Characterization of Breast Microcalcifications Using Dual-Energy CBCT: Impact of Detector Configuration on Imaging Performance—A Simulation Study
Highlights
- CZT and GAGG crystals exhibited higher CNR values than CsI.
- HAp’s CNR values were high, as expected.
- CZT and GAGG crystals could provide an excellent alternative to CsI.
- HAp’s CNR values enable it to be distinguished from other types of microcalcifications.
Abstract
1. Introduction
| Material | Effective Z (Zeff) | Density (g/cm3) | Light Yield (Photons/MeV) | Typical Energy Resolution @ 662 keV (FWHM) |
|---|---|---|---|---|
| CsI (Tl or Na, or undoped) | ~54 (for CsI) | ~4.51 (CsI) | ~ 54,000 ph/MeV (for CsI:Tl under ideal coupling) (varies) | ~6–8% (in good coupling) |
| BGO (Bi4Ge3O12) | ~75 (weighted by Bi, Ge, and O) | 7.13 | ~ 8000–10,000 (relatively low) | ~10–12% (or worse) |
| LSO (Lu2SiO5:Ce) | ~65 | ~7.4 | ~ 25,000–32,000 | ~9–10% |
| LYSO (Lu2(1–x)Y2xSiO5:Ce) | ~63–65 (depending on Y fraction) | ~7.1 | ~ 25,000–32,000 (similar to LSO) | ~8–10% |
| LaBr3:Ce | ~ 47 (La + Br) | 5.08 | ~ 63,000 ph/MeV (or ~ 63 ph/keV) | ~2.6% |
| GAGG:Ce (Gd3Al2Ga3O12:Ce) | ~ 54.4 (often quoted) | ~6.63 g/cm3 | ~ 46,000 ph/MeV | ~4.9% |
| CZT (CdZnTe; semiconductor detector) | Not a scintillator, but has a high effective Z (Cd, Zn, and Te) | 5.76 g/cm3 | Not scintillation | ~ 0.5–2% |
2. Materials and Methods
2.1. Micro-CT System Simulation
2.2. Evaluation Phantoms
2.2.1. Type I: Ca2CO4 and CaCO3 Microcalcifications
2.2.2. Type II: Hydroxyapatite (HAp) Microcalcifications
2.3. Dual-Energy X-Ray Imaging Methodology
2.4. Image Reconstruction
2.5. Image Quality
2.6. Image Segmentation Algorithm
2.7. Clustering
3. Results
3.1. Mammography Planar Acquisitions
3.1.1. Type I
3.1.2. Types I and II
3.2. Tomographic Data
3.3. Data Segmentation and Clustering
3.4. Polyenergetic Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CBCT | Cone-beam computed tomography |
| CNR | Contrast-to-noise ratio |
| SNR | Signal-to-noise ratio |
| FBP | Filtered backprojection algorithm |
| OSEM | Ordered subsets expectation maximization algorithm |
| TDLU | Terminal ductal lobular units |
| BI-RADS | Breast Imaging Reporting and Database System |
| DQE | Detective quantum efficiency |
| DECT | Dual-energy computed tomography |
| PCD | Photon-counting detector |
| CT | Computed tomography |
| NIST | National Institute of Standards and Technology |
| GATE | GEANT4 application for tomographic emission |
| GEANT4 | Geometry and tracking 4 |
| LOR | Line of response |
| EMML | Expectation maximization maximum likelihood |
| DBSCAN | Density-based spatial clustering of applications with noise |
| OPTICS | Ordering points to identify the clustering structure |
| DEI | Dual-energy index |
References
- European Commission. Breast Cancer in the EU; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Yurdusev, A.A.; Adem, K.; Hekim, M. Detection and classifications in mammograms images using difference filter and Yolov4 deep learning model. Biomed. Signal Process. Control 2023, 80, 104360. [Google Scholar] [CrossRef]
- Birk, U.; Diekmann, F. Digital Mammography; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Eisenbrey, J.R.; Dave, J.K.; Forsberg, F. Recent technological advancements in breast ultrasound. Ultrasonics 2016, 70, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.A.; Lo, J.Y. Breast tomosynthesis. Acad. Radiol. 2011, 18, 1298–1310. [Google Scholar] [CrossRef]
- Gilbert, F.J.; Pinker-Domenig, K. Diagnosis and Staging of Breast Cancer: When and How to Use Mammography, Tomosynthesis, Ultrasound, Contrast-Enhanced Mammography, and Magnetic Resonance Imaging. In Diseases of the Chest, Breast, Heart and Vessels 2019–2022: Diagnostic and Interventional Imaging; Hodler, J., Kubik-Huch, R.A., von Schulthess, G.K., Eds.; Springer: Cham, Switzerland, 2019; pp. 113–121. [Google Scholar]
- O’Grady, S.; Morgan, M. Microcalcifications in breast cancer: From pathophysiology to diagnosis and prognosis. Biochim. Biophys. Acta Rev. Cancer 2018, 1869, 310–320. [Google Scholar] [CrossRef]
- Logullo, A.F.; Prigenzi, K.C.K.; Nimir, C.C.B.A.; Franco, A.F.V.; Campos, M.S.D.A. Breast microcalcifications: Past, present and future (Review). Mol. Clin. Oncol. 2022, 16, 81. [Google Scholar] [CrossRef]
