Adaptive Dual-Beam Tracking for IRS-Assisted High-Speed Multi-UAV Communication Networks
Abstract
1. Introduction
1.1. Related Works
1.2. Motivations and Contributions
- (1)
- The attention-based double-layer long short-term memory (DL-LSTM) neural network is exploited to effectively predict the SAI of each high-speed UAV for the next frame. Therefore, the knowledge of each UAV’s trajectory or angular transition model is not required. Then, the optimal beam coverage (BC) and the number of beam components for each UAV can be efficiently estimated based on the predicted SAI, which fully considered the prediction errors, the angular process noise, and the high-speed UAV motion, and always supports the coverage of high-speed UAVs within a frame.
- (2)
- To enhance the edge UAV’s performance and maintain a reliable communication link in HSMUAVNs, a worst-case UAV’s received beam components signal-to-interference plus noise ratio (SINR) maximization problem is formulated by jointly optimizing GBS’s beam components and IRS’s phase shift matrix (PSM). Furthermore, the formulated non-convex problem is effectively tackled by an iterative algorithm based on semi-definite relaxation, the bisection method, and eigenvalue decomposition techniques.
- (3)
- Based on the acquired optimal BC and beam components, we design an adaptive dual-beam tracking scheme which is generated by linearly weighting these beam components. Simulation results validate that the proposed adaptive dual-beam tracking scheme improves both the achievable rate and robustness of the worst-case UAV in IRS-assisted HSMUAVNs.
1.3. Organization and Notations
2. System Model
3. Adaptive Dual-Beam Tracking Algorithm Design and Optimization
3.1. UAVs’ SAI Prediction Model
3.2. Estimation of Beam Coverage Area and Number of Beams per UAV
3.3. Optimization Problem
3.4. GBS’s Beam Components Optimization
3.5. IRS’s PSM Optimization
| Algorithm 1 Adaptive dual-beam tracking algorithm |
|
3.6. Complexity Analysis
4. Simulation Results


5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, X.; Zhang, Z.; Deng, Q.; Shu, F.; Liu, S.; Wang, J. Joint Trajectory and Primary-Secondary Transmission Design for UAV-Carried-IRS Assisted Underlay CR Networks. IEEE Trans. Veh. Technol. 2024, 73, 17848–17853. [Google Scholar] [CrossRef]
- Mu, J.; Zhang, R.; Cui, Y.; Gao, N.; Jing, X. UAV Meets Integrated Sensing and Communication: Challenges and Future Directions. IEEE Commun. Mag. 2023, 61, 62–67. [Google Scholar] [CrossRef]
- Gao, N.; Qin, Z.; Jing, X.; Ni, Q.; Jin, S. Anti-Intelligent UAV Jamming Strategy via Deep Q-Networks. IEEE Trans. Commun. 2020, 68, 569–581. [Google Scholar] [CrossRef]
- Deng, Q.; Yu, G.; Liang, X.; Zhang, Z.; Shu, F.; Li, X.; Wang, J. Sensing-Transmission-Energy Trade-off for IRS-Assisted Cognitive UAV Communication Systems. IEEE Trans. Cogn. Commun. Netw. 2025, 1–15. [Google Scholar] [CrossRef]
- Deng, Q.; Chen, X.; Liang, X.; Shu, F.; Du, J. Adaptive Beam Alignment and Optimization for IRS-Aided High-Speed UAV Communications. IEEE Trans. Green Commun. Netw. 2023, 7, 1583–1595. [Google Scholar] [CrossRef]
- Min, K.; Park, H.S.; Lee, H.S. Beam Alignment for Non-Stationary Enviroments Using a Novel Time-Varying Structured Bandit. IEEE Trans. Veh. Technol. 2025, 74, 6727–6732. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, W. Beam Tracking and Optimization for UAV Communications. IEEE Trans. Wireless Commun. 2019, 18, 5367–5379. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, Q.; Feng, Z.; Wen, Q.; Liu, F.; Zhang, P. Seeing Is Not Always Believing: ISAC-Assisted Predictive Beam Tracking in Multipath Channels. IEEE Wirel. Commun. Lett. 2024, 13, 14–18. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Z.; Huang, A.; Zhang, H.; Chang, L.; Pan, J. Placement of UAV-Mounted Edge Servers for Internet of Vehicles. IEEE Trans. Veh. Technol. 2024, 73, 10587–10601. [Google Scholar] [CrossRef]
- Liang, X.; Huang, L.; Deng, Q.; Shu, F.; Yu, G.; Wang, J. IRS-Assisted Spectrum Sensing and Primary-Secondary Transmission for Cognitive Radio Networks. IEEE Trans. Cogn. Commun. Netw. 2025, 11, 1508–1521. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Zheng, T.X.; Ng, D.W.K.; Al-Dhahir, N. Intelligent Reflecting Surface-Aided Full-Duplex Covert Communications: Information Freshness Optimization. IEEE Trans. Wirel. Commun. 2023, 22, 3246–3263. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, W.; Zhou, F.; Wang, B.; Wu, Q.; Quek, T.Q.S.; Chae, C.B. IRS-Enhanced spectrum sensing and secure transmission in cognitive radio networks. IEEE Trans. Wirel. Commun. 2024, 23, 10271–10286. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, L.; Zhang, R. Intelligent Surfaces Aided High-Mobility Communications: Opportunities and Design Issues. IEEE Commun. Mag. 2024, 62, 122–128. [Google Scholar] [CrossRef]
