A.; Murphy, C.; Brooks, K.A.; Irby, M.; N’Dah, K.; Robison, J.; Fanning, J. Investigating the accuracy of Garmin PPG sensors on differing skin types based on the Fitzpatrick scale: Cross-sectional comparison study. Front. Digit. Health 2025, 7, 1553565. [Google Scholar] [CrossRef] [PubMed]
- Sameer, K. Health Electronic Assessment of Risks and Trends Using Biometric Equipment and Technology. Available online: https://tulane.trialstoday.org/trial/NCT06753045 (accessed on 23 April 2025).
- Lohner, V.; Enkirch, J.S.; Hattingen, E.; Stöcker, T.; Breteler, B.M.M. Safety of Tattoos, Permanent Make-Up, and Medical Implants in Population-Based 3T Magnetic Resonance Brain Imaging: The Rhineland Study. Front. Neurol. 2022, 13, 795573. [Google Scholar] [CrossRef] [PubMed]
- Essa, A.R.; Ahmed, K.S. Prevalence of inter-arm blood pressure difference among young healthy adults: Results from a large cross-sectional study on 3235 participants. Ann. Med. Surg. 2022, 77, 103631. [Google Scholar] [CrossRef]
- Riebe, D.; Franklin, A.B.; Thompson, D.P.; Garber, E.C.; Whitfield, P.G.; Magal, M.; Pescatello, S.L. Updating ACSM’s Recommendations for Exercise Preparticipation Health Screening. Med. Sci. Sports Exerc. 2015, 47, 2473–2479. [Google Scholar] [CrossRef]
- Navalta, W.J.; Davis, W.D.; Malek, M.E.; Carrier, B.; Bodell, G.N.; Manning, W.J.; Cowley, J.; Funk, M.; Lawrence, M.M.; Debeliso, M. Heart rate processing algorithms and exercise duration on reliability and validity decisions in biceps-worn Polar Verity Sense and OH1 wearables. Sci. Rep. 2023, 13, 11736. [Google Scholar] [CrossRef]
- Schaffarczyk, M.; Rogers, B.; Reer, R.; Gronwald, T. Validity of the Polar H10 Sensor for Heart Rate Variability Analysis during Resting State and Incremental Exercise in Recreational Men and Women. Sensors 2022, 22, 6536. [Google Scholar] [CrossRef]
- Montes, J.; Navalta, W.J. Reliability of the Polar T31 Uncoded Heart Rate Monitor in Free Motion and Treadmill Activities. Int. J. Exerc. Sci. 2019, 12, 69–76. [Google Scholar] [CrossRef]
- Navalta, J.; Carrier, B.; Blank, M.; Zarei, S.; Davis, D.; Craig, M.; Perez, O.; Baca, J.; Sweder, T.; Carballo, T.; et al. Validity and Reliability of Wearable Technology Devices during Simulated Pickleball Game Play. Sports 2024, 12, 234. [Google Scholar] [CrossRef] [PubMed]
- Mercer, A.M.; Stone, M.T.; Young, C.J.; Mercer, A.J. Running Economy While Running in Shoes Categorized as Maximal Cushioning. Int. J. Exerc. Sci. 2018, 11, 1031–1040. [Google Scholar] [CrossRef]
- Sommers, S.M.; Fargo, D.J.; Regueira, Y.; Brown, M.K.; Beacham, L.B.; Perfetti, R.A.; Everett, S.J.; Margolis, J.D. Are the Fitzpatrick Skin Phototypes Valid for Cancer Risk Assessment in a Racially and Ethnically Diverse Sample of Women? Ethn. Dis. 2019, 29, 505–512. [Google Scholar] [CrossRef]
- Wilkes, M.; Wright, Y.C.; Plessis, D.L.J.; Reeder, A. Fitzpatrick Skin Type, Individual Typology Angle, and Melanin Index in an African Population. JAMA Dermatol. 2015, 151, 902. [Google Scholar] [CrossRef]
- Monk, E. The Monk Skin Tone Scale. 2023. Available online: https://skintone.google (accessed on 15 December 2024).