- Wilkinson, L.; Thomas, V.; Sharma, N. Microcalcification on mammography: Approaches to interpretation and biopsy. Br. J. Radiol. 2017, 90, 20160594. [Google Scholar] [CrossRef]
- Bistoni, G.; Farhadi, J. Anatomy and physiology of the breast. In Plastic and Reconstructive Surgery. Approaches and Techniques, 1st ed.; Farhadieh, R.D., Bulstrode, N.W., Cugno, S., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2015; Chapter 37. [Google Scholar]
- Martini, N.; Koukou, V.; Fountos, G.; Michail, C.; Bakas, A.; Kandarakis, I.; Speller, R.; Nikiforidis, G. Characterization of breast calcification types using dual energy X-ray method. Phys. Med. Biol. 2017, 62, 7741–7764. [Google Scholar] [CrossRef]
- Martini, N.; Koukou, V.; Michail, C.; Fountos, G. Mineral Characterization in Human Body: A Dual Energy Approach. Crystals 2021, 11, 345. [Google Scholar] [CrossRef]
- Arancibia Hernández, P.L.; Taub Estrada, T.; López Pizarro, A.; Díaz Cisternas, M.L.; Sáez Tapia, C. Calcificaciones mamarias: Descripción y clasificación según la 5.a edición BI-RADS. Rev. Chil. Radiol. 2016, 22, 80–91. [Google Scholar] [CrossRef]
- O’Connell, A.M.; Marini, T.J.; Kawakyu-O’Connor, D.T. Cone-Beam Breast Computed Tomography: Time for a New Paradigm in Breast Imaging. J. Clin. Med. 2021, 10, 5135. [Google Scholar] [CrossRef]
- Dagnall, K.A.; Conley, A.M.; Yoon, L.U.; Rajeev, H.S.; Lee, S.-H.; Choi, J.J. Ytterbium-doped cesium lead chloride perovskite as an X-ray scintillator with high light yield. ACS Omega 2022, 7, 20968–20974. [Google Scholar] [CrossRef]
- Mikhailik, V.B.; Kapustyanyk, V.; Tsybulskyi, V.; Rudyk, V.; Kraus, H. Luminescence and scintillation properties of CsI: A potential cryogenic scintillator. Phys. Status Solidi B 2015, 252, 804–810. [Google Scholar] [CrossRef]
- Zaidi, H. (Ed.) Molecular Imaging of Small Animals: Instrumentation and Applications; Springer: New York, NY, USA, 2014. [Google Scholar]
- García-Jiménez, G.; Cabanelas, P.; González-Caamaño, D.; Alvarez-Pol, H.; Vicente-Pardal, M.A.; Benlliure, J.; Cederkäll, J.; Cortina-Gil, D.; Feijoo-Fontán, M.; Graña-González, A.; et al. Study of scintillation properties and performance of CsI(Tl) detectors over time. Nucl. Instrum. Methods Phys. Res. A 2024, 1059, 169003. [Google Scholar] [CrossRef]
- Tian, C.; Liu, S.; Xie, Y.; Guo, L.; Chen, D.; Liu, Y.; Zhong, Z. Study on the mechanism of afterglow in CsI:Tl and the afterglow suppression in CsI: Tl, Eu. J. Radioanal. Nucl. Chem. 2019, 320, 123–128. [Google Scholar] [CrossRef]
- Michail, C.; Liaparinos, P.; Kalyvas, N.; Kandarakis, I.; Fountos, G.; Valais, I. Phosphors and scintillators in biomedical imaging. Crystals 2024, 14, 169. [Google Scholar] [CrossRef]
- Danielsson, M.; Persson, M.; Sjölin, M. Photon-counting X-ray detectors for CT. Phys. Med. Biol. 2021, 66, 03TR01. [Google Scholar] [CrossRef]
- Noel, A.; Thibault, F. Digital detectors for mammography: The technical challenges. Eur. Radiol. 2004, 14, 1990–1998. [Google Scholar] [CrossRef]
- Shi, L.; Bennett, N.R.; Shapiro, E.; Colbeth, R.E.; Star-Lack, J.; Lu, M.; Wang, A.S. Comparative study of dual energy cone-beam CT using a dual-layer detector and kVp switching for material decomposition. In Medical Imaging 2020: Physics of Medical Imaging; Proc. SPIE 2020; SPIE: Bellingham, WA, USA, 2020; Volume 11312, pp. 481–486. [Google Scholar]
- Johnson, T.R.C. Dual-Energy CT: General Principles. AJR 2012, 199, S3–S8. [Google Scholar] [CrossRef]
- Goo, H.W.; Goo, J.M. Dual-energy CT: New Horizon in Medical Imaging. Korean J. Radiol. 2017, 18, 555–569. [Google Scholar] [CrossRef]
- Solomon, J.; Mileto, A.; Ramirez-Giraldo, J.C.; Samei, E. Diagnostic performance of an advanced modeled iterative reconstruction algorithm for low-contrast detectability with a third-generation dual-source multidetector CT scanner: Potential for radiation dose reduction in a multireader study. Radiology 2017, 275, 735–745. [Google Scholar] [CrossRef]
- Ay, M.R.; Zadeh, M.A.; Ghadiri, H.; Zaidi, H. Comparative assessment of image quality in TrueFidelity deep-learning image reconstruction and adaptive statistical iterative reconstruction-V in abdominal CT imaging. Eur. Radiol. Exp. 2022, 6, 11. [Google Scholar]
- Ghammraoui, B.; Badal, A. Evaluation of potential benefit of spectroscopic breast CT using a photon counting detector for imaging of Iodine and Calcium contrast agents. Phys. Med. Biol. 2017, 62, 3949–3967. [Google Scholar]