- Yu, J.; Liu, X.; Gao, Y.; Zhang, W. Deep Learning for Channel Tracking in IRS-Assisted UAV Communications Systems. IEEE Trans. Wirel. Commun. 2022, 21, 7711–7722. [Google Scholar] [CrossRef]
- Song, H.L.; Ko, Y.C. Beam Alignment for High-Speed UAV via Angle Prediction and Adaptive Beam Coverag. IEEE Trans. Veh. Technol. 2021, 70, 10185–10192. [Google Scholar] [CrossRef]
- Hu, X.; Zhong, C.; Zhang, Z. Angle-Domain Intelligent Reflecting Surface Systems: Design and Analysis. IEEE Trans. Commun. 2021, 69, 4202–4215. [Google Scholar] [CrossRef]
- Mu, X.; Liu, Y.; Guo, L.; Lin, J.; Schober, R. Joint Deployment and Multiple Access Design for Intelligent Reflecting Surface Assisted Networks. IEEE Trans. Wirel. Commun. 2021, 20, 6648–6664. [Google Scholar] [CrossRef]
- Deng, Q.; Yu, G.; Liang, X.; Shu, F.; Wang, J. Joint Trajectory, Sensing, and Transmission Design for IRS-Assisted Cognitive UAV Systems. IEEE Wirel. Commun. Lett. 2024, 13, 233–237. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, H.; Feng, Z.; Gao, H.; Li, W. Data-Aided Doppler Frequency Shift Estimation and Compensation for UAVs. IEEE Internet Things J. 2020, 7, 400–415. [Google Scholar] [CrossRef]
- Liang, X.; Deng, Q.; Shu, F.; Wang, J. Energy-Efficiency Joint Trajectory and Resource Allocation Optimization in Cognitive UAV Systems. IEEE Internet Things J. 2022, 9, 23058–23071. [Google Scholar] [CrossRef]
- Liu, C.; Yuan, W.; Wei, Z.; Liu, X.; Ng, D.W.K. Location-Aware Predictive Beamforming for UAV Communications: A Deep Learning Approach. IEEE Wirel. Commun. Lett. 2021, 10, 668–672. [Google Scholar] [CrossRef]
- Xing, X.; Wang, R.; Han, B.; Wu, C.; Xiao, B. A Trajectory Prediction Method of Drogue in Aerial Refueling Based on Transfer Learning and Attention Mechanism. IEEE Trans. Instrum. Meas. 2024, 73, 3531712–3531723. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, M.; Zhao, R.; Guretno, F.; Yan, R.; Li, X. Machine Remaining Useful Life Prediction via an Attention-based Deep Learning Approach. IEEE Trans. Ind. Electron. 2021, 68, 2521–2531. [Google Scholar] [CrossRef]
- Ramasamy, D.; Venkateswaran, S.; Madhow, U. Compressive Tracking with 1000-element Arrays: A framework for Multi-Gbps mmWave Cellular Downlinks. In Proceedings of the 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 1–5 October 2012; pp. 690–697. [Google Scholar]
- Noh, S.; Zoltowski, M.D.; Love, D.J. Multi-Resolution Codebook and Adaptive Beamforming Sequence Design for Millimeter Wave Beam Alignment. IEEE Trans. Wirel. Commun. 2017, 16, 5689–5701. [Google Scholar] [CrossRef]
- Yuan, J.; Liang, Y.C.; Joung, J.; Feng, G.; Larsson, E.G. Intelligent Reflecting Surface-Assisted Cognitive Radio System. IEEE Trans. Commun. 2021, 69, 675–687. [Google Scholar] [CrossRef]
- Hu, X.; Zhong, C.; Zhang, Y.; Chen, X.; Zhang, Z. Location Information Aided Multiple Intelligent Reflecting Surface Systems. IEEE Trans. Commun. 2020, 68, 7948–7962. [Google Scholar] [CrossRef]
- Li, S.; Duo, B.; Di Renzo, M.; Tao, M.; Yuan, X. Robust Secure UAV Communications with the Aid of Reconfigurable Intelligent Surfaces. IEEE Trans. Wirel. Commun. 2021, 20, 6402–6417. [Google Scholar] [CrossRef]







| Hyperparameter Name | Numerical Value |
|---|---|
| Input size of | |
| Size of in LSTM layer-1 | |
| Size of in LSTM layer-2 | |
| Attention layer size of Query/Key/Value | |
| FC layer activation function | Linear |
| Dropout Rate | |
| Learning Rate | 0.001 |
| Epochs | 500 |
| Batch size | 128 |
| Output size of |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Z.; Huang, G.; Deng, Q.; Liang, X. Adaptive Dual-Beam Tracking for IRS-Assisted High-Speed Multi-UAV Communication Networks. Sensors 2025, 25, 6757. https://doi.org/10.3390/s25216757
Peng Z, Huang G, Deng Q, Liang X. Adaptive Dual-Beam Tracking for IRS-Assisted High-Speed Multi-UAV Communication Networks. Sensors. 2025; 25(21):6757. https://doi.org/10.3390/s25216757
Chicago/Turabian StylePeng, Zhongquan, Guanglong Huang, Qian Deng, and Xiaopeng Liang. 2025. "Adaptive Dual-Beam Tracking for IRS-Assisted High-Speed Multi-UAV Communication Networks" Sensors 25, no. 21: 6757. https://doi.org/10.3390/s25216757
APA StylePeng, Z., Huang, G., Deng, Q., & Liang, X. (2025). Adaptive Dual-Beam Tracking for IRS-Assisted High-Speed Multi-UAV Communication Networks. Sensors, 25(21), 6757. https://doi.org/10.3390/s25216757