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J. Image processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Navalta, W.J.; Ramirez, G.G.; Maxwell, C.; Radzak, N.K.; Mcginnis, R.G. Validity and Reliability of Three Commercially Available Smart Sports Bras during Treadmill Walking and Running. Sci. Rep. 2020, 10, 7397. [Google Scholar] [CrossRef] [PubMed]
- Bickler, E.P.; Feiner, R.J.; Severinghaus, W.J. Effects of Skin Pigmentation on Pulse Oximeter Accuracy at Low Saturation. Anesthesiology 2005, 102, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Feiner, R.J.; Severinghaus, W.J.; Bickler, E.P. Dark Skin Decreases the Accuracy of Pulse Oximeters at Low Oxygen Saturation: The Effects of Oximeter Probe Type and Gender. Anesth. Analg. 2007, 105, S18–S23. [Google Scholar] [CrossRef]
- Sjoding, W.M.; Dickson, P.R.; Iwashyna, J.T.; Gay, E.S.; Valley, S.T. Racial Bias in Pulse Oximetry Measurement. N. Engl. J. Med. 2020, 383, 2477–2478. [Google Scholar] [CrossRef]
- Adams, T.A.; Mandel, I.; Gao, Y.; Heckman, W.B.; Nandakumar, R.; Choudhury, T. Equity-Driven Sensing System for Measuring Skin Tone–Calibrated Peripheral Blood Oxygen Saturation (OptoBeat): Development, Design, and Evaluation Study. JMIR Biomed. Eng. 2022, 7, e34934. [Google Scholar] [CrossRef]
- Colvonen, J.P.; Deyoung, N.P.; Bosompra, A.N.-O.; Owens, L.R. Limiting racial disparities and bias for wearable devices in health science research. Sleep 2020, 43, zsaa159. [Google Scholar] [CrossRef]
- Bent, B.; Goldstein, A.B.; Kibbe, A.W.; Dunn, P.J. Investigating sources of inaccuracy in wearable optical heart rate sensors. npj Digit. Med. 2020, 3, 18. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Barker, R.A.; Li, M.; Gu, Y.; Williams, A.C. Validation of polar verity sense for heart rate monitoring during school-based high-intensity interval training in adolescents. J. Sports Sci. 2025, 43, 1076–1084. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Stovall, H.J.; Stone, D.J.; Stephenson, M.; Finomore, S.V.; Hagen, A.J. Validation of Garmin and Polar Devices for Continuous Heart Rate Monitoring During Common Training Movements in Tactical Populations. Meas. Phys. Educ. Exerc. Sci. 2023, 27, 234–247. [Google Scholar] [CrossRef]
- Neudorfer, M.; Kumar, D.; Smeddinck, D.J.; Kulnik, T.S.; Niebauer, J.; Treff, G.; Sareban, M. Validity of Four Consumer-Grade Optical Heart Rate Sensors for Assessing Volume and Intensity Distribution of Physical Activity. Scand. J. Med. Sci. Sports 2024, 34, e14756. [Google Scholar] [CrossRef] [PubMed]
- Muggeridge, J.D.; Hickson, K.; Davies, V.A.; Giggins, M.O.; Megson, L.I.; Gorely, T.; Crabtree, R.D. Measurement of Heart Rate Using the Polar OH1 and Fitbit Charge 3 Wearable Devices in Healthy Adults During Light, Moderate, Vigorous, and Sprint-Based Exercise: Validation Study. JMIR mHealth uHealth 2021, 9, e25313. [Google Scholar] [CrossRef] [PubMed]
- Montalvo, S.; Martinez, A.; Arias, S.; Lozano, A.; Gonzalez, P.M.; Dietze-Hermosa, S.M.; Boyea, L.B.; Dorgo, S. Commercial Smart Watches and Heart Rate Monitors: A Concurrent Validity Analysis. J. Strength Cond. Res. 2023, 37, 1802–1808. [Google Scholar] [CrossRef]
- Støve, P.M.; Haucke, E.; Nymann, L.M.; Sigurdsson, T.; Larsen, T.B. Accuracy of the wearable activity tracker Garmin Forerunner 235 for the assessment of heart rate during rest and activity. J. Sports Sci. 2019, 37, 895–901. [Google Scholar] [CrossRef]
- Hung, H.S.; Serwa, K.; Rosenthal, G.; Eng, J.J. Validity of heart rate measurements in wrist-based monitors across skin tones during exercise. PLoS ONE 2025, 20, e0318724. [Google Scholar] [CrossRef]