- Andersson, I.; Ikeda, D.M.; Zackrisson, S. Breast tomosynthesis: State-of-the-art and review of the literature. Breast Cancer Res. Treat. 2008, 108, 19–34. [Google Scholar]
- Tagliafico, A.; Astengo, D.; Mariscotti, G.; Durando, M.; Rousset, M.; Rubini, G.; Calabrese, M.; Valdora, F.; Houssami, N. Mammographic density: Comparison of visual assessment with fully automated estimation. Radiol. Med. 2015, 120, 789–794. [Google Scholar]
- Brodersen, J.; Siersma, V.D. Long-term psychosocial consequences of false-positive screening mammography. Ann. Fam. Med. 2013, 11, 106–115. [Google Scholar] [CrossRef]
- Martini, N.; Fountos, G.; Michail, C.; Bakas, A.; Nikiforidis, G.; Speller, R. Experimental investigation and Monte Carlo simulation of a dual energy mammographic system for calcification characterization. Nucl. Instrum. Methods Phys. Res. A 2015, 784, 421–427. [Google Scholar]
- Fountos, G.; Michail, C.; Kalyvas, N.; Koukou, V.; Bakas, A.; Nikiforidis, G. Evaluation of breast material decomposition using synthetic dual energy images. Biocybern. Biomed. Eng. 2018, 38, 400–409. [Google Scholar]
- Ghammraoui, B.; Badal, A.; Kanarek, D.; Myers, K. Dual-energy imaging for improved detection and classification of microcalcifications in digital breast tomosynthesis. Med. Phys. 2018, 45, 1133–1144. [Google Scholar]
- Vázquez, A.; Arce, P.; Rato, J.M.; Díez, S.; Fernández, M.; Zanca, F.; Sánchez-González, J. Simulation study of dual-energy contrast-enhanced breast CT for calcification discrimination. Med. Phys. 2020, 47, 4574–4586. [Google Scholar]
- Martinez, N.; Koukou, V.; Bakas, A.; Fountos, G.; Speller, R.; Nikiforidis, G. A novel dual-energy mammographic algorithm to decompose and classify microcalcifications based on their effective atomic number. Phys. Med. 2020, 70, 122–131. [Google Scholar]
- Sechopoulos, I. A review of breast tomosynthesis. Part I. The image acquisition process. Med. Phys. 2013, 40, 014301. [Google Scholar] [CrossRef]
- Pepin, C.M.; Berard, P.; Perrot, A.-L.; Pepin, C.; Houde, D.; Lecomte, R.; Melcher, C.L.; Dautet, H. Properties of LYSO and Recent LSO Scintillators for Phoswich PET Detectors. IEEE Trans. Nucl. Sci. 2004, 51, 789–795. [Google Scholar] [CrossRef]
- Van der Sar, S.; Brunner, S.; Schaart, D. X-ray Photon-Counting Using Silicon Photomultiplier-Based Scintillation Detectors at High X-ray Tube Currents. In Proceedings of the SPIE 12031, Medical Imaging 2022: Physics of Medical Imaging, San Diego, CA, USA, 4 April 2022; Volume 12031, p. 120310. [Google Scholar]
- Berg, E.; Cherry, S.R. Innovations in Instrumentations for positron emission tomography. Semin Nucl. Med. 2018, 48, 311–331. [Google Scholar] [CrossRef]
- Zhu, Y.; Qian, S.; Wang, Z.; Guo, H.; Ma, L.; Wang, Z.; Wu, Q. Scintillation properties of GAGG: Ce ceramic and single crystal. Opt. Mater. 2020, 105, 109964. [Google Scholar]
- Dey Chaudhuri, S.; Banerjee, D.; Bhattacharjee, T.; Wasim Raja, S.; Acharya, R.; Pujari, P.K. Performance Study of LaBr3:Ce Detectors Coupled to R2083 PM Tube for Energy and Timing Characteristics. J. Radioanal. Nucl. Chem. 2020, 324, 829–835. [Google Scholar] [CrossRef]
- Tseremoglou, S.; Michail, C.; Valais, I.; Ninos, K.; Bakas, A.; Kandarakis, I.; Fountos, G.; Kalyvas, N. Optical Photon Propagation Characteristics and Thickness Optimization of LaCl3:Ce and LaBr3:Ce Crystal Scintillators for Nuclear Medicine Imaging. Crystals 2024, 14, 24. [Google Scholar] [CrossRef]
- Opanasyuk, A.; Kurbatov, D.; Znamenshchykov, Y.; Diachenko, O.; Ivashchenko, M. CdTe-/CdZnTe-Based Radiation Detectors. In Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors; Korotcenkov, G., Ed.; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Herman, G.T. Image Reconstruction from Projections: The Fundamentals of Computed Tomography; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Yanagida, T. Inorganic scintillating materials and scintillation detectors. Proc. Jpn. Acad. Ser. B 2018, 94, 75–97. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, X.; Zhang, Y.; Ying, G.; Huang, Q.; Xu, J.; Peng, Q. Evaluation of Various Scintillator Materials in Radiation Detector Design for Positron Emission Tomography (PET). Crystals 2020, 10, 869. [Google Scholar] [CrossRef]
- OpenGATE Collaboration. GATE Documentation—GAM Documentation. Available online: https://opengate.readthedocs.io/_/downloads/en/v9.0/pdf/ (accessed on 7 June 2025).
