Confounder-Invariant Representation Learning (CIRL) for Robust Olfaction with Scarce Aroma Sensor Data: Mitigating Humidity Effects in Breath Analysis
Abstract
Share and Cite
Rahman, M.H.; Hooper, J.K.; Wardeh, A.; Masilamani, A.P.; Yockell-Lelièvre, H.; Ozhi Kandathil, J.; Khomami Abadi, M. Confounder-Invariant Representation Learning (CIRL) for Robust Olfaction with Scarce Aroma Sensor Data: Mitigating Humidity Effects in Breath Analysis. Sensors 2025, 25, 6839. https://doi.org/10.3390/s25226839
Rahman MH, Hooper JK, Wardeh A, Masilamani AP, Yockell-Lelièvre H, Ozhi Kandathil J, Khomami Abadi M. Confounder-Invariant Representation Learning (CIRL) for Robust Olfaction with Scarce Aroma Sensor Data: Mitigating Humidity Effects in Breath Analysis. Sensors. 2025; 25(22):6839. https://doi.org/10.3390/s25226839
Chicago/Turabian StyleRahman, Md Hafizur, Jayden K. Hooper, Alaa Wardeh, Ashok Prabhu Masilamani, Hélène Yockell-Lelièvre, Jayan Ozhi Kandathil, and Mojtaba Khomami Abadi. 2025. "Confounder-Invariant Representation Learning (CIRL) for Robust Olfaction with Scarce Aroma Sensor Data: Mitigating Humidity Effects in Breath Analysis" Sensors 25, no. 22: 6839. https://doi.org/10.3390/s25226839
APA StyleRahman, M. H., Hooper, J. K., Wardeh, A., Masilamani, A. P., Yockell-Lelièvre, H., Ozhi Kandathil, J., & Khomami Abadi, M. (2025). Confounder-Invariant Representation Learning (CIRL) for Robust Olfaction with Scarce Aroma Sensor Data: Mitigating Humidity Effects in Breath Analysis. Sensors, 25(22), 6839. https://doi.org/10.3390/s25226839

