Abstract
This study examines the characteristics of stretch film used to secure palletized cargo, with the aim of rationalizing its use. Growing consumption of packaging materials requires scientifically substantiated film selection that accounts for the forces ensuring cargo stability during transportation. This study used a patented mobile device to measure the static and dynamic forces generated by different types of stretch film. Experimental data revealed a linear relationship between the number of turns, the degree of pre-stretching, and the stabilizing forces, enabling optimization of wrapping parameters and a reduction in material costs. The results contribute to improved transportation safety, reduced energy consumption and carbon footprint, and lower polymer waste. This study is relevant because it develops tools for objectively assessing the effectiveness of packaging materials and for the rational selection of stretch film, thereby supporting sustainable logistics and transportation systems.