- Fountos, G.; Michail, C.; Koukou, V.; Bakas, A.; Nikiforidis, G. A simulation study for dual-energy mammographic imaging. Radiat. Phys. Chem. 2018, 147, 102–109. [Google Scholar]
- Koukou, V.; Martini, N.; Michail, C.; Sotiropoulou, P.; Kalyvas, N.; Kandarakis, I.; Nikiforidis, G.; Fountos, G. Optimum filter selection for Dual Energy X-ray Applications through Analytical Modeling. J. Phys. Conf. Ser. 2015, 633, 012093. [Google Scholar] [CrossRef]
- Bliznakova, K.; Kolitsi, Z.; Pallikarakis, N. Dual-energy mammography: Simulation studies. Phys. Med. Biol. 2006, 51, 4497–4515. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology (NIST) XCOM: Element/Compound/Mixture. Available online: https://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html (accessed on 27 February 2025).
- Lemacks, M.R.; Kappadath, S.C.; Shaw, C.C.; Liu, X.; Whitman, G.J. A dual-energy subtraction technique for microcalcification imaging in digital mammography—A signal-to-noise analysis. Med. Phys. 2002, 29, 1739–1751. [Google Scholar] [CrossRef]
- Feldkamp, L.A.; Davis, L.C.; Kress, J.W. Practical Cone-Beam Algorithm. J. Opt. Soc. Am. A 1984, 1, 612–619. [Google Scholar] [CrossRef]
- Pan, X.; Xia, D.; Zou, Y.; Yu, L. A unified analysis of FBP-based algorithms in helical cone-beam and circular cone- and fan-beam scans. Phys. Med. Biol. 2004, 49, 4349–4369. [Google Scholar] [CrossRef]
- Hudson, H.M.; Larkin, R.S. Accelerated Image Reconstruction Using Ordered Subsets of Projection Data. IEEE Trans. Med. Imaging 1994, 13, 601–609. [Google Scholar] [CrossRef]
- Trevisan, A.C.; Raed, M.D.; Tumas, V.; Alexandre-Santos, L.; Pitella, F.A.; Itikawa, E.N.; Silvah, J.H.; Kato, M.; Martinez, E.Z.; Achcar, J.A.; et al. Comparison between OSEM and FBP reconstruction algorithms for the qualitative and quantitative interpretation of brain DAT-SPECT using an anthropomorphic striatal phantom: Implications for the practice. Res. Biomed. Eng. 2020, 36, 77–88. [Google Scholar] [CrossRef]
- Cherry, S.R.; Sorenson, J.A.; Phelps, M.E. Physics in Nuclear Medicine, 4th ed.; Elsevier/Saunders: Philadelphia, PA, USA, 2012. [Google Scholar]
- Karali, E.; Michail, C.; Fountos, G.; Kalyvas, N.; Valais, I. Novel Detector Configurations in Cone-Beam CT Systems: A Simulation Study. Crystals 2024, 14, 416. [Google Scholar] [CrossRef]
- Moulden, B.; Kingdom, F.; Gatley, L.F. The standard deviation of luminance as a metric for contrast in random-dot images. Perception 1990, 19, 79–101. [Google Scholar] [CrossRef]
- Gavrielides, M.A.; Lo, J.Y.; Vargas-Voracek, R.; Floyd, C.E. Segmentation of suspicious clustered microcalcifications in mammograms. Med. Phys. 2000, 27, 13–22. [Google Scholar] [CrossRef]
- Zhang, X.; Homma, N.; Goto, S.; Kawasumi, Y.; Ishibashi, T.; Abe, M.; Sugita, N.; Yoshizawa, M. A hybrid image filtering method for computer-aided detection of microcalcification clusters in mammograms. J. Med. Eng. 2013, 2013, 615254. [Google Scholar] [CrossRef]
- Kim, H.; Lee, M.; Kim, D.; Lee, D.; Kim, H.-J. Evaluation of photon-counting spectral mammography for classification of breast microcalcifications. Radiat. Phys. Chem. 2019, 162, 39–47. [Google Scholar] [CrossRef]
- Ciecholewski, M.; Kasprzak, A.; Pociask, P. A Novel Method for Detecting Clusters of Microcalcifications in Digital Mammograms Based on Multi-Stage Feature Enhancement. Algorithms 2019, 12, 135. [Google Scholar] [CrossRef]