- Mühlen, M.J.; Stang, J.; Skovgaard, L.E.; Judice, B.P.; Molina-Garcia, P.; Johnston, W.; Sardinha, B.L.; Ortega, B.F.; Caulfield, B.; Bloch, W.; et al. Recommendations for determining the validity of consumer wearable heart rate devices: Expert statement and checklist of the INTERLIVE Network. Br. J. Sports Med. 2021, 55, 767–779. [Google Scholar] [CrossRef] [PubMed]





| Condition | Data Points | Average (SD) | MAPE (%) | CCC | r | R2 | Bias (95% CI) | Limits of Agreement |
|---|---|---|---|---|---|---|---|---|
| Polar H10 Rest | 7591 | 87.3 ± 15.5 | ||||||
| Tattoo Rest | 7591 | 70.6 ± 37.2 | 22.9 | 0.25 | 0.42 | 0.18 | 16.7 (15.9 to 17.5) | −49.4 to 82.8 |
| Non-Tattoo Rest | 7291 | 87.4 ± 15.8 | 2.9 | 0.96 | 0.96 | 0.92 | 0.02 (0.08 to 0.3) | −8.7 to 9.1 |
| Polar H10 Walk | 7557 | 104.5 ± 15.5 | ||||||
| Tattoo Walk | 7557 | 106.1 ± 14.7 | 7.5 | 0.68 | 0.68 | 0.47 | −1.68 (−2.0 to −1.4) | −25.4 to 22.0 |
| Non-Tattoo Walk | 7557 | 105.1 ± 15.6 | 2.7 | 0.97 | 0.97 | 0.93 | −0.6 (−0.7 to −0.5) | −8.6 to 7.4 |
| Polar H10 Run | 7536 | 140.5 ± 22.7 | ||||||
| Tattoo Run | 7536 | 134.1 ± 23.2 | 5.1 | 0.83 | 0.87 | 0.74 | 6.3 (6.0 to 6.6) | −17.4 to 30.0 |
| Non-Tattoo Run | 7536 | 138.9 ± 22.8 | 2.0 | 0.98 | 0.98 | 0.97 | 1.6 (1.5 to 1.7) | −6.6 to 9.8 |
| B | Std. Error | t | Sig | |
|---|---|---|---|---|
| Constant | −44.514 | 58.073 | −0.767 | 0.453 |
| Monk Skin Tone | 11.713 | 5.494 | 2.132 | 0.046 |
| Age of tattoo | 0.926 | 0.914 | 1.013 | 0.324 |
| Tattoo Intensity | 0.033 | 0.481 | 0.069 | 0.946 |
| Tattoo Min (intensity) | −0.079 | 0.414 | −0.191 | 0.851 |
| Tattoo Max (intensity) | 0.013 | 0.276 | 0.048 | 0.962 |
| B | Std. Error | t | Sig | |
|---|---|---|---|---|
| Constant | −22.729 | 16.190 | −1.404 | 0.176 |
| Monk Skin Tone | 3.281 | 1.532 | 2.142 | 0.045 |
| Age of tattoo | −0.340 | 0.255 | −1.336 | 0.197 |
| Tattoo Intensity | 0.150 | 0.134 | 1.115 | 0.279 |
| Tattoo Min (intensity) | 0.043 | 0.115 | 0.375 | 0.712 |
| Tattoo Max (intensity) | −0.002 | 0.077 | −0.024 | 0.981 |
| B | Std. Error | t | Sig | |
|---|---|---|---|---|
| Constant | 0.321 | 13.123 | 0.024 | 0.981 |
| Mink Skin Tone | −0.112 | 1.241 | −0.090 | 0.929 |
| Age of Tattoo | 0.063 | 0.207 | 0.303 | 0.765 |
| Tattoo Intensity | 0.043 | 0.109 | 0.399 | 0.694 |
| Tattoo Min (intensity) | 0.057 | 0.093 | 0.613 | 0.547 |
| Tattoo Max (intensity) | −0.009 | 0.062 | −0.140 | 0.890 |
| Tattoo Style | N | Ink Color(s) | Monk Skin Tone | Tattoo Age (yrs) | Mean Intensity | Minimum Intensity | Maximum Intensity |
|---|---|---|---|---|---|---|---|
| Fine line | 5 | Black | 4.2 (0.5) | 3.3 (3.0) | 105.2 (23.1) | 35.8 (27.0) | 194.6 (49.4) |
| Illustrative, Realism | 3, 4 | Black | 5.0 (1.6) | 6.9 (4.2) | 97.7 (10.0) | 47.0 (11.6) | 208.7 (21.1) |
| Japanese, Neo Traditional, Traditional | 1, 2, 5 | Black, blue, brown, green, purple, red | 4.8 (1.5) | 14.7 (11.6) | 109.0 (14.5) | 33.6 (15.4) | 226.5 (18.8) |
| Tribal | 5 | Black | 5.4 (0.5) | 2.0 (1.7) | 106.1 (20.2) | 33.8 (7.6) | 205.8 (23.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navalta, J.W.; Perez, O.R.; Mejia, R.; Bunn, J.A. The Effect of Tattoos on Heart Rate Validity in the Polar Verity Sense Commercial Wearable Device. Sensors 2025, 25, 6896. https://doi.org/10.3390/s25226896
Navalta JW, Perez OR, Mejia R, Bunn JA. The Effect of Tattoos on Heart Rate Validity in the Polar Verity Sense Commercial Wearable Device. Sensors. 2025; 25(22):6896. https://doi.org/10.3390/s25226896
Chicago/Turabian StyleNavalta, James W., Olivia R. Perez, Rodolfo Mejia, and Jennifer A. Bunn. 2025. "The Effect of Tattoos on Heart Rate Validity in the Polar Verity Sense Commercial Wearable Device" Sensors 25, no. 22: 6896. https://doi.org/10.3390/s25226896
APA StyleNavalta, J. W., Perez, O. R., Mejia, R., & Bunn, J. A. (2025). The Effect of Tattoos on Heart Rate Validity in the Polar Verity Sense Commercial Wearable Device. Sensors, 25(22), 6896. https://doi.org/10.3390/s25226896