- Dada, E.G.; Oyewola, D.O.; Misra, S. Computer-aided diagnosis of breast cancer from mammogram images using deep learning algorithms. J. Electr. Syst. Inf. Technol. 2024, 11, 38. [Google Scholar] [CrossRef]
- Gong, Y.; Giger, M.L.; Zeng, R.; Jiang, Y. Computerized Detection of Microcalcification Clusters for Digital Mammography: Image Enhancement Technique Using Contrast-to-Noise Ratio. Med. Phys. 2011, 38, 5311–5319. [Google Scholar] [CrossRef]
- Zhou, S.; Lin, K.; Wang, Y.; Jafari, M.H.; Qian, W. Clustered Microcalcification Detection Using Graph Theory. BMC Med. Imaging 2014, 14, 23. [Google Scholar] [CrossRef]
- Azad, R.; Aghdam, E.K.; Zafar, M.R.; Momeni, F.; Tajbakhsh, N.; Zhou, S.K.; Merhof, D.; Albarqouni, S. Medical Image Segmentation Review: The Success of U-Net. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 10076–10095. [Google Scholar] [CrossRef] [PubMed]
- Greffier, J.; Viry, A.; Robert, A.; Khorsi, M.; Si-Mohamed, S. Photon-counting CT systems: A technical review of current clinical possibilities. Diagn. Interv. Imaging 2025, 106, 53–59. [Google Scholar] [CrossRef]
- Mutua, J.; Di, J.; Liu, L.; Zheng, X. CZT-powered photon-counting CT: A revolution in medical imaging. Biomed. Phys. Eng. Express 2025, 11, 052002. [Google Scholar] [CrossRef]
- Chen, H.; Li, H.; Sundaram, A.G.; Reed, M.D.; Eger, J.; Montémont, G.; Verger, L.; He, Z.; Hugg, J.W.; Abbaszadeh, S.; et al. Development of large-volume high-performance monolithic CZT radiation detector. In Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XX; Fiederle, M., Burger, A., James, R.B., Payne, S.A., Eds.; SPIE: Bellingham, WA, USA, 2018. [Google Scholar] [CrossRef]
- Maldera, A.; De Marco, P.; Colombo, P.E.; Origgi, D.; Torresin, A. Digital breast tomosynthesis: Dose and image quality assessment. Phys. Medica 2017, 33, 56–67. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.; Michail, C.; Valais, I.; Fountos, G.; Kandarakis, I.; Kalyvas, N. Experimental Evaluation of GAGG: Ce Crystalline Scintillator Properties Under X-Ray Radiation. Crystals 2025, 15, 590. [Google Scholar] [CrossRef]
- Nocetti, D.; Villalobos, K.; Wunderle, K. Physical image quality metrics for the characterization of x-ray systems used in fluoroscopy-guided pediatric cardiac interventional procedures: A systematic review. Children 2023, 10, 1784. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Press, W.H.; Flannery, B.P.; Teukolsky, S.A.; Vetterling, W.T. Numerical Recipes in C: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Fan, M.; Thayib, T.; McCollough, C.; Yu, L. Accurate and efficient measurement of channelized Hotelling observer-based low-contrast detectability on the ACR CT accreditation phantom. Med. Phys. 2023, 50, 737–749. [Google Scholar] [CrossRef]
- Shrestha, S.; Vedantham, S.; Karellas, A. Towards standardization of x-ray beam filters in digital mammography and digital breast tomosynthesis: Monte Carlo simulations and analytical modelling. Phys. Med. Biol. 2017, 62, 1969–1993. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Q.; Black, D.; Ding, H.; Iribarren, C.; Shojazadeh, A.; Molloi, S. Quantification of breast arterial calcification in mammograms using a unet-based deep learning for detecting cardiovascular disease. Acad. Radiol. 2025, 32, 5028–5038. [Google Scholar] [CrossRef]
- Dance, D.R.; Cristofides, S.; Maidment, A.D.A.; McLean, I.D.; NG, K.-H. Diagnostic Radiology Physics: A Handbook for Teachers and Students; IAEA: Vienna, Austria, 2014. [Google Scholar]
- Carton, A.-K.; Ullberg, C.; Maidment, A.D.A. Optimization of a dual-energy contrast-enhanced technique for a photon-counting digital breast tomosynthesis system: II. An experimental validation. Med. Phys. 2010, 37, 5908–5913. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.; Kim, K.; Kim, T. Discrimination of Benign and Malignant Breast Microcalcifications Using Spectral Mammography: A Monte Carlo Simulation Study with GATE. J. Instrum. 2020, 15, C02033. [Google Scholar] [CrossRef]
- Ghammraoui, B.; Glick, S.J. Classification of breast microcalcifications using spectral mammography. In Proceedings of the SPIE Medical Imaging 2017: Physics of Medical Imaging, Orlando, FL, USA, 11–16 February 2017; Volume 10132, p. 101321. [Google Scholar] [CrossRef]
- Boone, J.M.; Kwan, A.L.C.; Seibert, J.A.; Shah, N.; Lindfors, K.K.; Nelson, T.R. Technique Factors and Their Relationship to Radiation Dose in Pendant Geometry Breast CT. Med. Phys. 2005, 32, 3767–3776. [Google Scholar] [CrossRef]
- Symons, R.; Krauss, B.; Sahbaee, P.; Cork, T.E.; Lakshmanan, M.N.; Bluemke, D.A.; Pourmorteza, A. Photon-counting CT for simultaneous imaging of multiple contrast agents in the abdomen: An in vivo study. Med. Phys. 2017, 44, 5120–5127. [Google Scholar] [CrossRef]
- Si-Mohamed, S.A.; Boccalini, S.; Lacombe, H.; Miailhes, J.; Rodesch, P.-A.; Leitman, V.; Cottin, V.; Boussel, L.; Douek, P. Spectral Photon-Counting CT Technology in Chest Imaging. J. Clin. Med. 2021, 10, 5757. [Google Scholar] [CrossRef]
- Marsh, J.F.; Jorgensen, S.M.; Rundle, D.S.; Vercnocke, A.J.; Leng, S.; Butler, P.H.; McCollough, C.H.; Ritman, E.L. Evaluation of a Photon Counting Medipix3RX Cadmium Zinc Telluride Spectral X-ray Detector. J. Med. Imaging 2018, 5, 043503. [Google Scholar] [CrossRef]
- Schulze, R.; Heil, U.; Groβ, D.; Bruellmann, D.; Dranischnikow, E.; Schwanecke, U.; Schoemer, E. Artefacts in CBCT: A Review. Dentomaxillofac. Radiol. 2011, 40, 265–273. [Google Scholar] [CrossRef]
- Shepp, L.A.; Vardi, Y. Maximum Likelihood Reconstruction for Emission Tomography. IEEE Trans. Med. Imaging 1982, 1, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Ferro, S.; Bottigliengo, D.; Gregori, D.; Fabricio, A.S.C.; Gion, M.; Baldi, I. Phenomapping of Patients with Primary Breast Cancer Using Machine Learning-Based Unsupervised Cluster Analysis. J. Pers. Med. 2021, 11, 272. [Google Scholar] [CrossRef]
- Haka, A.S.; Shafer-Peltier, K.E.; Fitzmaurice, M.; Crowe, J.; Dasari, R.R.; Feld, M.S. Diagnosing breast cancer by using Raman spectroscopy. Proc. Natl. Acad. Sci. USA 2005, 102, 12371–12376. [Google Scholar] [CrossRef] [PubMed]
- El-Naqa, I.; Yang, Y.; Wernick, M.N.; Galatsanos, N.P.; Nishikawa, R.M. A support vector machine approach for detection of microcalcifications. IEEE Trans. Med. Imaging 2002, 21, 1552–1563. [Google Scholar] [CrossRef]
- Sahiner, B.; Petrick, N.; Chan, H.P.; Hadjiiski, L.M.; Paramagul, C.; Helvie, M.A.; Gurcan, M.N. Computer-aided characterization of mammographic masses: Accuracy of mass segmentation and its effects on characterization. IEEE Trans. Med. Imaging 2001, 20, 1275–1284. [Google Scholar] [CrossRef] [PubMed]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD’96), Portland, Oregon, 2–4 August 1996; AAAI Press: Portland, OR, USA, 1996; pp. 226–231. [Google Scholar]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June –18 July 1965 and 27 December 1965–7 January 1966; University of California Press: Berkeley, CA, USA, 1967; Volume 1, pp. 281–297. [Google Scholar]
- Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef]
- Ankerst, M.; Breunig, M.M.; Kriegel, H.P.; Sander, J. OPTICS: Ordering points to identify the clustering structure. ACM SIGMOD Rec. 1999, 28, 49–60. [Google Scholar] [CrossRef]
- Samei, E.; Flynn, M.J. An experimental comparison of detector performance for direct and indirect digital radiography systems. Med. Phys. 2003, 30, 608–622. [Google Scholar] [CrossRef]
- Kalender, W.A. X-ray computed tomography. Phys. Med. Biol. 2006, 51, R29–R43. [Google Scholar] [CrossRef]
- Sotiropoulou, P.I.; Fountos, G.P.; Martini, N.D.; Koukou, V.N.; Michail, C.M.; Valais, I.G.; Kandarakis, I.S.; Nikiforidis, G.C. X-ray dual energy spectral parameter optimization for bone Calcium/Phosphorus mass ratio estimation. J. Phys. Conf. Ser. 2015, 637, 012025. [Google Scholar] [CrossRef]











| Detector Material | CNRmean | |||
|---|---|---|---|---|
| Ca2CO4 | CaCO3 | |||
| Phantom I | Phantom II | Phantom I | Phantom II | |
| CsI | 3.03 | 5.08 | 32.03 | 29.76 |
| BGO | 3.77 | 4.44 | 45.74 | 24.29 |
| LSO | 2.99 | 4.90 | 13.09 | 29.08 |
| LYSO | 2.76 | 4.75 | 40.15 | 32.16 |
| LaBr3 | 3.12 | 4.67 | 50.55 | 29.62 |
| CZT | 2.89 | 4.57 | 30.25 | 25.53 |
| GAGG | 2.96 | 4.92 | 39.83 | 25.77 |
| Detector Material | CNRmean | |||||
|---|---|---|---|---|---|---|
| CaC2O4 | CaCO3 | Hap | ||||
| Phantom III | Phantom IV | Phantom III | Phantom IV | Phantom III | Phantom IV | |
| CsI | 9.82 | 9.69 | 19.58 | 21.14 | 24.55 | 32.40 |
| BGO | 10.09 | 5.98 | 18.37 | 11.57 | 25.64 | 31.20 |
| LSO | 10.85 | 6.22 | 17.13 | 12.84 | 28.43 | 31.51 |
| LYSO | 10.78 | 5.90 | 18.01 | 12.10 | 20.26 | 27.40 |
| LaBr3 | 9.82 | 8.11 | 14.73 | 9.86 | 18.98 | 25.15 |
| CZT | 14.08 | 10.57 | 22.41 | 26.89 | 35.10 | 42.63 |
| GAGG | 16.51 | 11.27 | 33.37 | 27.87 | 37.14 | 44.09 |
| Detector Material | CNRmean | |||||||
|---|---|---|---|---|---|---|---|---|
| Ca2CO4 | CaCO3 | |||||||
| Phantom I | Phantom II | Phantom I | Phantom II | |||||
| FBP | OSEM | FBP | OSEM | FBP | OSEM | FBP | OSEM | |
| CsI | 12.63 | 24.83 | 6.90 | 29.55 | 24.93 | 31.34 | 14.00 | 37.18 |
| BGO | 13.69 | 20.72 | 7.35 | 29.97 | 28.15 | 37.87 | 13.44 | 26.24 |
| LSO | 13.21 | 25.59 | 7.56 | 28.87 | 25.45 | 28.84 | 14.96 | 30.00 |
| LYSO | 13.40 | 21.33 | 7.37 | 28.44 | 26.72 | 33.79 | 15.03 | 31.01 |
| LaBr3 | 12.85 | 22.82 | 6.88 | 27.06 | 27.94 | 31.65 | 13.56 | 30.12 |
| CZT | 12.85 | 28.15 | 7.02 | 29.29 | 24.68 | 33.62 | 16.01 | 25.51 |
| GAGG | 12.22 | 20.71 | 7.51 | 30.41 | 26.74 | 33.93 | 14.85 | 38.50 |
| CNRmean | ||||||
|---|---|---|---|---|---|---|
| Detector Material | FBP | |||||
| CaC2O4 | Hap | CaCO3 | ||||
| Phantom III | Phantom IV | Phantom III | Phantom IV | Phantom III | Phantom IV | |
| CsI | 16.97 | 13.58 | 70.41 | 54.91 | 44.59 | 39.65 |
| BGO | 15.16 | 13.04 | 61.04 | 61.13 | 40.22 | 37.60 |
| LSO | 16.73 | 11.91 | 72.15 | 54.50 | 46.29 | 36.45 |
| LYSO | 18.76 | 12.66 | 63.40 | 57.78 | 40.20 | 36.75 |
| LaBr3 | 16.85 | 13.71 | 76.84 | 52.95 | 39.78 | 36.58 |
| CZT | 17.76 | 14.11 | 75.92 | 58.07 | 44.03 | 43.16 |
| GAGG | 22.29 | 20.19 | 85.39 | 57.97 | 47.14 | 44.68 |
| Detector Material | OSEM | |||||
| CaC2O4 | Hap | CaCO3 | ||||
| Phantom III | Phantom IV | Phantom III | Phantom IV | Phantom III | Phantom IV | |
| CsI | 15.10 | 15.71 | 56.30 | 49.02 | 26.34 | 22.24 |
| BGO | 15.03 | 13.49 | 57.52 | 50.73 | 25.61 | 24.30 |
| LSO | 19.17 | 13.94 | 55.42 | 47.83 | 26.46 | 21.98 |
| LYSO | 17.02 | 13.73 | 55.33 | 43.32 | 28.63 | 23.65 |
| LaBr3 | 12.89 | 13.28 | 46.28 | 44.47 | 20.85 | 21.81 |
| CZT | 17.45 | 17.60 | 60.28 | 51.82 | 32.30 | 23.37 |
| GAGG | 18.62 | 16.30 | 47.28 | 53.37 | 29.40 | 23.79 |
| NMSRE | ||||
|---|---|---|---|---|
| FBP | ||||
| Detector Material | Phantom III #slice 25 | Phantom III #slice 50 | Phantom III #slice 70 | Phantom IV #slice 50 |
| BGO | 0.0110 | 0.0084 | 0.0072 | 0.0102 |
| LSO | 0.0147 | 0.0050 | 0.0061 | 0.0064 |
| LYSO | 0.0120 | 0.0126 | 0.0073 | 0.0098 |
| LaBR3 | 0.0099 | 0.0158 | 0.0080 | 0.0146 |
| CZT | 0.0072 | 0.0068 | 0.0083 | 0.0106 |
| GAGG | 0.0103 | 0.0145 | 0.0062 | 0.0066 |
| OSEM | ||||
| Detector Material | Phantom III #slice 25 | Phantom III #slice 50 | Phantom III #slice 70 | Phantom IV #slice 50 |
| BGO | 0.0115 | 0.0105 | 0.0101 | 0.0091 |
| LSO | 0.0144 | 0.0114 | 0.0162 | 0.0066 |
| LYSO | 0.0132 | 0.0114 | 0.0178 | 0.0093 |
| LaBR3 | 0.0150 | 0.0104 | 0.0149 | 0.0096 |
| CZT | 0.0135 | 0.0100 | 0.0171 | 0.0095 |
| GAGG | 0 | 0 | 0 | 0 |
| CNRmean | ||||||
|---|---|---|---|---|---|---|
| Detector Material | FBP | |||||
| CaC2O4 | Hap | CaCO3 | ||||
| Phantom III | Phantom IV | Phantom III | Phantom IV | Phantom III | Phantom IV | |
| CsI | 15.58 | 12.70 | 60.49 | 47.55 | 43.69 | 37.00 |
| BGO | 13.43 | 12.35 | 50.91 | 51.73 | 38.49 | 34.68 |
| LSO | 14.90 | 11.13 | 62.95 | 47.99 | 45.72 | 33.04 |
| LYSO | 16.88 | 11.91 | 53.3 | 50.12 | 38.42 | 33.90 |
| LaBr3 | 15.61 | 12.74 | 66.41 | 46.77 | 37.60 | 33.69 |
| CZT | 16.14 | 13.63 | 65.00 | 50.02 | 42.59 | 39.91 |
| GAGG | 20.02 | 11.53 | 69.94 | 50.62 | 45.66 | 34.19 |
| Detector Material | OSEM | |||||
| CaC2O4 | Hap | CaCO3 | ||||
| Phantom III | Phantom IV | Phantom III | Phantom IV | Phantom III | Phantom IV | |
| CsI | 14.62 | 14.97 | 38.87 | 39.54 | 26.60 | 26.45 |
| BGO | 14.33 | 13.03 | 51.24 | 44.13 | 25.12 | 22.93 |
| LSO | 19.42 | 13.36 | 32.61 | 41.22 | 25.10 | 23.32 |
| LYSO | 17.49 | 13.06 | 48.83 | 37.44 | 26.76 | 22.64 |
| LaBr3 | 12.57 | 12.76 | 38.83 | 40.53 | 21.52 | 21.23 |
| CZT | 16.80 | 12.43 | 49.68 | 45.33 | 28.62 | 23.21 |
| GAGG | 17.98 | 12.95 | 39.11 | 42.89 | 29.18 | 24.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karali, E.; Michail, C.; Fountos, G.; Kalyvas, N.; Valais, I. Characterization of Breast Microcalcifications Using Dual-Energy CBCT: Impact of Detector Configuration on Imaging Performance—A Simulation Study. Sensors 2025, 25, 6853. https://doi.org/10.3390/s25226853
Karali E, Michail C, Fountos G, Kalyvas N, Valais I. Characterization of Breast Microcalcifications Using Dual-Energy CBCT: Impact of Detector Configuration on Imaging Performance—A Simulation Study. Sensors. 2025; 25(22):6853. https://doi.org/10.3390/s25226853
Chicago/Turabian StyleKarali, Evangelia, Christos Michail, George Fountos, Nektarios Kalyvas, and Ioannis Valais. 2025. "Characterization of Breast Microcalcifications Using Dual-Energy CBCT: Impact of Detector Configuration on Imaging Performance—A Simulation Study" Sensors 25, no. 22: 6853. https://doi.org/10.3390/s25226853
APA StyleKarali, E., Michail, C., Fountos, G., Kalyvas, N., & Valais, I. (2025). Characterization of Breast Microcalcifications Using Dual-Energy CBCT: Impact of Detector Configuration on Imaging Performance—A Simulation Study. Sensors, 25(22), 6853. https://doi.org/10.3390/s25226853

